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Dynamical systems in which geometrically extended model cells produce and interact 

with diffusible (morphogen) and non-diffusible (extracellular matrix) chemical fields 

have proved very useful as models for developmental processes.  The embryonic 

vertebrate limb is an apt system for such mathematical and computational modeling since 

it has been the subject of hundreds of experimental studies, and its normal and variant 

morphologies and spatiotemporal organization of expressed genes are well-known.  

Because of its stereotypical proximodistally generated increase in the number of parallel 

skeletal elements, the limb lends itself to being modeled by Turing-type systems which 

are capable of producing periodic, or quasi-periodic, arrangements of spot- and stripe-like 

elements.  This chapter describes several such models, including (i) a system of partial 

differential equations in which changing cell density enters into the dynamics explicitly, 

(ii) a model for morphogen dynamics alone, derived from the latter system in the 

“morphostatic limit” where cell movement relaxes on a much slower time-scale than 

diffusible molecules, (iii) a discrete stochastic model for the simplified pattern formation 

that occurs when limb cells are placed in planar culture, and (iv) several hybrid models in 

which continuum morphogen systems interact with cells represented as energy-

minimizing mesoscopic entities.  Progress in devising computational methods for 

handling 3D, multiscale, multi-model simulations of organogenesis is discussed, as well 

as for simulating reaction-diffusion dynamics in domains of irregular shape.    
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I.  Introduction 

The vertebrate limb, an array of jointed skeletal elements and associated tissues that arose 

in fish-like ancestors nearly 400 million years ago, has long held central importance in 

the fields of developmental and evolutionary biology (reviewed in Newman and Müller, 

2005).  The developing limb is relatively easy to manipulate surgically in the embryos of 

avian species such as the chicken.  In mammals, such as the human and mouse, it is 

subject to mutations of large effect that do not otherwise prove fatal to the organism.  In 

fish and amphibians the paired limbs, or related structures, exist with variant anatomical 

characteristics and regenerative properties.  And limb mesenchymal cells can be grown in 

culture, where they undergo differentiation and pattern formation with a time-course and 

on a spatial scale similar to that in the embryo.  The limb is therefore an ideal system for 

studying developmental dynamics, genetics, origination and plasticity of multicellular 

form.  Over the last 60 years, knowledge of the tissue, cellular, and molecular interactions 

involved in generating a vertebrate limb has accumulated dramatically based on the 

incisive application of new technologies to all of these systems. 

The products of scores of genes have been found to participate in limb development 

(reviewed in Tickle, 2003) and many of these are impaired by mutation or exogenous 

substances.  But genes and their interactions are neither an exclusive nor exhaustive 

explanatory level for developmental change (Newman, 2002).  The physics of 

viscoelastic materials and excitable media, i.e., mesoscopic matter, must also enter into 

the molding and patterning of tissues (Forgacs and Newman, 2005).  In particular, they 

will contribute to the set of dynamic processes by which the interactions of limb bud cells 

with their various intra- and extracellular molecular components, result in a series of 
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articulated, well-arranged rods and nodules of cartilage, and later, bone (Newman and 

Frisch, 1979).   

As with many complex, multiscale, phenomena in biology, insight into emergent 

organizational properties can be gained by, and indeed require, mathematical and 

computational modeling.  Such modeling does not replace analysis at the cellular and 

molecular levels, but complements it.  Mathematics and computational analysis are the 

best means we have for describing and understanding the spatiotemporal behaviors of 

systems containing many components, operating on multiple scales.   

Developing organs have both discrete and continuous aspects; they may undergo 

changes according to deterministic or stochastic rules.  Some embryonic tissues are 

planar and can be approximated as 2D sheets, whereas other tissues are space-filling and 

inherently 3D.  Some developmental processes are synchronized over a spatial domain 

whereas others sweep across a region over time.  Some changes occur autonomously 

within a given tissue type, while others only proceed by unidirectional or reciprocal 

interactions between pairs of tissues.  In some cases, one developmental process will 

relax much faster or much slower than another, so that the two can be treated essentially 

independently of one another.  In other cases, the only accurate representation is to treat 

the processes as mutually determinative and conditioning.  Each of these possibilities 

presents a distinct problem for the modeler, and it is becoming increasingly clear that a 

fully satisfactory model for the development of any living organ must embody all of 

them.  That is, it will be inescapably hybrid, mathematically and computationally.   

This article presents several approaches taken by ourselves and others to modeling 

skeletal pattern formation during development of the vertebrate limb.  Because of the 
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constraints and technical difficulties of producing a multiscale, 3D, hybrid model, as well 

as the incompleteness of our knowledge of the relevant molecules and the topology, 

relative strengths and rates of their interactions, the models presented are partial and 

provisional.  Nonetheless, the shortcomings of each of the component models and 

modeling attempts are usually quite obvious, and we also report on work in progress to 

remedy them in pursuit of increasingly realistic explanatory accounts. 

II. Tissue Interactions and Gene Networks 
of Limb Development    

The limb buds of vertebrates emerge from the body wall, or flank, at four discrete sites – 

two for the forelimbs and two for the hindlimbs. The paddle-shaped limb bud mesoblast, 

which gives rise to the skeleton and muscles, is surrounded by a layer of simple 

epithelium, the ectoderm.  The skeletons of most vertebrate limbs develop as a series of 

precartilage primordia in a proximodistal fashion: that is, the structures closest to the 

body form first, followed, successively, by structures more and more distant from the 

body.  For the forelimb of the chicken, for example, this means the humerus of the upper 

arm is generated first, followed by the radius and ulna of the mid-arm, the wrist bones, 

and finally the digits (Saunders, 1948; reviewed in Newman, 1988) (Fig. 1).  Urodele 

salamanders appear to be an exception to this proximodistal progression (Franssen et al., 

2005).  Cartilage is mostly replaced by bone in species with bony skeletons.   

 Before the cartilages of the limb skeleton form, the mesenchymal cells of the 

mesoblast are dispersed in a hydrated ECM, rich in the glycosaminoglycan hyaluronan. 

The first morphological evidence that cartilage will differentiate at a particular site in the 
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mesoblast is the emergence of precartilage mesenchymal condensations. The cells at 

these sites then progress to fully differentiated cartilage elements by switching their 

transcriptional capabilities.  Condensation involves the transient aggregation of cells 

within a mesenchymal tissue. This process is mediated first by the local production and 

secretion of ECM glycoproteins, in particular, fibronectin, which act to alter the 

movement of the cells and trap them in specific places. The aggregates are then 

consolidated by direct cell-cell adhesion. For this to occur the condensing cells need to 

express, at least temporarily, adhesion molecules such as N-CAM, N-cadherin, and 

possibly cadherin-11 (reviewed in Hall and Miyake, 1995; 2000; Forgacs and Newman, 

2005). 

