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Abstract

A homogenization framework is developed that accounts for the effect of size at the micro- or nanoscale. This is

achieved by endowing the interfaces of the micro- or nanoscopic features with their own independent structure, using

the theory of surface elasticity. Following a standard small-strain approach for the microscopic deformation in terms of

the macroscopic strain tensor, a Hill-type averaging condition is used to link the two scales. A procedure for determining

overall effective properties in the case of composites with elastic components and elastic material interfaces is presented.

A special example of multilayered composites demonstrates the correlation between a material interface and a very thin

interphase layer.
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1. Introduction

The surfaces of solid bodies and the interfaces in composites typically exhibit properties different from those
of the bulk materials. These differences, caused by processes such as surface oxidation, ageing, coating, atomic
rearrangement and the termination of atomic bonds, are present in comparatively thin boundary layers. Surface
and interface effects are especially significant for micro- and nanomaterials due to their large surface-area-to-
volume ratio.

Surface and interface effects can be modelled using various continuum approaches. Phenomenological mod-
els that include surfaces with their own structure date back to the pioneering work of Gibbs [1]. More recent key
contributions include those by Gurtin and Murdoch [2] who described surface effects using tensorial surface
stresses. Moeckel [3] developed an alternative approach for a moving thermomechanical interface (essentially
a two-sided surface). Somewhat later, Daher and Maugin [4] invoked the method of virtual power to endow
the surface with its own thermodynamic constituents while dell’Isola and Romano [5] developed a general bal-
ance law for continua with interfaces. Based on potential energies Steinmann [6] identified the balance laws for
deformational and configurational mechanics.

Homogenization, as pioneered by Hill [7] and Hill and Rice [8], provides a consistent methodology to link
the macroscopic and microscopic scales and forms the basis for computational micro-to-macro transitions.
A review of different multi-scale approaches can be found in [9, 10]. The effective mechanical behaviour
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of composites has been studied thoroughly by various researchers for general and periodic microstructures
[7, 11–15]. A computational scheme for homogenization of composites with nonlinear constituents has been
presented by Suquet [16]. Homogenization of composites at finite strains has been considered by many authors
[17–23].

Motivated by the non-classical behaviour of continua at the nanoscale, the objective of this contribution is
to present a novel theoretical micro-to-macro transition framework for problems where the microstructure pos-
sesses interface structure. The contribution of the energetic interface to the overall strength of the microscopic
representative volume element (RVE) depends on two relative microscopic length scales. (The label ‘energetic’
denotes that the interface possesses mechanical and constitutive structures. These structures are independent
from those of the bulk.) The first is the ratio of the volume of the RVE to the area of the energetic interface. The
second is the ratio of the microscopic Helmholtz energies of the interface and the bulk.

The macroscopic and microscopic problems satisfy the assumption of scale separation. Nonetheless, unlike
the case where the microstructure contains no energetic interfaces, the magnitude of the relative size of the
microscopic problem compared to the macroscale is important when energetic interfaces are considered. The
energetic interface structure allows one to capture the increase of specimen strength with decreasing size. Stan-
dard micro-to-macro transition frameworks, that is, where the macro- and microstructures possess no enhanced
continuum description, cannot capture this strengthening effect. This phenomenon has been investigated numer-
ically using surface elasticity theory (see e.g. [24–27]). The strengthening effect due to the presence of energetic
surfaces/interfaces has been studied recently using micromechanics approaches by [28–30]. In those cases,
though, the energetic surface has specific geometry (spherical or cylindrical).

This manuscript is organized as follows: the notation and certain key concepts are briefly introduced. The
small-strain formulation governing the response of the micro- and macrostructure and the connection between
them through volume averaging over the RVE is summarized in Section 2. Appropriate boundary conditions
in the RVE that link the microscopic and macroscopic mechanical work are identified using a Hill-type lemma
in Section 3. In the same section the governing microscale equations based on the Hill–Mandel criterion are
identified for periodic boundary conditions. An analytical procedure for computing the effective stiffness tensor
for periodic elastic media with elastic material interfaces is presented in Section 4. The proposed methodology
is demonstrated in Section 5 with a particular analytical example of a multilayered composite. The paper closes
with a summary and the conclusions of this work.

1.1. Notation

Direct notation is adopted throughout. Occasional use is made of index notation, the summation convention for
repeated indices being implied. Bold letters are used to denote vectors and tensors in order to distinguish them
from scalars. In the following, δij is the Kronecker delta and i denotes the second-order identity tensor [i]ij = δij.
We identify the three forms of single contraction of an (n + 1)th-order tensor A and an (m + 1)th-order tensor
B as the (n + m)th-order tensors A · B, A ·̃ B and A

˜
· B, given by

[A · B]i1i2...in+m
= [A]i1i2...inq[B]qin+1in+2...in+m

,

[A ·̃ B]i1i2...in+m
= [A]i1i2...inq[B]in+1in+2...in+mq

and
[A

˜
· B]i1i2...in+m

= [A]qi1i2...in[B]qin+1in+2...in+m

respectively. We identify the three forms of the double contraction of an (n + 2)th-order tensor A and an (m +
2)th-order tensor B as the (n + m)th-order tensors A : B, A :̃ B and A

˜
: B, given by

[A : B]i1i2...in+m
= [A]i1i2...inpq[B]pqin+1in+2...in+m

,

[A :̃ B]i1i2...in+m
= [A]i1i2...inpq[B]in+1in+2...in+mpq

and
[A

˜
: B]i1i2...in+m

= [A]pqi1i2...in[B]pqin+1in+2...in+m

respectively. The tensor product of an nth-order tensor A and an mth-order tensor B is the (n+m)th-order tensor
A ⊗ B given by

[A ⊗ B]i1i2...in+m
= [A]i1i2...in[B]in+1in+2...in+m

.
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Table 1. Notation and definition of main variables in the microscale bulk used throughout the text. Microscale interface quantities

are notated with a hat above the symbol. Macroscale quantities are notated with a bar above the symbol.

x position vector V volume of RVE

S area of interface u displacement vector

ǫ strain tensor σ stress tensor

t traction vector W energy density function

z displacement fluctuation vector U third-order fluctuation tensor

C elasticity tensor t thickness of interphase layer

Table 2. Space definitions (volumes, surfaces, curves) and normal vectors to boundaries (surfaces, curves) for macroscale body,

microscale bulk and microscale interface.

