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ABSTRACT

The dynamics of the streamflow in rivers involve nonlinear and multiscale phenomena. An attempt is

made to develop nonlinearmodels combiningwavelet decompositionwith Volterramodels. This paper

describes a methodology to develop one-month-ahead forecasts of streamflow using multiscale

nonlinear models. The method uses the concept of multiresolution decomposition using wavelets in

order to represent the underlying integrated streamflowdynamics and this information, across scales,

is then linked together using the first- and second-order Volterra kernels. The model is applied to 30

river data series from the western USA. The mean monthly data series of 30 rivers are grouped under

the categories low, medium and high. The study indicated the presence of multiscale phenomena and

discernable nonlinear characteristics in the streamflow data. Detailed analyses and results are

presented only for three stations, selected to represent the low-flow, medium-flow and high-flow

categories, respectively. The proposed model performance is good for all the flow regimes when

compared with both the ARMA-type models as well as nonlinear models based on chaos theory.
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NOMENCLATURE

ANN Artificial Neural Networks

ANFIS Artificial Neural Fuzzy Inference System

ARMA Auto-Regressive Moving Average

INTRODUCTION

Understanding streamflow dynamics plays an important role

in the proper management of our water resources. Simu-

lation and forecasting of the mean monthly streamflows

plays a vital role in the operation of reservoirs and hydro-

power generation units. Streamflow dynamics are governed

by various physical mechanisms acting on a wide range of

temporal and spatial scales (Sivakumar ). Further, the

presence of nonlinearity at different scales in streamflow

observations has been a subject of scrutiny in numerous

studies including the study by Wang et al. (). This latter

study has affirmed the presence of nonlinearity in streamflow

observed atmonthly scales. Advances in research on the non-

linear features of streamflow processes notwithstanding, an

objective understanding of the precise nature of these nonli-

nearities is not easily discernible.

The presence of long and short memory components at

the observed scale, as reported by Corduas & Piccolo (),

and other changes that take place at the local and global

levels, also influence the evolving characteristics of the

observed time series and, together, all these factors make

streamflow modelling a nontrivial and complex problem.

During the past few decades, a great deal of research has

been devoted to the formulation and development of model-

ling approaches to understand streamflow dynamics and

significant progress has indeed been made. These methods

can be broadly classified into: (i) physical-based models,

(ii) conceptual models, and (iii) data-driven black box

models. Among these, the data-driven models are often pre-

ferred because of their simplicity and predictive accuracy in
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streamflow forecasting. These data-driven models are often

conveniently classified into the following types: (i) linear sto-

chastic models, (ii) nonlinear models and (iii) artificial

intelligence models.

The linear stochastic analysis methods (Box et al. ;

Carlson et al. ; Obeysekara & Salas ; Haltiner &

Salas ; Hipel & McLeod ; María et al. ) do not

predict accurately the real-world runoff sequences because

of their nonlinearity in nature as suggested by available evi-

dence and has accordingly led to a heightened interest in

nonlinear studies and application of nonlinear models to

modelling streamflow time series and are reviewed in detail

in Wu et al. (). Other prominent studies include Tong &

Lim (), Noakes et al. () and Muftuoglu (). The

study by Tong & Lim () saw the development of the

Threshold Autoregressive model (TAR) in which threshold

value characteristics divide the data into different linear sets

and for each set a piecewise linear AR model is considered.

The TAR-based approach has been used in several studies

such as Kapetanios () and Chen et al. (). Noakes

et al. () developed PARMA (for Periodic Auto-Regressive

Moving Average) models for seasonal modelling of monthly

flows and, in contrast, Muftuoglu () developed nonlinear

models using the modified Volterra functions for runoff fore-

casting at a monthly scale.

Chaos theory has also found numerous applications to

the problem of streamflow modelling and included Wilcox

et al. (), Jayawardena & Lai (), Porporato & Ridolfi

(), Elshorbagy et al. () and Sivakumar et al. ().