 Because all the precartilage cells of the limb mesoblast are capable of producing 

fibronectin and cadherins, but only those at sites destined to form skeletal elements do so, 

there clearly must be communication among the cells to divide the labor in this respect. 

This is mediated in part by secreted, diffusible factors of the TGF-β  family of growth 

factors, which promote the production of fibronectin (Leonard et al., 1991). Limb bud 

mesenchyme also shares with many other connective tissues the autoregulatory capability 

of producing more TGF-β  upon stimulation with this factor (Miura and Shiota, 2000; 

Van Obberghen-Schilling, et al., 1988). 

The limb bud ectoderm performs several important functions. First, it is a source of 

fibroblast growth factors (FGFs) (Martin, 1998). Although the entire limb ectoderm 

produces FGFs, the particular mixture produced by the apical ectodermal ridge (AER), a 

narrow band of specialized ectodermal cells running in the anteroposterior direction 

along the tip of the growing limb bud in birds and mammals, is essential to limb 
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outgrowth and pattern formation.  FGF8 is the most important of these (Mariani and 

Martin, 2003).  It is expressed mainly in the AER in amniotes (birds and mammals), but 

is also expressed in limb bud mesenchyme in urodeles (Han et al., 2001). The AER 

affects cell survival (Dudley et al., 2002) and keeps the precondensed mesenchyme of the 

“apical zone” in a labile state (Kosher et al., 1979).  Its removal leads to terminal 

truncations of the skeleton (Saunders, 1948).  

The FGFs produced by the ectoderm affect the developing limb tissues through one 

of three distinct FGF receptors. The apical zone is the only region of the mesoblast-

containing cells that expresses FGF receptor 1 (FGFR1) (Peters et al., 1992; Szebenyi et 

al., 1995). In the developing chicken limb, cells begin to condense at a distance of 

approximately 0.3 mm from the AER. In this zone FGFR1 is downregulated and cells 

that express FGFR2 appear at the sites of incipient condensation (Peters et al., 1992; 

Szebenyi et al., 1995; Moftah et al., 2002). Activation of these FGFR2-expressing cells 

by FGFs releases a laterally-acting (that is, peripheral to the condensations) inhibitor of 

cartilage differentiation (Moftah et al., 2002). Although the molecular identity of this 

inhibitor is unknown, its behavior is consistent with that of a diffusible molecule, or one 

whose signaling effects propagate laterally in an analogous fashion. Recent work 

suggests that Notch signaling also plays a part in this lateral inhibitory effect (Fujimaki et 

al., 2006).  The roles of TGF-β , the putative lateral inhibitor, and fibronectin in 

mediating precartilage condensation in the limb bud mesenchyme can be schematized in 

the form of a “core” cell-molecular-genetic network (Fig. 2). 

Finally, differentiated cartilage in the more mature region, proximal to the 

condensing cells, expresses FGFR3, which is involved in the growth control of this tissue 
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(Ornitz and Marie, 2002).  The ectoderm, by virtue of the FGFs it produces, thus 

regulates growth and differentiation of the mesenchyme and cartilage. 

The limb ectoderm is also involved in shaping the limb bud. By itself, the 

mesenchyme, being an isotropic tissue with liquid-like properties, would tend to round up 

(Forgacs and Newman, 2005).  Ensheathed by the ectoderm, however, it assumes a 

paddle shape.  This appears to be due to the biomechanical influence of the epithelium, 

the underlying basal lamina of which is organized differently beneath the dorsoventral 

surfaces and the anteroposteriorly arranged AER (Newman et al., 1981). There is no 

entirely adequate biomechanical explanation for the control of limb bud shape by the 

ectoderm (but see Dillon and Othmer, 1999 and Borkhvardt, 2000, for suggestions).  

III. Models for Chondrogenic Pattern Formation 

A. Limb Mesenchyme as a “Reactor-Diffusion” System 
 
Reaction-diffusion systems, in which a particular network of positive and negative 

feedbacks in the production, and disparate diffusion rates, of molecular species, have 

attracted interest as biological pattern-forming mechanisms ever since their well-known 

proposal as the “chemical basis of morphogenesis” by A. M. Turing half a century ago 

(Turing, 1952).  Experimentally motivated reaction-diffusion-type models (not all of 

them conforming to Turing’s precise scheme) have been gaining prominence in many 

areas of developmental biology (Forgacs and Newman, 2005; Maini et al., 2006), 

including the patterning of the pigmentation of animal skin (Yamaguchi et al., 2007), 

feather germs (Jiang et al., 2004), hair follicles (Sick et al., 2006), and teeth (Salazar-

Ciudad and Jernvall, 2002).  As we have seen, patterning of the limb skeleton is 

dependent on molecules of the TGF- β  and FGF classes, which are demonstrably 
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diffusible morphogens (Lander et al., 2002; Williams et al., 2004; Filion and Poper, 

2004).  Like reaction-diffusion systems, moreover, the developing limb has self-

organizing pattern-forming capability.  It is well-known, for example, that many 

transcription factors (e.g., the Hox proteins) and extracellular factors (e.g., Sonic 

hedgehog protein, retinoic acid) are present in spatiotemporal patterns during limb 

development, and disrupting their distributions leads to skeletal anomalies (Tickle, 2003).  

Nevertheless, randomized limb mesenchymal cells with disrupted gradients of Hox 

proteins, Shh, etc., give rise to digit-like structures in vivo (Ros et al., 1994) and discrete, 

regularly spaced cartilage nodules in vitro (Downie and Newman, 1994; Kiskowski et al., 

2004).  Moreover, simultaneous knockout of Shh and its inhibitory regulator Gli3 in mice 

yields limbs with numerous extra digits (Litingtung et al., 2002). If anything, such 

gradients limit and refine the self-organizing capacity of limb mesenchyme to produce 

skeletal elements rather than being required for it. 

Beyond this, the following experimental findings, count in favor of the relevance of a 

reaction-diffusion mechanism for limb pattern formation: (i) The pattern of precartilage 

condensations in limb mesenchyme in vitro changes in a fashion consistent with reaction-

diffusion mechanism (and not with an alternative mechanochemical mechanism) when 

the density of the surrounding matrix is varied (Miura and Shiota, 2000b); (ii) exogenous 

FGF perturbs the kinetics of condensation formation by limb precartilage mesenchymal 

cells in vitro in a fashion consistent with a role for this factor in regulating inhibitor 

production in a reaction-diffusion model (Miura and Maini, 2004); (iii) the “thick-thin'” 

pattern of digits in the Doublefoot mouse mutant can be accounted for by the assumption 
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of that the normal pattern is governed by a reaction-diffusion process the parameters of 

which are modified by the mutation (Miura et al., 2006).   