Macroscale Microscale

Body Body boundary Bulk Boundary Interface Interface boundary

Space B ∂B B ∂B I ∂I

Normal vector n n ns n̂s

Table 3. Summary of notation used for quantities and tensor operators in macroscale, microscale bulk and microscale energetic

interface. In macroscale and microscale bulk, a, b = 1, 2, 3, while in microscale interface, α, β = 1, 2.

Macroscale

ga := ∂xax δa
b

= ga · gb

i := δa
b
ga ⊗ gb = ga ⊗ ga = i t

grad {•} := ∂xa {•} ⊗ ga = ∂x {•} = grad {•} · i

div {•} := ∂xa {•} · ga = grad {•} : i

Microscale (Bulk) Microscale (Interface)

ga := ∂xax δa
b

= ga · gb ĝα := ∂
θ̂α x̂ δα

β
= ĝα · ĝβ ns =

ĝ1 × ĝ2∣∣ĝ1 × ĝ2

∣∣
i := δa

b
ga ⊗ gb = ga ⊗ ga = i t î := δα

β
ĝα ⊗ ĝβ = ĝα ⊗ ĝα = i − ns ⊗ ns = î t

grad {•} := ∂xa {•} ⊗ ga = ∂x {•} = grad {•} · i ĝrad {•} := ∂
θ̂α {•} ⊗ ĝα = grad {•} · î

div {•} := ∂xa {•} · ga = grad {•} : i d̂iv {•} := ∂
θ̂α {•} · ĝα = ĝrad {•} : î

The two non-standard tensor products of two second-order tensors A and B are the fourth-order tensors
[A ⊗ B]ijkl = [A]ik[B]jl and [A ⊗ B]ijkl = [A]il[B]jk . The transpose of a second-order tensor A, denoted as
At, is a second-order tensor with components [At]ij = [A]ji.

Table 1 summarizes the main variables that are used in this work. At the microscale, quantities defined on the
interface are differentiated from those on the bulk material by a hat placed above the symbol. That is, {̂•} refers
to an interface variable with its bulk counterpart being {•}. Moreover, macroscopic quantities are differentiated
from microscale quantities by an accent placed above the symbol. That is, {•} refers to a macroscopic variable
with its microscopic counterpart being {•}. The symbol 〈{•}〉 denotes averaging of the quantity {•} over the
RVE. Table 2 presents the volumes, surfaces and curves in the microscale used in this paper as well as the
vectors connected with them.

We identify as a jump of a quantity {•} the relation [[{•}]] = {•}+ − {•}−. The Greek letter indices α,
β, γ , etc. take the values 1 or 2. The Latin letter indices a, b, c, etc. take the values 1, 2 or 3. The general
identities that hold in the bulk material and on the interface are presented in Table 3 [6]. In the table xa are

the Cartesian macro-coordinates, xa are the Cartesian micro-coordinates and θ̂α denotes the curvilinear micro-
scopic interface coordinates. Moreover, gq and gq denote Cartesian covariant and contravariant base vectors

in the macroscale correspondingly, gq and gq denote Cartesian covariant and contravariant base vectors in the

microscopic bulk and ĝα and ĝα denote curvilinear covariant and contravariant base vectors in the microscopic
interface respectively.
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Figure 1. Composite material: macroscale and microscale.

2. Problem definition

Our intention is to study the behaviour of composites with energetic interfaces subjected to mechanical loading.
We can consider two separate scales, the macroscale, which describes the overall body, and the microscale,
which describes the RVE of the microstructure (Figure 1). In the subsequent subsections of this section we
present the field variables and the main equations that describe the behaviour of the overall body and its
microstructure, and we summarize certain key concepts from continuum mechanics. Detailed expositions of
continuum mechanics can be found in [31–35], among others. For continuum mechanics of material surfaces,
extensive discussion can be found in [2, 6].

2.1. The microscale problem

At the microscale we consider that the RVE occupies the space B with volume V and boundary ∂B. The RVE
typically consists of two materials, which are separated by a coherent energetic interphase I (see Figure 2). The
interface can either be closed or open intersecting with the boundary ∂B. For the sake of generality we assume
throughout the subsequent derivations that the boundary of the interface ∂I is non-empty space and we discuss
the differences that occur when ∂I = ∅.

We consider that the energetic interface does not create any discontinuity in the position and displacement,
in other words, x̂ = x|I and û = u|I (kinematically coherent). Moreover, the interface stresses are considered
tangential, that is, σ̂ · ns = 0. The symmetric microscopic strains in the bulk and the interface are defined by
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Figure 2. RVEs with closed and open interfaces.

the relations

ǫ = 1
2

[
i · gradu + [gradu]t · i

]
in B, ǫ̂ = 1

2

[
î · ĝradû + [ĝradû]t · î

]
on I. (1)

We note that the interface strains ǫ̂, as defined in equation (1)2, preserve only the tangential components to the
interface.

