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Abstract. Image simplification reduces the information content of an
image, being frequently used as a preprocessing stage in several algo-
rithms to suppress undesired details such as noise. Morphological filters,
commonly used for this purpose, have as main drawbacks the asymmet-
ric treatment of peaks and valleys and the difficulty to choose an appro-
priate structuring element size. Here, we propose a self-dual multiscale
image simplification operator with sound edge preservation properties.
This enables us to represent the inherent multiscale nature of real-world
images by embedding the original signal into a family of derived signals,
which represent simplified versions of the image obtained by successively
removing its structures across scales. Thus, it is possible to analyze the
different representation levels to extract the interest features, and the
definition of a structure element size does not constitute a problem any-
more. Based on these notions, we present some experiments on image
segmentation, a basic step of various pattern recognition approaches.

Keywords: mathematical morphology, multiscale analysis, image seg-
mentation, image simplification.

1 Introduction

In a morphological framework, image segmentation is typically done by first
extracting markers of significant structures, and then using the watershed trans-
form [1] to extract the contours of these structures as accurately as possible.
However, image extrema (frequently used as markers) can correspond to in-
significant structures or noise, and the gradient image, often associated to the
watershed algorithm, naturally yields high responses in textured areas, for ex-
ample. Thus, to prevent over-segmentation, unacceptable for further pattern
recognition tasks, image simplification is an essential pre-processing stage when
dealing with this segmentation paradigm.

In the linear approach, simplified images can be generated by convolving the
original image with a Gaussian kernel. Its drawbacks, concerning mainly contour
blurring and shifting, have motivated the development of non-linear approaches,
such as the morphological and median filters [2][3].
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The simplest morphological filters, openings and closings, simplify an image
by respectively suppressing peaks and eliminating valleys, but displace horizontal
edges [4] [5]. On the other hand, filters by reconstruction can reconstruct whole
objects preserving the exact location of their edges. These filters transform the
image by suppressing some of its components and then reconstructing those
structures not eliminated in the initial step [6].

In fact, these transformations belong to a broader class of filters called con-
nected operators, which transform the image by removing and merging flat zones.
These filters present a superior performance in many image processing applica-
tions because they do not compromise shape information as it is the case for the
morphological opening (closing) and the well-known linear filters [3].

One drawback of the reconstruction filters is that they are not self-dual, that
is, they asymmetrically treat background and foreground. A symmetric treat-
ment can be obtained by using alternating sequential filters, which have a high
computational cost, or the levelings, a more general class of morphological fil-
ters introduced by Meyer [2]. Area opening [7] and openings and closings by
reconstruction are special cases of levelings. Another drawback of morphologi-
cal filters is the choice of a suitable structuring element that presents a good
trade-off between simplification of large image components and preservation of
important perceptually sensitive details.

In this paper, we propose a general multiscale morphological simplification
operator that is self-dual. Besides the symmetric treatment of peaks and valleys,
the multiscale structure enables us to analyze the different representation levels
and explore the specific features that become explicit at each scale. We also
explore the iterative application of the operator, showing via experiments that
it properly merges flat zones.

2 Multiscale Morphology

Let f : D ⊂ R
n → R be an image function and g : G ⊂ R

n → R be a structuring
function. The two fundamental operations of gray-scale morphology, erosion and
dilation, are defined in the scaled form as:

Definition 1. [8] (Dilation) The dilation of the function f(x) by the structuring
function gσ(x), (f ⊕ gσ)(x), is given by:

(f ⊕ gσ)(x) = sup
t∈G∩Ď

−x

{f(x − t) + g(t)}. (1)

Definition 2. [8] (Erosion) The erosion of the function f(x) by the structuring
function gσ(x), (f ⊖ gσ)(x), is given by:

(f ⊖ gσ)(x) = inf
t∈G∩D

−x

{f(x − t) − g(t)}. (2)

where where Dx is the translate of D, Dx = {x + t : t ∈ D}, and Ď is the
reflection of D, which denotes the domain of the structuring function.
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The notion of scale comes from the use of the scaled structuring function
gσ : Gσ ⊂ R

2 → R, such that [8]

gσ(x) = |σ|g(|σ|−1x) x ∈ Gσ, ∀σ �= 0, (3)

where Gσ = {x : ‖x‖ < R} is the support region of the function gσ and σ

represents the scale.
To ensure reasonable scaling behavior, some conditions are necessary [8], re-

quiring a monotonic decreasing structuring function along any radial direction
from the origin. To avoid level-shifting and horizontal translation effects, respec-
tively, one must also consider that sup

t∈Gσ

{gσ(t)} = 0 and gσ(0) = 0 [8].