The scale-dependence of reaction-diffusion systems (i.e., the addition or loss of 

pattern elements when the tissue primordium has variable size), sometimes considered to 

count against such mechanisms for developmental processes, may actually represent the 

biological reality in the developing limb.  Experiments show, for example, that the 

number of digits that arise is sensitive to the anteroposterior (thumb-to-little finger 

breadth) of the developing limb bud, and will increase (Cooke and Summerbell, 1981) or 

decrease (Alberch and Gale, 1983) over typical values if the limb is broadened or 

narrowed.   

B. The Core Patterning Network in a Geometric Setting 

The developing limb has a smooth, but non-standard, geometric shape that changes over 

time.  Moreover, different processes take place in different parts of the developing 

structure.  As is the case with somitogenesis along the body axis (Pourquié, 2003; Schnell 

et al. and Baker et al., this volume), the ectoderm at the distal tip of the pattern-forming 

system (the tail tip and the AER) produces FGFs that keep a zone of tissue within the 

high end of the gradient in an immature, unpatterned state.   

To simplify the presentation of our basic limb development model, we made the 

following geometric idealization (Newman and Frisch, 1979; Hentschel et al., 2004): the 

limb bud is considered as a parallelepiped of time-dependent proximodistal length, L(t), 

taken along the x–axis, and fixed length, ly , along the anteroposterior (thumb to little 

finger) direction ( y-axis). The dorsoventral (back to front) width ( z -axis) was collapsed 
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to zero in this schematic representation (Fig. 3). The developing limb bud is considered, 

based on classic observations, to consist of three regions: an “apical zone” of size 

  lapical (t), at the distal tip of the bud, consisting of non-condensing mesenchymal cells, an 

“active zone,” proximal to the apical zone, of length lx (t) , which contains differentiating 

and condensing cell types, and a “frozen zone” of length  lfrozen (t), containing 

differentiated cartilage cells, proximal to the active zone.  The lengths of these zones add 

up to that of the entire limb bud:   L(t) = lapical(t) + lx (t) + lfrozen (t) .  

The dynamic model we present in the following section resides within, but is not 

uniquely tied to, the schematic shown in Fig. 3.  While the division into apical, active and 

frozen zones is experimentally motivated and is inherent to our conception of the 

spatiotemporal organization of limb development, the 2D rectilinear template of Fig. 3 is 

presented for didactic purposes.  Our goal, partly implemented in subsequent sections, is 

to model the cellular and molecular dynamics in the 3D space of a naturally contoured 

limb bud. 

C. “Bare-Bones” System of Reactor-Diffusion Equations 

We refer to the dynamic model for limb development presented here as “bare-

bones,” because while it incorporates the core mesenchymal cell-morphogen-ECM 

network summarized in Fig. 2, it omits the spatiotemporal modulatory factors such as 

Hox protein gradients, Shh, and so on, that cause the various skeletal elements (e.g., the 

different digits, the radius and ulna) to appear different from one another.  As a first pass, 

we attempt only to model the proximodistal temporal progression of skeletogenesis and 

the generally increasing number of elements along the proximodistal axis. 
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 As described in earlier sections, limb skeletal patterning involves cycles of cell state 

changes and local cell movement: mesenchymal cells upregulate their production of 

fibronectin at particular tissue sites, leading to precartilage condensation. This is 

followed, in turn, by chondrogenesis (cartilage differentiation). Finally, the 

spatiotemporal control of these differentiative and morphogenetic changes in the 

mesenchyme is entirely dependent on products of the surrounding epithelium. 

We begin with the hypothesis that the division of the distal portion of the limb into 

an apical and active zone reflects the activity of the AER in suppressing differentiation of 

the mesenchyme subjacent to it (Kosher et al., 1979). The spatial relationship between 

the apical and active zones results from the graded distribution of FGFs, the presumed 

AER-produced suppressive factors.  The active zone, therefore, is where the mesenchyme 

cells no longer experience high levels of FGFs and therefore become responsive to the 

activator, TGF- β , and the factors that mediate lateral inhibition. The dynamic 

interactions of cells and morphogens in the active zone give rise to spatial patterns of 

condensations. As will be seen, the length of the active zone, lx (t), serves as a ”control 

parameter” that influences the number of condensations that form.   

Cell proliferation enters into this scheme in the following fashion: cells are recruited 

into the active zone from the proximal end of the apical zone, as dividing cells move 

away from the influence of the AER.  (This is similar to the role of the caudal FGF 

gradient in somitogenesis; Dubrulle et al., 2001).  The active zone loses cells, in turn, to 

the proximal frozen zone, the region where cartilage differentiation has occurred and a 

portion of the definitive pattern has become set. 
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Four main types of mesenchymal cells are involved in chick limb skeletal pattern 

formation. These are represented in the model by their spatially and temporarily varying 

densities. The cell types are characterized by their expression of one of the three FGF 

receptors found in the developing limb. The cells expressing FGFR1, FGFR2 (and cells) 

and FGFR3 are denoted, respectively, by R1 , R 2 + R '
2 and R 3 .  The apical zone consists 

of R1  cells, and those of the frozen zone R 3  cells (reviewed in Ornitz and Marie, 2002). 

The active zone contains R 2  cells and the direct products of their differentiation, R '
2  

cells.  These latter cells secrete enhanced levels of fibronectin.  The R1 , R 2  and R '
2  cells 

are mobile, while the R 3  (cartilage) cells are immobile.  

According to our model (Hentschel et al., 2004), transitions and association between 

the different cell types are regulated by the gene products of the core mechanism (Fig. 2): 

c , ac , ic  and ρ  denote, respectively, the spatially and temporarily varying 

concentrations of FGFs (produced by the ectoderm), TGF-β  (produced throughout the 

mesenchyme), a diffusible inhibitor of chondrogenesis produced by R 2  cells, and 

fibronectin, produced by R '
2  cells. The model thus comprises eight variables, with an 

equation for the behavior of each of them (Eqs. 1-8).  These eight variables correspond to 

the core set of interactions necessary to describe the development of a basic, “bare bones” 

skeletal pattern (see Fig. 2). 
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In this set of equations, '
221 ,, RRR  and 3R  are densities of the different kinds of cells and   

'
221 RRRR ++=  is the overall density of the mobile cells.  
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time, based on the assumption gdgm ττττ <<<< ,  (Recall that mτ , dτ and gτ  are the 

characteristic times of morphogen evolution, cell differentiation, and limb growth, 

respectively.)    All of the functions are subject to no-flux boundary conditions 
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Here n is the outward normal to the spatial domain, so the cells and secreted molecules 

have zero flux through the boundary. 