Ignoring micro-body forces in both the bulk and the interface the balance of linear momentum for quasi-
static cases leads to [36]

divσ = 0 in B, d̂ivσ̂ + [[σ ]] · ns = 0 on I. (2)

In the expressions of the linear momentum the microscopic stresses in both bulk and interface are considered
symmetric. The divergence theorems in the bulk and on the interface are written as [2, 6]

∫

∂B

{•} · n dS =

∫

B

div {•} dV +

∫

I

[[{•}]] · ns dS,
∫

∂I

{•} · n̂s dL =

∫

I

d̂iv {•} dS −

∫

I

d̂ivns {•} · ns dS.
(3)

Following a similar approach to the one by Gurtin and Murdoch [2] we can then prove the following relations
for the bulk and the interface:∫

∂B

[σ · n] ⊗ x dS =

∫

B

divσ ⊗ x dV +

∫

I

[[[σ ]] · ns] ⊗ x̂ dS +

∫

B

σ dV ,

∫

∂I

[σ̂ · n̂s] ⊗ x̂ dL =

∫

I

d̂ivσ̂ ⊗ x̂ dS +

∫

I

σ̂ dS.

(4)

Proof. For the first expression we multiply the left-hand side by an arbitrary constant vector k. Then using
equation (3)1 we get

[∫

∂B

[σ · n] ⊗ x dS

]
· k =

∫

∂B

[x · k]σ · n dS =

∫

B

div([x · k]σ ) dV +

∫

I

[[[x̂ · k]σ ]] · ns dS

=

[∫

B

divσ ⊗ x dV +

∫

I

[[[σ ]] · ns] ⊗ x̂ dS +

∫

B

σ dV

]
· k,

and the arbitrariness of k completes the proof.
For the second expression we again multiply the left-hand side by an arbitrary constant vector k. Then using

equation (3)2 we get
[∫

∂I

[σ̂ · n̂s] ⊗ x̂ dL

]
· k =

∫

∂I

[x̂ · k]σ̂ · n̂s dL =

∫

I

d̂iv([x̂ · k]σ̂ ) dS −

∫

I

divns[x̂ · k]σ̂ · ns dS

=

∫

I

[d̂ivσ̂ ⊗ x̂] · k dS +

∫

I

σ̂ · î · k dS =

[∫

I

[d̂ivσ̂ ⊗ x̂] dS +

∫

I

σ̂ dS

]
· k,
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(a) (b)

Figure 3. Body interphase with (a) non-zero thickness and (b) zero thickness.

and the arbitrariness of k completes the proof. �

Ignoring scalar-valued, liquid-like interface tension, the constitutive relations that connect the stresses with
the small strains for both the bulk and the interface are usually provided through the introduction of appropriate
energy density functions. We consider the energy density functions W (ǫ), Ŵ (ǫ̂) such that the bulk and interface
stresses are given by

σ (ǫ) :=
∂W

∂ǫ
and σ̂ (ǫ̂) :=

∂Ŵ

∂ ǫ̂
. (5)

The increments of the energy density functions are then written as

δW = σ : δǫ, δŴ = σ̂ : δǫ̂. (6)

2.2. The macroscale problem

In the macroscale we consider a continuum body that occupies the configuration B with boundary ∂B. For static
cases, the deformation is characterized by the symmetric macroscopic strain ǫ,

ǫ = 1
2

[
i · gradu + [gradu]t · i

]
. (7)

In the absence of mechanical body forces, the macroscopic equilibrium equation is written in terms of the
symmetric macroscopic stress σ as

divσ = 0. (8)

We identify the macroscopic energy density function W , whose increment δW is given by the relation

δW =σ : δǫ. (9)

In micromechanics it is common to connect macroscopic and microscopic scales through volume averaging
of microscopic quantities over a specific RVE. Using the divergence theorem (3)1 and considering that u is
continuous across the interface, the volume average of the microscopic strain over the RVE is given by

〈ǫ〉 =
1

V

∫

B

ǫ dV =
1

2V

∫

∂B

[u ⊗ n + n ⊗ u] dS. (10)

Concerning the average stress, the appearance of non-zero stresses on the interface requires accounting for them
when averaging over the entire RVE: when the interface is considered to have a small but finite thickness, the
entire body in the undeformed configuration is split into three parts, B+, B− and S (Figure 3(a)), and the average
stress is given by

〈σ 〉 =
1

V

∫

B+

σ dV +
1

V

∫

B−

σ dV +
1

V

∫

S

σ dV . (11)
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Under no body forces, the divergence theorem (3)1 and the equilibrium equation (2)1 allow us to write the third
integral as

∫

S

σ dV =

∫

I+

[σ+ · n+
s ] ⊗ x dS +

∫

I−

[σ− · n−
s ] ⊗ x dS +

∫

∂S

[σ · nb
s ] ⊗ x dS,

where I+ and I− are the boundaries of the interface inside the body and ∂S denotes the boundaries of the
interface on the boundary of the body, while n+

s , n−
s and nb

s are the corresponding normal unit vectors to these
interfaces (see Figure 3(a)). In the limit case where the interface has zero thickness,

∂S → ∂I, I
+ → I

− → I, n+
s = −n−

s = ns, x|I = x̂, [σ · nb
s ] ⊗ x → [σ̂ · n̂s] ⊗ x̂,

and equation (11) is rewritten as

〈σ 〉 =
1

V

∫

B

σ dV +
1

V

∫

I

[[[σ ]] · ns] ⊗ x̂ dS +
1

V

∫

∂I

[σ̂ · n̂s] ⊗ x̂ dL.

Using equations (2)1,2 and (4)1,2, the volume average of the microscopic stress over the RVE can be expressed
in the two alternative forms

〈σ 〉 =
1

V

∫

B

σ dV +
1

V

∫

I

σ̂ dS =
1

V

∫

∂B

t ⊗ x dS +
1

V

∫

∂I

t̂ ⊗ x̂ dL, (12)

where t := σ · n and t̂ := σ̂ · n̂s are the traction vectors in the bulk and on the interface respectively. As we
observe, the average stress differs from the average stress of bodies with non-energetic interfaces that cause
traction jump conditions [37], since on the second (boundary) form of equation (12) there is an explicit contri-
bution of the interface stresses through the integral over the boundary curve ∂I. Duan et al. [28] have utilized
the definition of Benveniste and Miloh [37] for the macroscopic stress, which holds in the case of spherical
inclusions since the interface is closed and ∂I = ∅. This definition, though, is not correct when the interface is
open.