Here, we carried out tests using the pyramid structuring function, given by
g(x, y) = − max{|x|, |y|}, that in the scaled version is

gσ(x, y) = −σ−1 max{|x|, |y|}. (4)

Observe that, for a 3 × 3 structuring element (used in this work), gσ is zero at
position 0 and −σ−1 otherwise. We have dropped the | | symbol on Equation 4
to emphasize that we only work with positive scales.

3 The Operator Definition

A toggle operator has two major points: the primitives and a given decision
rule [6]. Here, we use as primitives an extensive and an anti-extensive trans-
formation. The decision rule involves, at a point x, the value f(x) and the
primitives’ results. Formally:

(f ⊘ gσ)k(x) =

⎧

⎨

⎩

ψk
1 (x) if ψk

1 (x) − f(x) < f(x) − ψk
2 (x),

f(x) if ψk
1 (x) − f(x) = f(x) − ψk

2 (x),
ψk

2 (x) otherwise,
(5)

where ψk
1 is an extensive transformation and ψk

2 is an anti-extensive transforma-
tion, both applied iteratively k times. In this paper, we have used as primitives
the the scale dependent dilation and erosion, that is, ψk

1 (x) = (f ⊕ gσ)k(x) and
ψk

2 (x) = (f ⊖ gσ)k(x). We recall that the use of other primitives may lead to
different properties, like causality or filtering, for example.

Proposition 1 states that the above defined operator is self-dual when using
dual transformations as primitives.

Proposition 1. Consider two dual primitives ψ and φ, that is, ψ(x) = φ(x∗)∗.
If ψ is extensive and φ is anti-extensive, the toggle operator given by

T (x) =

⎧

⎨

⎩

ψ(x) if ψ(x) − f(x) < f(x) − φ(x),
f(x) if ψ(x) − f(x) = f(x) − φ(x),
φ(x) otherwise,

is a self-dual operator.
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Proof. Follows directly from the complement operator definition. ⊓⊔

Now, we define the multiscale representation scheme used in this work.

Definition 3. [3] (Pyramid of operators) A pyramid of operators is a family
of operators {Ψσ} depending of a positive parameter σ such that, for each σ ≥
µ ≥ 0, there exists a given ν ≥ 0 such that ΨνΨμ = Ψσ.

Let us consider σ as a scale parameter. This definition states that an image at
scale σ can be obtained either directly (there is no need of make an observation
at all the smaller scales) or incrementally (in such a way that the image observed at
scale µ+ν is independent of the initial scale µ). This is called the atlas principle [5].
Also, according to the definition, the composition of two operators of the family
is still an operator of the family. Note that the composition rule can vary.

In the following, we show that the scaled dilation and erosion satisfy a semi-
group property when using convex structuring functions. Thus, they can be used
to build a pyramid of operators.

Proposition 2. (Semigroup property of convex structuring functions) A family
gσ(σ > 0) of scaled structuring functions, which are convex, is a one-parameter
continuous semigroup. That is, gσ ⊕ gμ = gσ+μ for σ, µ ≥ 0.

Proof. See [8].

This property, together with the chain rule for the dilation and erosion [4]:

f ⊕ (gσ ⊕ gμ) = (f ⊕ gσ) ⊕ gμ and f ⊖ (gσ ⊕ gμ) = (f ⊖ gσ) ⊖ gμ. (6)

with gσ(x) defined as in Equation 3, lead directly to the semi-group property
for the scale parametrized morphological operations:

f ⊕ gσ+μ = (f ⊕ gσ) ⊕ gμ, (7)

f ⊖ gσ+μ = (f ⊖ gσ) ⊖ gμ. (8)

We now analyze the variation on the number of iterations, k. Let gσ be the
pyramid structuring function (Equation 4). In this case, the atlas principle does
not apply, but we have the following equivalence for the defined operator:

(f ⊘ gσ3
)k(x) == (f ⊘ gσ2k+1

)1(x), (9)

where the subscript on σ indicates the structuring element size. In a few words,
to perform k iterations of the primitives using a 3 × 3 structuring element and
then apply the toggle operator is equivalent to perform one iteration using a
structuring element of size 2k + 1. In this way, a wider neighborhood is being
considered, and regions tend to be merged. The defined operator can be seen as
a quasi-connected operator, in the sense that it simplifies the image by creating
quasi-flat zones.

Definition 4. Adapted from [2] (Quasi-flat zone) Two pixels x, y belong to the
same quasi-flat zone of a function f if and only if there exists an n-tuple of
pixels (p1, p2, . . . , pn) such that p1 = x and pn = y, and for all i, (pi, pi+1) are
neighbors and satisfy the symmetrical relation |fpi

− fpi+1
| ≤ λ.
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(a) (b) (c)

Fig. 1. Simplification obtained by considering successive iterations (1, 3 and 5) of the
operator at scale σ = 1

Figure 1 illustrates the creation of these quasi-flat zones. We plot the gray levels
of a small portion of an image when transformed by successive iterations of the
defined operator, k = 1 . . . 5, with σ = 1. Note that quasi-flat zones are created.