The variables are intimately interconnected and interacting: diffusing morphogen-

type growth factors (i.e., FGFs and TGF-β ) and extracellular matrix molecules (i.e., 

fibronectin) secreted by some cells represent signals for others to move, differentiate or to 

produce other or more of the same molecules. The interactions among these variables 

constitute a “reactor-diffusion” system with potential pattern forming capability.  We use 

this term to emphasize that the active component is a living cell, not just a chemical 

reaction, as in Turing’s original formalism.  

        Simulations using the full system (1-8) are computationally formidable, but we have 

shown analytically that continuous solutions exist for it (Alber, Hentschel et al.  2005).   
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Along with the initial description of the model we used a biologically motivated 

separation of time scales to reduce the system to four equations.  We have shown the 

existence of the steady state solutions in the form of stripes and spots in the 2D case and 

analogous extensions in a 3D case and demonstrated that they cannot be stable at the 

same time (Alber, Glimm, et al. 2005). We then used linear stability analysis to compute 

solutions on the plane for active zones of progressively decreasing width, arriving at a 

simulation that accurately portrayed the proximodistal order of appearance and increase 

in number of skeletal elements in a 2D projection (Hentschel et al., 2004). 

Subsequently, using a multiscale, multi-model simulation environment (Izaguirre et 

al., 2003; Cickovski et al., 2007), we modeled cell rearrangement as an individual-based 

module in the presence of morphogen fields and cell-state transition rules based on 

simplifications of system (1)-(8). Although this strategy permitted us to generate 3D 

simulations with authentic developmental properties (Chaturvedi et al., 2005; Cickovski 

et al., 2005), the equations for the morphogen dynamics abstracted from the full system 

(where cell and morphogen changes are interconnected) were fairly ad hoc.  

In the next section we describe one attempt to remedy this deficit by deriving an 

analytically rigorous reduction of the morphogen dynamics to a two-equation system 

(Alber et al., submitted).  To do this we have treated system (1-8) in the biologically 

plausible “morphostatic limit” (Salazar-Ciudad et al., 2003), i.e., under the assumption 

that cell differentiation occurs on a faster scale than cell rearrangement. 

D.  Morphogen Dynamics in the Morphostatic Limit  

      In this section we consider the bare-bones system for skeletal pattern formation 

(Eqs. 1-8) in the limiting case in which the dynamics of cell differentiation is faster than 
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the evolution of the overall cell density. This assumption is consistent with existing 

experimental evidence, though is not uniquely determined by it. An additional 

assumption is that the spatial variations in the densities of the various cell types involved 

are small and can be replaced by a constant density for the analysis of the evolution of the 

morphogen concentrations.   

Rates of limb development vary widely across phylogenetic distances, and it is very 

unlikely that the characteristic time scales of the various component processes of 

development all scale proportionally. For this reason, the limit we consider may pertain 

to limb formation in some species and not others, or only at some stages of limb 

evolution. 

With the above assumptions, system (1)-(8) reduces to two evolution equations for 

the morphogens (Alber et al., submitted).   

iaaaaa
a cckcUcD
t

c
−+∇=

∂
∂ )(2        (10)  

iaaaii
i cckcVcD
t
c

−+∇=
∂
∂ )(2        (11) 

The equations are subject to no-flux boundary conditions. The terms aa cD 2∇  and 

ii cD 2∇  describe diffusion of the morphogens, the term cck aa−  represents their decay or 

inactivation, and the terms )( acU  and )( acV  describe their production by cells. 

Specifically, )( acU  and )( acV  are given by 

eqacaaaa RcccJccJcU )),()(),(()( 1 βα += ,  .),()()( eqacia RcccJcV β=       (12) 

In these expressions, eqR  is the cell density (assumed to be approximately constant, 

see above), and the terms describing secretion of activator and inhibitor are denoted by J 
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with appropriate subscripts. Details on the exact form of these terms are given in Alber et 

al., submitted. 

In the classification of developmental pattern forming mechanisms proposed by 

Salazar-Ciudad and coworkers (Salazar-Ciudad et al., 2003), a “morphostatic” 

mechanism is one which occurs in two distinct phases: cell interaction that leads to 

alteration of cell states, and hence changes in pattern, is followed by the action of one of 

various mechanisms (termed “morphogenetic”) which causes spatial rearrangement of 

cells without changing their states. In contrast, “morphodynamic” mechanisms are ones 

in which cell state changes and cell rearrangements happen simultaneously. For the limb 

model we consider here, the morphogenetic process is precartilage mesenchymal 

condensation. 

With reference to the classification of Salazar-Ciudad et al. (2003), then, the system 

(10)-(11) obtained from the assumption that differentiation dynamics relaxes faster than 

mesenchymal condensation can be considered the “morphostatic limit” of the full 

(morphodynamic) model of Hentschel et al. (2004).  Because the relative rates of cell 

differentiation and cell movement are likely to be subject to natural selection, evolution 

of morphostatic mechanisms may represent a successful evolutionary strategy in certain 

cases. 

The task of finding parameter ranges under which the system can give rise to 

patterns (what we refer to as the “Turing space” of the system) is much more tractable in 

the reduced system (10)-(11) than in the full system (1)-(8). This is due to the smaller 

number of variables and parameters. In addition, the resulting reduced reaction-diffusion 

system could then be used in a variety of computational models in which geometries, 
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additional morphogens and model individual model cells (insofar as they behave 

according to the assumptions under which the morphogen subsystem was isolated) could 

be introduced in a controlled fashion. In particular, the fact that the reduced equations are 

derived from first principles makes them much more appropriate than the ad hoc reaction 

kinetics used in earlier hybrid continuum-discrete models of the limb (Chaturvedi et al., 

2005; Cickovski et al., 2005), and adds to the biological authenticity of these models. 

In Alber et al. (submitted) the authors considered a broad class of Michaelis-Menten-

type kinetics models for the rate terms in (10)-(11).  They found that the necessary 

conditions for the Turing instability are fulfilled across a wide range of parameter values, 

suggesting that the precise choice of these coefficients does not influence the possibility 

of the Turing instability.  In this sense the system is robust. 

        For the system (10)-(11) to exhibit a Turing-type instability in the morphostatic limit 

several constraints on morphogen dynamics must be met. In particular, the results 

indicate the following qualitative predictions: 

1) The maximum production rate of the inhibitor by R 2  cells (i.e., cells bearing FGF 

receptor 2) exceeds their rate of production of the activator TGF- β . 

2) The threshold levels of local TGF- β  concentration which elicit maximal 

production rates by R 2  cells of TGF- β , and of inhibitor, must be of roughly the same 

order of magnitude. 