In a similar manner, the average energy density function increment 〈δW 〉 = 〈σ : δǫ〉 includes the interface
counterpart and it is given by the expression

〈δW 〉 =
1

V

∫

B

σ : δǫ dV +
1

V

∫

I

σ̂ : δǫ̂ dS =
1

V

∫

∂B

t · δu dS +
1

V

∫

∂I

t̂ · δû dL. (13)

Proof. Assuming that the interface has a small but finite thickness, the average energy density increment over
the RVE is written as

〈σ : δǫ〉 =
1

V

∫

B+

σ : δǫ dV +
1

V

∫

B−

σ : δǫ dV +
1

V

∫

S

σ : δǫ dV .

Under no body forces, equation (1)1, the divergence theorem (3)1 and the equilibrium equation (2)1 allow us to
write the third integral as

∫

S

σ : δǫ dV =
1

V

∫

S

div(δu · σ ) dV

=

∫

I+

δu · σ
+ · n+

s dS +

∫

I−

δu · σ
− · n−

s dS +

∫

∂S

δu · σ · nb
s dS.

In the limit case where the interface has zero thickness,

∂S → ∂I, I
+ → I

− → I, n+
s = −n−

s = ns, δu|I = δû, δu · σ · nb
s → δû · σ̂ · n̂s,

we obtain

〈σ : δǫ〉 =
1

V

∫

B

σ : δǫ dV +
1

V

∫

I

δû · [[σ ]] · ns dS +
1

V

∫

∂I

δû · σ̂ · n̂s dL. (14)
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With regard to the first expression of equation (13), equations (1)2, (2)2, (3)2 and the relation σ̂ · ns = 0 allow
us to write (14) as

〈σ : δǫ〉 =
1

V

∫

B

σ : δǫ dV +
1

V

∫

I

δû · [[σ ]] · ns dS +
1

V

∫

I

d̂iv(δû · σ̂ ) dS

=
1

V

∫

B

σ : δǫ dV +
1

V

∫

I

σ̂ : δǫ̂ dS.

With regard to the second expression of equation (13), equations (2)1, (3)1 and the continuity of u across the
interface allow us to write (14) as

〈σ : δǫ〉 =
1

V

∫

B

div(δu · σ ) dV +
1

V

∫

I

[[δu · σ ]] · ns dS +
1

V

∫

∂I

t̂ · δû dL

=
1

V

∫

∂B

t · δu dS +
1

V

∫

∂I

t̂ · δû dL. �

Following classical micromechanics arguments the macroscopic stresses and strains are considered equal to
the average microscopic stresses and strains respectively over the RVE, as defined in the above:

σ = 〈σ 〉 , ǫ = 〈ǫ〉 .

3. Transition from micro to macro level: Macroscopic fields and RVE problem

3.1. Appropriate RVE boundary conditions: Hill’s lemma

The solution of the microscopic problem requires appropriate boundary conditions that will satisfy the Hill–
Mandel condition. In this section we want to identify the types of boundary condition (uniform or periodic
fields) on the RVE under which the Hill–Mandel condition holds, that is, the average of the increment of the
energy density function (13)2 over the volume of the RVE is equal to the macroscopic increment of the energy
density function. In order to achieve our goal, we will need to express Hill’s lemma considering the interface.

Hill’s lemma In terms of the displacement increments and tractions, Hill’s lemma is written as

〈σ : δǫ〉−〈σ 〉 : 〈δǫ〉 =
1

V

∫

∂B

[δu − 〈δǫ〉 · x] · [σ · n − 〈σ 〉 · n] dS +
1

V

∫

∂I

[δû − 〈δǫ〉 · x̂] · [σ̂ · n̂s] dL (15)

which, if we neglect the energetic interface, takes its classical form. Surprisingly, in the above expression the
average stress is not present in the second integral that concerns the interface.

Proof. Due to the continuity of the body we have

1

V

∫

∂B

x ⊗ n dS = i.

Thus, using equation (10) and the symmetry of the stress tensor, we obtain

1

V

∫

∂B

[δu − 〈δǫ〉 · x] · [σ · n − 〈σ 〉 · n] dS =
1

V

∫

∂B

t · δu dS −
1

V

∫

∂B

t ⊗ x dS : 〈δǫ〉

− 〈σ 〉 :
1

2V

∫

∂B

[δu ⊗ n + n ⊗ δu] dS

+
[
〈δǫ〉 · 〈σ 〉

]
:

1

V

∫

∂B

x ⊗ n dS

=
1

V

∫

∂B

t · δu dS −
1

V

∫

∂B

t ⊗ x dS : 〈δǫ〉 ,
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and

1

V

∫

∂I

[δû − 〈δǫ〉 · x̂] · [σ̂ · n̂s] dL =
1

V

∫

∂B

t̂ · δû dS −
1

V

∫

∂B

t̂ ⊗ x̂ dS : 〈δǫ〉 .

By adding the two expressions and taking into account equations (12) and (13) we obtain Hill’s lemma (15). �

The types of boundary condition for which the right-hand side of equation (15) vanishes are the following:

a) Linear displacements
u = 〈ǫ〉 · x on ∂B and û = 〈ǫ〉 · x̂ on ∂I.

b) Uniform tractions
t = σ · n = 〈σ 〉 · n on ∂B and t̂ = σ̂ · n̂s = 0 on ∂I.

c) Periodic conditions in periodic microstructure

u = 〈ǫ〉 · x + z, z periodic, t antiperiodic and û = 〈ǫ〉 · x̂ + ẑ, ẑ periodic, t̂ antiperiodic.