In Figure 2, we show the resulting images after applying the operator defined
in Equation 5 for different scales and number of iterations. Note that the number
of image structures decrease with the increase of scale.

Fig. 2. The rows present the images processed by the defined operator at scales 1 and
0.1, respectively. The columns represent 1, 10 and 50 iterations.

In fact, it can be proved [9] that the defined operator has interesting scale-
space properties when using the scaled dilation and erosion as primitives. Also
observe that the increasing on the number of iterations yields a greater simpli-
fication. In the following, we use the defined image simplification operator as a
preprocessing stage in different applications.

4 Results

In the first experiment, we use the h-maxima transform [6] to suppress all image
maxima whose contrast is lower than a specified value h, and use the remaining
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(a) (b) (c) (d)

Fig. 3. Segmentation results for the facel image with non-uniform illumination [10].
(a) Original image, (b) using transformed image σ = 10 and k = 5, with h = 45, (c)
using an image transformed by an opening by reconstruction with h = 9, and (d) based
only on the original image using h = 45.

extended extrema as markers in a watershed transform. Figure 3 illustrates the
best results for each case. Observe that the image transformed by the defined
operator (Figure 3(b)) is less sensitive to the illumination features. This example
also shows that, in some cases, it is not enough to select image extrema according
to some criteria, and a simplification step is essential.

The main difficulty that arises when using markers from an image processed by
an opening by reconstruction is that the simplification may conduce to a merging
of regions that disturbs the extraction of markers, as illustrated in Figure 4.

(a) (b) (c)

Fig. 4. (a) Original image and its simplification results based on (b) our operator, and
(c) the opening by reconstruction

These images represent the maximum possible reduction on the number of flat
zones (corresponding to 32 iterations for the defined operator and to a struc-
turing element of size 63 for the opening by reconstruction). Although openings
by reconstruction yields less flat zones, observe that the simplification for our
operator is more suitable for marker extraction purposes.

When applying the defined operator, in some neighborhood of an important
minimum (maximum), the pixels values will be eroded (dilated) in such a way
that it is possible to identify the significant extrema of the image and their
influence zones. In this sense, we define a new thresholding operation as follows:

(f ⊘ gσ)k(x) =

{

255 if ψk
1 (x) − f(x) <= f(x) − ψk

2 (x)
0 otherwise,

(10)
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(a) (b) (c) (d) (e)

Fig. 5. Binarization results. (a) original image, (b) Otsu, (c) Moving Averages, (d)
Niblack and (e) Our approach.

and use as primitives the scaled erosion and dilation operations. Figure 5 shows
the segmentation of a document image with non-uniform illumination. We com-
pare our results against some well-known approaches, namely, the Otsu’s, the
moving averages’ and the Niblack’s algorithms [10].

The Otsu’s algorithm, which defines a global threshold, was largely affected
by the illumination conditions. The Niblack’s algorithm wrongly classify all the
pixels belonging to the darker areas of the image as background. Although our
results seem comparable to that obtained by the moving averages’ algorithm,
the latter produces some stripes in the final result, as illustrated in Figure 6.
This fact can disturb automatic optical character recognition (OCR) results.

(a) (b)

Fig. 6. (a) Our approach result and (b) The moving averages algorithm yields white
stripes that may disturb OCR results

Figure 7 shows an example where the iterative application of the operator
leads to a contour regularization. Note that the gradient extracted from the
original image is weak, which can cause a leaking of the watershed function
and, consequently, define a wrong segmentation result. Also, this scheme can
be applied to noisy images, since the simplification performs a filtering on the
original signal, while preserving and enhancing its boundaries.

(a) (b) (c) (d) (e) (f)

Fig. 7. Improvement of the gradient image by applying a scale-space toggle operator.
(a-d) Original and regularized images, (b-e) the weak and the well-defined contours,
(c-f) the different segmentation results.
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5 Conclusions

In this work, we have introduced a multiscale morphological simplification algo-
rithm where we explore the variation on scale and number of iterations param-
eters to create simplified versions of an image. Experimental results show that
the defined operator conduces to better segmentation and binarization results.

Also, the image contour regularization defined by the proposed operator has
a better quality than the results obtained by traditional methods based on the
high-boost filtering and the Laplacian operator. Further works on this mat-
ter include the analysis of other primitives and their properties aiming at im-
proving and extending our initial results on image filtering, segmentation and
simplification.
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