 
IV. Simulations of Chondrogenic Pattern Formation  

A.  Biological Questions Addressed by the Simulations 
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In this section we introduce several methods to address questions raised by the foregoing 

biological considerations.  While our ultimate objective is to produce a simulation of a 

vertebrate limb in 3D based solely on biologically authentic cell behaviors, each 

component of this target hybrid model presents its own computational difficulties, and in 

most cases neither all of the biological variables nor the parameters of their interactions 

are available. Below we present a proof-of-principle that biologically authentic 

chondrogenic patterns can be generated using the postulated cell behaviors and molecular 

components in a multiscale model.  While the system in which this is demonstrated is not 

the full, growing limb bud, but rather disk-like micromass cultures, which have been 

studied extensively as an in vitro model for skeletogenesis, it is a system for which 

detailed quantitative measurements are available.  For our quasi-3D individual-based 

representation of these cultures we use a discrete, approximate form of the reaction-

diffusion system for the morphogen dynamics.   

Following this, we present the results of two attempts at modeling the growing 3D 

limb using different implementations of the Cellular Potts Model, based on energy-

minimization of cell-ECM interactions.  Unlike the case with the micromass cultures, the 

geometry of these 3D simulations is necessarily highly idealized relative to the living 

system.  Moreover, in each of these simulations we use slightly different simplifications 

of the mechanism of Hentschel et al. (2004) (Eqs. 1-8), based on different ad hoc 

separations of the morphogen dynamics from cell movement.   

Finally, we have used a novel finite element-based computational strategy to explore 

the pattern-forming potential of Eqs. 10-11, the morphogen dynamics in the morphostatic 

limit of system (1)-(8), on irregular spatial domains.  Although we have only 
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accomplished this in 2D thus far, and the active zone of the developing limb (see Fig. 2) 

constitute 3D domains of changing shape at successive stages of development, this new 

result and simulation protocol should eventually enable us to return to the 3D framework 

and implement simulations with more natural shapes and authentic morphogen dynamics.  

B.  Discrete Stochastic Models 

Stochastic discrete models are used in a variety of problems dealing with biological 

complexity. One motivation for this approach is the enormous range of length scales of 

typical biological phenomena. Treating cells as simplified interacting agents, one can 

simulate the interactions of tens of thousands to millions of cells and still have within 

reach the smaller-scale structures of tissues and organs that would be ignored in 

continuum (e.g., partial differential equation) approaches. At the same time, discrete 

stochastic models can be made sophisticated enough to reproduce almost all commonly 

observed types of cell behavior (Chaturvedi et al., 2003; Chaturvedi et al., 2004; Casal et 

al., 2005; Alber et al., 2004a,b; Alber, Kiskowski et al. 2003, 2004, Sozinova, et al., 

2005; 2006).  

 1.  Proof of Principle: Pattern Formation in Mesenchymal Micromass Cultures 

We have used a multiscale, stochastic, discrete approach to model chondrogenic 

pattern formation in vitro in the high-density limb bud mesenchyme micromass culture 

system (Kiskowski et al. 2004; Christley et al. 2007).  The most recent of these models is 

multiscale (i.e., cell and molecular dynamics occur on distinct spatial and temporal 

scales) with cells represented as spatially extended objects that can change their shape 

(Fig. 4).  It has been calibrated using experimental data and simulation results indicate 
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that cells can form condensation patterns by undergoing small displacements of less than 

a cell diameter, packing more closely by changing their shapes, while maintaining a 

relatively uniform cell density across the entire spatial domain. 

The simulations have disclosed two distinct dynamical regimes for pattern self-

organization involving transient or stationary inductive patterns of morphogens (Fig. 5).  

The transient regime involves the appearance of morphogen concentrations in a spatial 

pattern for a brief period of time after which the morphogens are lost from the system by 

degradation or inactivation.  These transient regimes are oscillatory in behavior with the 

periodic reappearance and degradation of morphogens.  The stationary regime involves a 

spatial pattern of morphogen concentrations that remains stable indefinitely over time.  

Sensitivity has been studied to changes in key parameters indicating robustness in pattern 

formation behavior but with variation in the morphological outcomes (Fig. 6).  Formation 

of both spots and stripes of precartilage condensation can be produced by the model 

under slightly different parameter choices.  This corresponds well to experimental results 

where either morphotype may be generated under similar initial conditions, and it 

supports the applicability of the core molecular-genetic mechanism we have used to the 

understanding of both in vitro and in vivo chondrogenic pattern formation. 

Tuning of a core molecular-genetic mechanism (e.g., by natural selection or 

epigenetic factors) can provide both multiple dynamical pathways to the same phenotypic 

outcome and multiple phenotypes produced from the same dynamical pathway.  An 

important implication is that the limb developmental process does not require a strict 

progression from one stable dynamical regime to another, but can occur by a succession 
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of transient dynamical regimes or combination of both regimes to achieve a particular 

morphological outcome. 

2.  Simulations of Chondrogenic Patterning in 3D 

a. Energetics of Cell Interactions and the Cellular Potts Model.  The mesoscopic 

Cellular Potts Model (CPM), first introduced by Glazier and Graner (1992, 1993), is a 

cell-level, energy-minimization-based, lattice model that uses an effective energy H 

coupled to external fields, e.g., the local concentrations of diffusing chemicals, to 

describe cell-cell interactions, cell adhesion, motion, differentiation, division and 

apoptosis. The effective energy mixes true energies, such as cell-cell adhesion, with 

terms that mimic energies, e.g., the response of a cell to a chemotactic or haptotactic 

gradient.  Since the cells’ environment is extremely viscous, their motion is entirely 

dissipative; their motion minimizes their total effective energy consistent with constraints 

and boundary conditions.               

 A CPM-based tissue morphogenesis model consists of a list of biological cells, a list 

of generalized cells, a set of chemical diffusants and a description of the biological and 

physical behaviors and interactions embodied in the effective energy, along with 

auxiliary equations to describe secretion, transport and absorption of diffusants and other 

extracellular materials, state changes within the cell, mitosis and cell death. 

In the CPM, generalized cells can model non-cellular materials such as ECM and 

fluid media. Such an approach is much simpler and faster than finite-element modeling, 

has better spatial fidelity than modeling cells as point particles and can be formally 

translated into a force-based description of cell behaviors. The CPM discretizes space 

into a 3D lattice as shown in Fig. 7.  Each lattice point contains an integer index that 
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identifies the cell, ECM element or other object to which it belongs. Separate lattices 

contain concentrations of diffusants, which evolve under partial differential equations 

(PDEs), while sets of state maps and ordinary differential equations (ODEs). The 

effective energy mixes true energies, like cell-cell adhesion, and terms that mimic 

energies, e.g., the response of a cell to a chemotactic gradient.  