For a closed interface ∂I = ∅ the integral over ∂I vanishes. Then the corresponding boundary conditions are:

a) Linear displacements
u = 〈ǫ〉 · x on ∂B.

b) Uniform tractions
t = σ · n = 〈σ 〉 · n on ∂B.

c) Periodic conditions in periodic microstructure

u = 〈ǫ〉 · x + z, z periodic, t antiperiodic on ∂B.

3.2. Periodicity conditions

In the sequel we focus on periodic boundary conditions and we are going to identify the RVE problem by using
the Hill–Mandel condition. We assume that the tractions are antiperiodic and the microscopic displacement u is
the sum of a linear and a periodic term,

u = ǫ · x + z, û = ǫ · x̂ + ẑ, ẑ = z|I , (16)

where z = z(x) is a periodic vector-valued function of x. In this case equation (10) and the symmetry of the
strain tensor lead to 〈ǫ〉 = ǫ. Moreover, using (12), the average of the increment of the energy density function
(13) is written as [AQ: 1]

〈δW 〉 =
1

V

∫

∂B

t · δu dS +
1

V

∫

∂I

t̂ · δû dL

=

[
1

V

∫

∂B

t ⊗ x dS +
1

V

∫

∂I

t̂ ⊗ x̂ dL

]
: δǫ +

1

V

∫

∂B

t · δz dS +
1

V

∫

∂I

t̂ · δẑ dL

=〈σ 〉 : δǫ +
1

V

∫

∂B

t · δz dS +
1

V

∫

∂I

t̂ · δẑ dL.

Considering 〈σ 〉 = σ and the Hill–Mandel condition 〈δW 〉 = δW , we obtain the RVE problem in the form
∫

∂B

t · δz dS +

∫

∂I

t̂ · δẑ dL = 0. (17)

The two integrals vanish due to the periodicity of z, ẑ and the antiperiodicity of t, t̂. With the help of the
divergence theorems (3)1,2 and the relation σ̂ · ns = 0, equation (17) is expressed as

∫

B

div(δz · σ ) dV +

∫

I

d̂iv(δẑ · σ̂ ) dS +

∫

I

δẑ · [[σ ]] · ns dS = 0,
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or, likewise,
∫

B

δz · divσ dV +

∫

I

δẑ · [d̂ivσ̂ + [[σ ]] · ns] dS +

∫

B

σ : gradδz dV +

∫

I

σ̂ : ĝradδẑ dS = 0.

Using the equilibrium equations (2)1,2 we obtain the RVE problem in the form
∫

B

σ : gradδz dV +

∫

I

σ̂ : ĝradδẑ dS = 0. (18)

For closed interfaces, the form (18) of the RVE problem is exactly the same, while in the form (17) the second
integral vanishes.

4. Periodic linearly elastic materials with elastic energetic interfaces:

Effective properties

In linear elasticity the constitutive law between stresses and strains for a bulk material is the usual one,

σ = C : ǫ = C : gradu, (19)

where C is the constant stiffness tensor. For the energetic interface the constitutive law takes a similar form [2],

σ̂ = Ĉ : ǫ̂ = Ĉ : ĝradû, (20)

where Ĉ is the interface stiffness tensor whose only non-zero components are tangential, since it satisfies the

property (1/2)Ĉ : [î ⊗ î+ î ⊗ î] = Ĉ. Both C and Ĉ are periodic tensors on H. Introducing the test vector fields

δη ∈ H1
0(B), δη̂ ∈ H1

0(I) and using an analogous approach to the one for obtaining equation (18), the virtual
work principle is expressed in the form

∫

B

gradδη : σ dV +

∫

I

ĝradδη̂ : σ̂ dS = 0. (21)

Using equations (19), (20) and (16) the virtual work principle is rewritten as
∫

B

gradδη : [C : gradz] dV +

∫

I

ĝradδη̂ :
[
Ĉ : ĝradẑ

]
dS

+

[∫

B

gradδη : C dV +

∫

I

ĝradδη̂ : Ĉ dS

]
: ǫ = 0.

(22)

The above problem is linear with respect to z, which can be expressed in the form [15]

z =ǫ : U , ẑ =ǫ : Û , Û = U |I , (23)

plus an arbitrary macro-quantity. U and Û are periodic third-order tensors and they are the solutions of the
auxiliary tensor equations that derive from equation (22) for arbitrary ǫ,

∫

B

gradδη : [C + C :̃ gradU] dV +

∫

I

ĝradδη̂ :
[
Ĉ + Ĉ :̃ ĝradÛ

]
dS = 0. (24)

From the definition of the macroscopic stress we have that

σ = 〈σ 〉 =
1

V

∫

B

σ dV +
1

V

∫

I

σ̂ dS =

[
1

V

∫

B

[C + C :̃ gradU] dV +
1

V

∫

I

[
Ĉ + Ĉ :̃ ĝradÛ

]
dS

]
: ǫ,

which indicates that the effective stiffness tensor with σ = C : ǫ is given by

C =
1

V

∫

B

[C + C :̃ gradU] dV +
S

V

1

S

∫

I

[
Ĉ + Ĉ :̃ ĝradÛ

]
dS, (25)

where S is the total area of the energetic interface. The last relation indicates that the effective stiffness tensor
depends not only on the material properties of the bulk materials and the interface, but also on the ratio S/V .
Thus in composites with micro- or nanoconstituents, where the surface-to-volume ratio is significant, the RVE
size plays a role in the overall behaviour.
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(a) (b)

Figure 4. Multilayered composite, where a small thickness interphase layer is substituted by an energetic interface.