The configuration evolves through attempts to copy an index from a site into a 

neighboring site with a different index. This index copy changes the effective energy 

and we accept the change with a probability that depends on the change of energy 

due to the copy according to an acceptance function 
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where T represents an effective boundary fluctuation amplitude of model cells in units of 

energy.  Thus the pattern evolves (and cells move) to minimize the total effective energy. 

This algorithm implements Metropolis dynamics with Monte-Carlo Boltzmann 

acceptance (see Newman and Barkema, 1999).   

 b. 3D CPM-Based Limb Simulations.  Chaturvedi et al. (2005) and Cickovski et al. 

(2005; 2007) have presented a unified, object-oriented, three-dimensional biomodelling 

environment.  This framework allows the integration of multiple submodels at scales 

from subcellular to those of tissues and organs.  The implementations in each case 

combined a modified CPM with a continuum reaction–diffusion model and a state 

automaton with well-defined conditions for cell differentiation transitions to model 

genetic regulation. This environment allows one to rapidly and compactly create 

computational models of a class of complex-developmental phenomena.  Cickovski et al. 

(13) 



 25

(2005) describes in detail a computational package, CompuCell3D1, based on the hybrid 

modeling approach.   

        CPM-based simulations of vertebrate limb development in this multiscale, multi-

model simulation environment are presented in both Chaturvedi et al. (2005) and 

Cickovski et al. (2005).  The biological basis of each set of simulations was that 

described above: the “bare-bones” mechanism of Hentschel et al. (2004), projected onto 

the geometry of Fig. 3, but with the third, dorsoventral, dimension made explicit.  Both 

studies separated the morphogen dynamics from cell rearrangement (intrinsically 

connected to each other in system (1)-(8)) using different ad hoc simplifications to obtain 

a two-equation PDE system for activator-inhibitor interactions.   

Beyond this, each of the analyses used a different set of additional simplifications to 

make the 3D simulations tractable.  Chaturvedi et al. (2005), for example, used the full 

range of cell types, R1 , R 2 , R '
2  and R 3 in its cell-state transition map, whereas Cickovski 

et al. (2005) modeled only “noncondensing” and “condensing” cells.  Chaturvedi et al. 

(2005) induced transitions between patterns in the different proximodistal domains of the 

developing limb by changing the values of the morphogen diffusion coefficients, which is 

formally equivalent to the biologically-justified alteration of the aspect ratio of the active 

zone (Newman and Frisch, 1979; Hentschel et al., 2004).  Successive stationary patterns 

were then computed.  In Cickovski et al. (2005), the width of the active zone changed in 

an “automatic,” or self-organizing, fashion by incorporating into the model the movement 

of proliferating cells away from the high point of FGF at the AER.  Additional details can 

be found in the respective papers. 

                                                 
1 1 https://simtk.org/home/compucell3d 
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Examples of 3D simulations of TGF-β, fibronectin and condensation patterns from 

these two studies are shown in (Fig. 8).  The similarities in the results, and the rough 

fidelity to actual development (e.g., proximodistal emergence of increasing numbers of 

elements) despite the varying simplifications used, are encouraging with regard to the 

validity of the common underlying assumptions.  

C.  Continuum models 

In continuum models some entities that are inherently discrete and exist in finite numbers 

are modeled instead by a continuous variable.  This can be justified if the entities are 

present in large numbers, and the scale on which they are observed is much larger than 

the scale of entities themselves.  Continuum models use families of differential or 

integro-differential equations to describe “fields” of interaction.  Discrete models 

describe individual (microscopic) behaviors. They are often applied to micro-scale events 

where a small number of elements can have a large (and stochastic) impact on a system. 

When we model organogenesis, such as vertebrate limb development, morphogen 

production and diffusion are on the molecular level, which has a much smaller scale than 

the cell level. Since our observations are on the cell and tissue levels, continuum models 

will work well for limb bud shaping and morphogen evolution, components of our 

multiscale model.  We use reaction-diffusion PDEs to model diffusing morphogen 

molecules and their biochemical reactions. Efficient numerical methods for reaction-

diffusion equations can be used to simulate the reaction-diffusion models. In contrast, 

modeling the motion of individual morphogen molecules by discrete methods would be 

computationally too costly, due to the huge number of morphogen molecules in our 

multiscale model. 
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1.  Morphogen Dynamics on an Irregular Domain 

Patterns in reaction-diffusion systems depend sensitively on domain size and shape 

(Lyons and Harrison, 1992; Crampin et al., 2002; Zykov and Engel, 2004).  Since the 

natural shape of a limb bud, and its subdomains such as the active zone (see Fig. 2) have 

non-standard geometries, we developed a mathematical formalism based on the Galerkin 

method (Johnson, 1987), to handle the complicated geometries and solve morphostatic 

reaction-diffusion system (9-10) numerically.  The Galerkin method is a means for 

converting an ordinary or partial differential equation system into to a problem 

represented by a system of algebraic equations in a more restricted space than that of the 

original system.  Since it is a “variational” method, it employs “test functions” to 

approximate the system’s behavior on the restricted space. 

a. The Discontinuous Galerkin Finite Element Method.  Our formalism, the 

Discontinuous Galerkin finite element (DGFE) method, is termed “discontinuous” due to 

the usage of completely discontinuous piecewise polynomial space for the numerical 

solution and the test functions.  Major advances in the use of this approach were 

presented in a series of papers by Cockburn et al. (1989; 1990; 1991; 1998).  

DG methods have several advantages that make them attractive for biological 

applications.  These include their ability to easily handle complicated geometry and 

boundary conditions (an advantage shared by all finite element methods), their flexibility 

in using polynomials with different orders on neighboring elements to approximate the 

solution of the differential equation, and their permitting the use of very irregular 

computational meshes. These properties of DG methods make it much easier to 

incorporate adaptivity technique (an important technique to save computational cost) than 
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other numerical methods. DG methods are also compact and hence efficient in parallel 

implementation. They also can be easily coordinated with finite volume techniques for 

applying to problems with discontinuous or sharp gradient solutions.  

Recently, Cheng and Shu (2006) developed a new DG method for solving time 

dependent PDEs with higher order spatial derivatives. The scheme is formulated by 

repeated integration by parts of the original equation and careful treatment of the 

discontinuity of the numerical solutions on the interface of the neighboring elements, 

which is important for the stability of the DG method. It is easier to formulate and 

implement, needs less storage and CPU cost than the usual DG method for PDEs with 

higher order spatial derivatives.  

We adopted discontinuous Galerkin finite element (DGFE) numerical approaches of 

Cheng and Shu (2006) and implemented it on both 2D rectangular and triangular meshes 

to solve the reaction-diffusion system (10)-(11). The spatial discretization by the DG 

method will transform the reaction-diffusion PDEs to a system of ODE. Due to the 

stiffness nature of the reaction-diffusion system, it will be computationally expensive if 

regular ODE integrators are used. We adopted Strang’s operator splitting technique 

(Strang, 1968) and the Crank-Nicholson discretization for stiff systems (Chou et al., 

2007) to achieve more efficient simulations than afforded by regular ODE integrators.   

Patterns in reaction-diffusion systems are sensitive to the domain size and 

geometrical shape. The shape of the developing limb bud undergoes continuous changes. 

The DG finite element approach can handle the irregular shapes easily by using triangular 

meshes to fit the domain. Both spot-like and stripe-like patterns are observed in 

simulations of the steady state of the reaction-diffusion system (10)-(11), derived in the 
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morphostatic limit.  To simulate the pattern of realistic shapes of morphogenetically 

active zones in the limb bud, we randomly perturbed the rectangular boundary of the 

active zone, and used triangular mesh to fit the irregular boundary.  In Fig. 9, the 

triangular meshes were presented to show the fit of computational mesh to the irregular 

boundary. The vertical length of the domain is roughly 0.65, and the horizontal length is 

0.15.  A flood contour plot of the steady-state of the concentration of the activator ac  is 

shown. Different colors in the domain represent different values of ac . We achieved 

stripe-like patterns as shown in Fig. 9.  To examine the pattern dependence on the ratio of 

horizontal length and vertical length of the active zone, we fixed the vertical length to be 

1, but changed the horizontal length successively. The steady state patterns are shown in 

Fig. 10, and we can observe the changing of stripe-like patterns to spot-like patterns when 

the horizontal length is increased. The parameters in the system (10)-(11) for Fig. 9 and 

Fig. 10 are taken to be 

1
max max

1 2

1,  50.3,  0.05 ,  6.0 ,  8.0 ,  ,  
0.693473,  2.66294,  2.0,  2,  =8900, 4.0,  4.8.

a i a a i a

eq

D D J J J k
R n q s

α γ γ γ γ
β β γ δ

= = = = = =
= = = = = = =  

V.  Discussion and Future Directions 

While the reactor-diffusion mechanism for vertebrate limb development has yet to be 

confirmed in an unequivocal fashion, it is the only available model that accounts for the 

spatiotemporal increase skeletal elements seen in all amniote species (reptiles, birds, 

mammals) in a natural fashion.   We have found that under slightly different assumptions 

from our “bare-bones” mechanism (Hentschel et al., 2004; Eqs. 1-8, above), which take 

account of the differences in tissue sources of key FGFs in urodele amphibians (Han et 
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al., 2001), our model can even account for the deviations from the proximodistal order of 

skeletogenesis in those species (Franssen et al., 2005; Glimm and Newman, in 

preparation).  

The reactor-diffusion model for limb development has clear affinities to the 

increasingly well-established “clock and wavefront” model for somitogenesis (Cooke and 

Zeeman, 1976; Pourquié, 2003; Baker et al., Schnell et al., this volume).  Specifically, in 

both models mesenchymal cells become susceptible to a periodic patterning signal by 

escaping the suppressive activity of a gradient of FGF.  In somitogenesis the periodic 

signal, which sweeps along the length of the presomitic mesoderm, is a Notch and Wnt-

based molecular oscillator with both temporal and spatial aspects.  In the limb, the 

molecular mechanism presumed to generate the condensation-inducing chemical standing 

waves is more elusive, not least because the nature of the lateral inhibitor remains 

unknown (but see Moftah et al., 2002 and Fujimaki et al., 2006).  Measurement of 

morphogen diffusion rates in living tissues is notoriously difficult (Lander, 2007) and the 

reactor-diffusion mechanism may thus be difficult to subject to definitive tests for some 

time.  A promising route to a partial test of this model is suggested by experimental 

evidence for temporal periodicities in the response of micromass cultures to perturbation 

by TGF-β (Leonard et al., 1991).  As noted above, discrete stochastic simulations of this 

culture system disclose a temporally periodic dynamical regime (Christley et al., 2007; 

Fig. 5A) and analysis of the PDE system (1)-(8) under conditions in which diffusion is 

suppressed shows it to have strong oscillatory modes (Hentschel and Newman, in 

preparation).  Recent observations that Notch-related signaling components undergo 
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temporal oscillations in limb mesenchyme (Bhat and Newman, unpublished) strengthen 

the presumption of an underlying reactor-diffusion patterning mechanism.  

While the morphostatic limit for the system (1)-(8) was introduced to make analysis 

of morphogen patterns more tractable, it may also represent a reality of development for 

most or some tetrapod embryos. The establishment of the limb skeletal pattern in 

chickens occurs over 4 days, while the same process in humans occurs over 4 weeks. 

Since the spatial scales of limb development in the two species are similar, one or more 

dynamical processes – morphogen evolution, cell differentiation, cell mobility – must 

differ substantially. This indicates that the parameters determining rates of development, 

including, but not confined to those in the “bare-bones” formulation, have been subject to 

natural selection.  Transformation of an inherently morphodynamic system into a 

morphostatic one by, for example, slowing the rate of cell movement, is a plausible 

evolutionary scenario for the limb and for other developmental systems, making them 

more resistant to radical changes in morphology when key genes are mutated (Salazar-

Ciudad et al., 2003; Salazar-Ciudad, 2006). 

Simulating morphogen dynamics in irregularly shaped domains, as indicated above, 

is a necessary step to generating an authentic limb model.  But rather than the domain 

shapes being chosen arbitrarily, ultimately they must arise from the material properties of 

the limb bud.  Two major modifications need to be made to the 3D modeling strategy 

described in section IVB2 before it has a real possibility of capturing the essence of the 

developing limb.  First, the growing limb bud needs to be modeled as a naturally shaped 

object with a curvilinear profile in all three dimensions.  Thus far our 2D and 3D 

simulations have all used rectangular shapes (Hentschel et al., 2004) and parallelepipeds 
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(Chaturvedi et al., 2005; Cickovski et al., 2005).  Modeling of shape change in 

developing systems has attracted much attention in recent years, with applications 

ranging from growth of tumors (Araujo et al., 2004) and hydroid polyps (Beloussov et 

al., 2006) to the developing human brain (Czanner et al., 2001).  The limb mesenchyme 

is a viscous material ensheathed by the ectoderm, a viscoelastic sheet.  Murea and 

Hentschel (2007) have presented a finite element strategy for modeling limb bud 

outgrowth as a problem in creeping viscous flow under nonuniform surface tension in a 

(2D) system with a free-moving boundary.  This continuously reshaped form, particularly 

in a 3D extension, would constitute a realistic supporting medium and set of boundaries 

for both the morphogen dynamics (e.g., Eqs. 10-11), and the model cells of the CPM or 

its equivalent, in a hybrid model that includes morphogenesis as well as skeletal pattern 

formation. 