5. Example: Multilayered composites with orthotropic constituents

In order to demonstrate the theoretical analysis of the previous section, we will study the case of a multilayered
material, where the solution of the RVE problem can be obtained analytically. For simplicity, in the sequel
we do not distinguish between covariant and contravariant tensors, using only lower indices. We consider the
case of a composite with an RVE consisting of two orthotropic materials separated in the x3-direction by an
interphase orthotropic layer with very small thickness t (Figure 4). The interphase is perfectly bonded with the
two materials. When t → 0 the layer can be substituted by an energetic interface. The aim of this example is
to identify the relation between the material properties of the interphase layer and the energetic interface which
provide the same effective behaviour to the composite. In the sequel the upper indices 1 and 2 in parentheses
denote bulk materials and the index 3 denotes the interphase layer. For a linear elastic orthotropic bulk material
the only non-zero components of C are C1111, C2222, C3333, C1122, C1133, C2233, C1212, C1313, C2323 and their
symmetric counterparts, while for a linear elastic orthotropic energetic interface normal to the x3-direction the

only non-zero components of Ĉ are Ĉ1111, Ĉ2222, Ĉ1122, Ĉ1212 and their symmetric counterparts.

1. We first consider the energetic interface with zero thickness. Using indicial notation, the auxiliary
problems (24) in both the bulk and the energetic interface read, in local form,

∂

∂x1

[
C

(w)
i1kl + C

(w)
i1mn

∂U
(w)
klm

∂xn

]
+

∂

∂x2

[
C

(w)
i2kl + C

(w)
i2mn

∂U
(w)
klm

∂xn

]
(26)

+
∂

∂x3

[
C

(w)
i3kl + C

(w)
i3mn

∂U
(w)
klm

∂xn

]
= 0 in B, (27)

∂

∂x1

[
Ĉi1kl + Ĉi1αβ

∂Ûklα

∂xβ

]
+

∂

∂x2

[
Ĉi2kl + Ĉi2αβ

∂Ûklα

∂xβ

]
(28)

+ [[Ci3kl + Ci3mn

∂Uklm

∂xn

]] = 0 on I, (29)

where w = 1, 2, subjected to the continuity conditions Û = U |I . Due to the geometry of the structure,
the solution depends exclusively on x3. In such a case the interface equilibrium equations (29) lead to
the classical traction continuity conditions and the equilibrium (27) reduces to a system of second-order
ordinary differential equations. Solving the linear problem and using equation (25), the effective properties
of the three-phase material (two bulk and one interface) are eventually obtained as

C3333 =

[
2∑

w=1

[
l(w)

l0C
(w)
3333

]]−1

, C1133 = C3333

2∑

w=1

[
l(w)C

(w)
1133

l0C
(w)
3333

]
, C2233 = C3333

2∑

w=1

[
l(w)C

(w)
2233

l0C
(w)
3333

]
,

C1313 =

[
2∑

w=1

[
l(w)

l0C
(w)
1313

]]−1

, C2323 =

[
2∑

w=1

[
l(w)

l0C
(w)
2323

]]−1

, C1212 =

2∑

w=1

[
l(w)

l0
C

(w)
1212

]
+

Ĉ1212

l0
,
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C1111 = C1133

C1133

C3333

+

2∑

w=1

[
l(w)

l0

[
C

(w)
1111 − C

(w)
1133

C
(w)
1133

C
(w)
3333

]]
+

Ĉ1111

l0
,

C2222 = C2233

C2233

C3333

+

2∑

w=1

[
l(w)

l0

[
C

(w)
2222 − C

(w)
2233

C
(w)
2233

C
(w)
3333

]]
+

Ĉ2222

l0
,

C1122 = C1133

C2233

C3333

+

2∑

w=1

[
l(w)

l0

[
C

(w)
1122 − C

(w)
1133

C
(w)
2233

C
(w)
3333

]]
+

Ĉ1122

l0
.

Computational details are given in Appendix A.
2. In the second step we consider the interphase layer with non-zero thickness t. The problem of different

units of the mechanical properties of the layer (force per area) compared to those of the energetic inter-
face (force per length) can be resolved by considering that the interphase layer properties are inversely

proportional to t. Thus, the C(3) interphase mechanical properties can be written in the general format

C(3) = C̃/t. Such an approach has been followed by Duan et al. [38] in the case of isotropic energetic
interfaces. The auxiliary problems (24) in local form are exactly the same as (27), with the difference that
w takes the value of 3 for the interphase layer. Due to the geometry of the structure, the solution depends
exclusively on x3 and the solution of the above problem provides the following effective properties:

C3333 =

[
2∑

w=1

[
l(w) − t/2

l0C
(w)
3333

]
+

t2

l0C̃3333

]−1

,

C1133 = C3333

[
2∑

w=1

[
[l(w) − t/2]C

(w)
1133

l0C
(w)
3333

]
+

tC̃1133

l0C̃3333

]
,

C2233 = C3333

[
2∑

w=1

[
[l(w) − t/2]C

(w)
2233

l0C
(w)
3333

]
+

tC̃2233

l0C̃3333

]
,

C1313 =

[
2∑

w=1

[
l(w) − t/2

l0C
(w)
1313

+
t2

l0C̃1313

]]−1

,

C2323 =

[
2∑

w=1

[
l(w) − t/2

l0C
(w)
2323

]
+

t2

l0C̃2323

]−1

,

C1212 =

2∑

w=1

[
l(w) − t/2

l0
C

(w)
1212

]
+

C̃1212

l0
,

C1111 = C1133

C1133

C3333

+

2∑

w=1

[
l(w) − t/2

l0

[
C

(w)
1111 − C

(w)
1133

C
(w)
1133

C
(w)
3333

]]
+

1

l0

[
C̃1111 − C̃1133

C̃1133

C̃3333

]
,

C2222 = C2233

C2233

C3333

+

2∑

w=1

[
l(w) − t/2

l0

[
C

(w)
2222 − C

(w)
2233

C
(w)
2233

C
(w)
3333

]]
+

1

l0

[
C̃2222 − C̃2233

C̃2233

C̃3333

]
,

C1122 = C1133

C2233

C3333

+

2∑

w=1

[
l(w) − t/2

l0

[
C

(w)
1122 − C

(w)
1133

C
(w)
2233

C
(w)
3333

]]
+

1

l0

[
C̃1122 − C̃1133

C̃2233

C̃3333

]
.