Finally, the limb and its skeleton are not symmetrical.  Although little is known 

about how they do so, the various gradients in the limb bud, e.g., Sonic hedgehog 

emanating from the posterior Zone of Polarizing Activity (ZPA), various Hox proteins 

distributed along the proximodistal and anteroposterior axes, and Wnt7A distributed 

along the dorsoventral axis, influence the size and shapes of the various skeletal elements 

and endow the limb with polarity along these axes.  Computational models such as those 

described here afford a way of testing hypotheses for the action of these modulating 

factors.  By default, under symmetric conditions, simulations with the models described 

above lead to model skeletons with no distinction among the different elements, other 

than they increase in number along the proximodistal axis as development proceeds (Fig. 

8).  By making the reasonable assumption that the graded modulators act on the 
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efficiency and strength of components of the core mechanism (e.g., how much 

fibronectin is produced per unit of TGF-β ; how efficient the inhibitor is in suppressing 

TGF- β ) it should be possible to introduce such uniformities into the various models and 

observe the effects on the simulated limb morphologies.  As these models becomes richer 

in genetic interactions and potentially more realistic, they can help explain the outcomes 

of experimental manipulations and effects of medically relevant mutations in the 

vertebrate limb, and suggest hypotheses for its evolutionary origination and 

diversification.           
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Figure Legends 

Fig. 1. Progress of limb skeletal development in chicken forelimb (wing) between 3 and 7 

days of embryogenesis. Gray represents precartilage condensation and black represents 

definitive cartilage. The limb bud, is paddle-shaped, being narrower in the dorsoventral 

dimension than in anteroposterior or the shoulder-to-finger tips direction in which it 

mainly grows. 

 

Fig. 2. The interactions of the core mechanism are superimposed on a 2-dimensional 

schematic limb bud organized into zones defined by experimentally-determined 

expression patterns of FGF receptors 1, 2 and 3.  In the apical zone cell rearrangement is 

suppressed by the FGFs emanating from the AER. The active zone, a detailed view of 

which is shown below) is the site of spatiotemporal regulation of mesenchymal cell 

condensation (i.e., pattern formation). When cells leave the proximal end of the active 

zone and enter the frozen zone they differentiate into cartilage and their spatiotemporal 

pattern becomes fixed.  The length of the dorsoventral axis is collapsed to zero in this 

simplified model. PD: proximodistal; AP anteroposterior. In lower panel, curved arrows: 

positively autoregulatory activator; lines ending in circles: lateral inhibitor. (See 

Hentschel et al., 2004). 

Fig. 3.  Core set of cell-gene product interactions leading to limb precartilage 

mesenchymal condensation. The molecular identity of the lateral inhibitor of 

condensation is unknown, but depends on interaction of ectodermal FGFs with 

mesenchymal FGF receptor 2 (Moftah et al., 2002) as well as the Notch signaling 

pathway (Fujimaki et al., 2006). This inhibitor may act at the level of TGF-β  synthesis 

or activity (solid inhibitory vector), fibronectin synthesis (dashed inhibitory vector), or at 

some earlier stage.  For the purposes of our computational model, we assume it acts on 

the activator (i.e., TGF-β ). 

Fig. 4.  Multipixel spatial representation of limb mesenchymal cells.  (A) Three cells on 

the spatial grid each occupying seven pixels.  (B) Cell changes shape.  The region of the 

cell that contains the nucleus, indicated by the four gray pixels, is structurally maintained; 
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two border pixels move to new locations, and one border pixel (top right) displaces a 

nucleus pixel which gets shifted to the right.  (C) Cell rounding-up on fibronectin.  The 

surface area in the presence of suprathreshold amounts of fibronectin is reduced with two 

border pixels moving into a quasi–third dimension above the cell. 

Fig. 5.  Dynamics of Oscillatory and Stationary Regimes 

(A) Oscillatory regime produces transient patterns that repeat over time but are spatially 

stochastic.  (B) Stationary regime produces stable patterns with minor stochastic 

fluctuations around an equilibrium concentration.  Graphs show the maximum 

concentration value for a single pixel across the entire molecular grid for activator (black) 

and inhibitor (blue) morphogens. 

Fig. 6.  Variation in some of the key parameters induces morphological changes in the 

resultant spatial patterns from distinct spots to connected spots to stripe-like patterns.  

Average peak interval versus average island size for variations in the some of the key 

parameters are shown: +5% (diamond) and -5% (filled diamond) for activator self-

regulation (k1), +5% (triangle) and -5% (filled triangle) for activator regulation of 

inhibitor (k3), +5% (down triangle) and -5% (filled down triangle) for inhibitor regulation 

of activator (k2), +5% (plus) for inhibitor decay (k4).  The colored points are a gradient of 

variations: 1% (red), 2% (orange), 3% (green), 4% (blue), 5% (violet).  Also shown are 

the five simulations (square) using the standard parameter values in Table 2 and the mean 

for the twelve experiments (circle).  All simulations were run for 3000 iterations with 

periodic boundary conditions. 

Fig. 7. A typical 2D CPM configuration. The numerals indicate indices at lattice sites. 

The colors indicate cell type. A cell is collection of connected lattice points with same 

index. The number of lattice points in a cell is its volume and its number of links with 

other indices is its surface area. We represent ECM as a generalized cell with index 1.  

Fig. 8.  (a) CompuCell3D simulation of distribution of TGF-β (activator) over 

progressive developmental stages (time increasing from bottom to top); (b) 

CompuCell3D simulation of cell condensation into humerus (lower), ulna and radius 
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(middle), and digits (top) after 1040 Monte Carlo steps. Visualization was produced using 

volume rendering; (c) CompuCell3D simulation successive stages (top to bottom) of 

proximodistal development of limb skeleton.  Panels (a) and (b) from Chaturvedi et al. 

(2005); panel (e) from Forgacs and Newman (2005), based on Cickovski et al. (2005), 

courtesy of Trevor Cickovski. 

Fig. 9.  Simulations on the active zone with an irregular shape. Contour plots of the 

steady state of the concentration of the activator. A triangular mesh is used to fit the 

irregular boundary of the domain. The vertical length of the domain is roughly 0.65, and 

the horizontal length is 0.15.  4.8δ =  

Fig. 10.  Simulations on active zones with changing sizes in the horizontal direction, and 

the vertical size fixed at 1. Contour plots of the steady states of concentrations of the 

activator for different domain size. Triangular meshes are used.  4.8δ = . 
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