Computational details are given in Appendix A.

Comparing the results between the two cases we observe that for t → 0:
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a) They render the same effective components C3333, C1133, C2233, C1323, C2323;

b) They render the same effective component C1212 only if Ĉ1212 = C̃1212;

c) They render the same effective component C1111 only if

Ĉ1111 = C̃1111 − C̃1133

C̃1133

C̃3333

;

d) They render the same effective component C2222 only if

Ĉ2222 = C̃2222 − C̃2233

C̃2233

C̃3333

;

e) They render the same effective component C1122 only if

Ĉ1122 = C̃1122 − C̃1133

C̃2233

C̃3333

.

From the above analysis we conclude that a material layer with very small thickness t and elasticity tensor C(3)

can be substituted by an energetic interface with properties

Ĉ1111 =

[
C

(3)
1111 − C

(3)
1133

C
(3)
1133

C
(3)
3333

]
t, Ĉ1122 =

[
C

(3)
1122 − C

(3)
1133

C
(3)
2233

C
(3)
3333

]
t,

Ĉ2222 =

[
C

(3)
2222 − C

(3)
2233

C
(3)
2233

C
(3)
3333

]
t, Ĉ1212 =C

(3)
1212t,

(30)

and provide the same effective behaviour for a multilayered composite. In the case of isotropic material con-
stituents and an isotropic energetic interface the above formulae are reduced to those obtained by Wang et al.
[39] and Duan et al. [38] for composites with spherical particles or cylindrical fibres.

6. Summary and conclusions

The paper presents a homogenization framework that accounts for size effects at the micro- or nanoscale through
the introduction of material interfaces based on surface elasticity theory. The connection between the scales
requires integrals over the RVE in the bulk and on the interface, while the microscopic deformation in terms of
the macroscopic strain tensor is defined through a Hill-type averaging condition that links the two scales. The
definition of average (macroscopic) stress given by Benveniste and Miloh [37] for composites with imperfect
interfaces needs proper modification when open energetic interfaces are present. The overall effective properties
in the case of composites with elastic components and elastic material interfaces depend not only on the material
properties and volume fractions, but also on the surface-to-volume ratio. A particular example of a multilayered
orthotropic composite demonstrates that a very thin interphase layer can be represented by a 2-D material
interface after proper transformation of the actual 3-D elasticity tensor.
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Appendix A. Analytical solution for multilayered composites

In the example in Section 5 we examine two cases:

1. Two bulk material layers (w = 1, 2) and one energetic interface are considered. Due to the nature of the
problem, the solution of the system of equations (29), subject to interface conditions (27) and continuity
of displacements, depends exclusively on x3. Considering only the non-zero terms of C, we can re-express
the problem as

∂

∂x3

[
C

(w)
13kl + C

(w)
1313

∂U
(w)
kl1

∂x3

]
= 0,

∂

∂x3

[
C

(w)
23kl + C

(w)
2323

∂U
(w)
kl2

∂x3

]
= 0,

∂

∂x3

[
C

(w)
33kl + C

(w)
3333

∂U
(w)
kl3

∂x3

]
= 0,

(31)
subject to the periodicity conditions

U
(1)
kl1

∣∣∣
x3=l(1)

= U
(2)
kl1

∣∣∣
x3=−l(2)

, U
(1)
kl2

∣∣∣
x3=l(1)

= U
(2)
kl2

∣∣∣
x3=−l(2)

, U
(1)
kl3

∣∣∣
x3=l(1)

= U
(2)
kl3

∣∣∣
x3=−l(2)

, (32)

and the continuity conditions on I,

[
C

(1)
13kl + C

(1)
1313

∂U
(1)
kl1

∂x3

]∣∣∣∣∣
x3=0

=

[
C

(2)
13kl + C

(2)
1313

∂U
(2)
kl1

∂x3

]∣∣∣∣∣
x3=0

,

[
C

(1)
23kl + C

(1)
2323

∂U
(1)
kl2

∂x3

]∣∣∣∣∣
x3=0

=

[
C

(2)
23kl + C

(2)
2323

∂U
(2)
kl2

∂x3

]∣∣∣∣∣
x3=0

,

[
C

(1)
33kl + C

(1)
3333

∂U
(1)
kl3

∂x3

]∣∣∣∣∣
x3=0

=

[
C

(2)
33kl + C

(2)
3333

∂U
(2)
kl3

∂x3

]∣∣∣∣∣
x3=0

,

U
(1)
kl1

∣∣∣
x3=0

= U
(2)
kl1

∣∣∣
x3=0

, U
(1)
kl2

∣∣∣
x3=0

= U
(2)
kl2

∣∣∣
x3=0

, U
(1)
kl3

∣∣∣
x3=0

= U
(2)
kl3

∣∣∣
x3=0

.

(33)

The indices k and l take the values 1, 2 or 3. The first three continuity conditions of (33) allow integrating
equations (31) and obtain

C
(w)
13kl + C

(w)
1313

∂U
(w)
kl1

∂x3

= ωkl1, C
(w)
23kl + C

(w)
2323

∂U
(w)
kl2

∂x3

= ωkl2, C
(w)
33kl + C

(w)
3333

∂U
(w)
kl3

∂x3

= ωkl3, (34)

where ωkl1, ωkl2 and ωkl3 are constants independent of the material layer. Integration of the last relations
leads to

U
(w)
kl1 =

ωkl1 − C
(w)
13kl

C
(w)
1313

x3 + d
(w)
kl1 , U

(w)
kl2 =

ωkl2 − C
(w)
23kl

C
(w)
2323

x3 + d
(w)
kl2 , U

(w)
kl3 =

ωkl3 − C
(w)
33kl

C
(w)
3333

x3 + d
(w)
kl3 , (35)

where d
(w)
kl1 , d

(w)
kl2 and d

(w)
kl3 are constants with different values at each material layer. From the last three

continuity conditions of (33) and the periodicity conditions (32) we compute the constants ωkl1, ωkl2 and
ωkl3,

ωkl1 =

〈
C

(w)
13kl

C
(w)
1313

〉 〈
1

C
(w)
1313

〉−1

, ωkl2 =

〈
C

(w)
23kl

C
(w)
2323

〉 〈
1

C
(w)
2323

〉−1

, ωkl3 =

〈
C

(w)
33kl

C
(w)
3333

〉 〈
1

C
(w)
3333

〉−1

, (36)
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where the symbol 〈{•}〉 for constant terms inside each bulk material renders the usual rule of mixtures.
The equations (34), (36) and (25) allow expression of the non-zero components of the symmetric effective
stiffness tensor as

C3333 = ω333 =

〈
1

C
(w)
3333

〉−1

, C1133 = C3311 = ω113 = C3333

〈
C

(w)
1133

C
(w)
3333

〉
,

C2233 = C3322 = ω223 = C3333

〈
C

(w)
2233

C
(w)
3333

〉
, C1313 = ω131 =

〈
1

C
(w)
1313

〉−1

,

C2323 = ω232 =

〈
1

C
(w)
2323

〉−1

, C1212 = 〈C1212〉 +
Ĉ1212

l0
,

C1111 =

〈
C

(w)
1111 + C

(w)
1133

∂U
(w)
113

∂x3

〉
+

Ĉ1111

l0
= C1133

C1133

C3333

+

〈
C

(w)
1111 − C

(w)
1133

C
(w)
1133

C
(w)
3333

〉
+

Ĉ1111

l0
,

C2222 =

〈
C

(w)
2222 + C

(w)
2233

∂U
(w)
223

∂x3

〉
+

Ĉ2222

l0
= C2233

C2233

C3333

+

〈
C

(w)
2222 − C

(w)
2233

C
(w)
2233

C
(w)
3333

〉
+

Ĉ2222

l0
,

C2211 = C1122 =

〈
C

(w)
1122 + C

(w)
1133

∂U
(w)
223

∂x3

〉
+

Ĉ1122

l0
= C1133

C2233

C3333

+

〈
C

(w)
1122 − C

(w)
1133

C
(w)
2233

C
(w)
3333

〉
+

Ĉ1122

l0
.

(37)
2. Three bulk material layers (w = 1, 2, 3) are considered, without any energetic interface. Then the system

(31) and the periodicity conditions (32) are the same as with the previous case, while the continuity
conditions are written as

[
C

(1)
13kl + C

(1)
1313

∂U
(1)
kl1

∂x3

]∣∣∣∣∣
x3=t/2

=

[
C

(3)
13kl + C

(3)
1313

∂U
(3)
kl1

∂x3

]∣∣∣∣∣
x3=t/2

,

[
C

(1)
23kl + C

(1)
2323

∂U
(1)
kl2

∂x3

]∣∣∣∣∣
x3=t/2

=

[
C

(3)
23kl + C

(3)
2323

∂U
(3)
kl2

∂x3

]∣∣∣∣∣
x3=t/2

,

[
C

(1)
33kl + C

(1)
3333

∂U
(1)
kl3

∂x3

]∣∣∣∣∣
x3=t/2

=

[
C

(3)
33kl + C

(3)
3333

∂U
(3)
kl3

∂x3

]∣∣∣∣∣
x3=t/2

,

[
C

(2)
13kl + C

(2)
1313

∂U
(2)
kl1

∂x3

]∣∣∣∣∣
x3=−t/2

=

[
C

(3)
13kl + C

(3)
1313

∂U
(3)
kl1

∂x3

]∣∣∣∣∣
x3=−t/2

,

[
C

(2)
23kl + C

(2)
2323

∂U
(2)
kl2

∂x3

]∣∣∣∣∣
x3=−t/2

=

[
C

(3)
23kl + C

(3)
2323

∂U
(3)
kl2

∂x3

]∣∣∣∣∣
x3=−t/2

,

[
C

(2)
33kl + C

(2)
3333

∂U
(2)
kl3

∂x3

]∣∣∣∣∣
x3=−t/2

=

[
C

(3)
33kl + C

(3)
3333

∂U
(3)
kl3

∂x3

]∣∣∣∣∣
x3=−t/2

,

U
(1)
kl1

∣∣∣
x3=t/2

= U
(3)
kl1

∣∣∣
x3=t/2

, U
(1)
kl2

∣∣∣
x3=t/2

= U
(3)
kl2

∣∣∣
x3=t/2

, U
(1)
kl3

∣∣∣
x3=t/2

= U
(3)
kl3

∣∣∣
x3=t/2

,

U
(2)
kl1

∣∣∣
x3=−t/2

= U
(3)
kl1

∣∣∣
x3=−t/2

, U
(2)
kl2

∣∣∣
x3=−t/2

= U
(3)
kl2

∣∣∣
x3=−t/2

, U
(2)
kl3

∣∣∣
x3=−t/2

= U
(3)
kl3

∣∣∣
x3=−t/2

.

(38)

The solution of this problem has the same form as with the previous case, that is, equations (35), and the
unknown constants ωkl1, ωkl2 and ωkl3 are computed by the similar relations (36), with the difference that
in the averages one should consider the contribution of the third layer. Thus the effective properties are

given by equations (37), taking into account that Ĉ = 0.
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