Interestingly, these studies demonstrate that the assumption

of the presence of chaos-like features is indeed credible and,

as a further validation, most of these approaches seem to

perform reasonably well. Further, with the advent of tech-

niques like ANN (French et al. ; Chang & Chang ;

Dawson & Wilby ; Tesong et al. ; Jain et al. 2004;

Huang & Catherine ; Wu & Chau ), ANFIS (Firat

& Güngör ; Chen et al. ; Firat & Turan ), gen-

etic algorithms (Chen et al. ) and support vector

machines (Sivapragasam et al. ; She & Basketfield

; Asefa et al. ), data-driven models have begun to

dominate streamflow forecasting effort. However, while

these methods seem to perform well for a given dataset,

they lack the ability to discern and identify dominant fea-

tures that are present at different scales but whose

individual, scale-specific, characteristic details get camou-

flaged in the integrated observation. It is now recognised

that the apparently irregular behaviour, as is often seen in

the time series of streamflows, could be the outcome of

simple deterministic processes that are influenced by a few

nonlinear interdependent components happening at differ-

ent scales.

Recent developments in wavelet theory have prompted

a significant shift in emphasis while designing a suitable

approach to modelling time series of streamflows and,

indeed, other geo-physical phenomena. With the capability

to enable multiscale resolution and frequency localization

in time, wavelets offer the advantage of facilitating a

decomposition of the given time series of flows into its var-

ious, but scale-specific, dynamic components as surrogates

of the corresponding physical processes at those scales.

Numerous studies basedonwavelet applications tomodel-

ling geo-physical time series have been reported in the recent

past. For example, Venugopal et al. () used wavelet pack-

ets to study the energy distribution of rainfall over time,

frequency and scale in an effort to gain more insight into the

rainfall-generating mechanism. Labat et al. () applied

wavelet analysis to investigate the multiscale phenomena in

the karstic regions. Gaucherel (), Lafrenière & Sharp

() and Anctil & Coulibaly () have used wavelet analy-

sis to interpret temporal patterns of different basin responses

that include either rapid processes or slow recharges. Apart

fromsimulation studies, there has also been aheightened inter-

est in wavelets and its application for developing forecasting

models of various geo-physical series. These include studies

by Partal & Kisi (), Kisi (a, b) and Adamowski &

Sun () wherein models that combine wavelet analysis

with ANNs have been developed and investigated on the

assumption that such a combination approachwould improve

the forecasts of the modelled hydrologic time series. However,

in the context of these models, Kisi (a, b, ) comments

that these models do not overcome the disadvantages that are

normallyattributed to theANN-basedmodel.As analternative

approach, the latter author has proposed a linear wavelet

regression model for monthly streamflow forecasting and

was shown to perform better than the ANN models (Kisi

a, b, ).

In order to address the issue of nonlinear behaviour of

some geo-physical state variables, including streamflow,

425 R Maheswaran & R. Khosa | Multiscale nonlinear model for monthly streamflow forecasting Journal of Hydroinformatics | 14.2 | 2012

Downloaded from http://iwaponline.com/jh/article-pdf/14/2/424/386691/424.pdf
by guest
on 21 August 2022



Volterra models offer a generic representation of these non-

linear systems and have indeed been widely applied in the

area of rainfall–runoff modelling. The results of these studies

have been promising and prominent amongst these studies

are Diskin & Boneh (), Muftuoglu () and Chou

().

In the present study, wavelets, with their capability of

multiresolution decomposition, have been combined with

a Volterra model in order to develop a forecasting model

for univariate time series of streamflow. Detailed study is

done on monthly streamflows observed at 30 stations

spread throughout 10 states in the western USA and com-

pared with results on the specific datasets analysed in

Sivakumar (). In particular, a special focus was devoted

to data for those 30 stations (out of a total of 79) investigated

in the study by Sivakumar () for which the nonlinear

approximation method, as proposed by the latter author,

did not perform satisfactorily.

The present paper is organised as follows: the next sec-

tion gives a brief description of wavelet analysis followed by

a description of the multiscale nonlinear model in the third

section. Then the following section presents details of the

study area and data considered for analysis in this research.

Details of the analyses carried out and the results obtained

are presented in the fifth section while the final section pre-

sents some of the important conclusions drawn from the

present study and potential areas for further research.

WAVELET ANALYSIS

Wavelet analysis has become an important milestone in spec-

tral analysis due to its multiresolution and localization

capability both in time and frequency domains and has been

extensively applied in the area of time series analysis and

prediction.Wavelet decompositions at various scales (frequen-

cies) often reveal the underlying low and high frequency

components of the observed series and are, importantly, loca-

lized in time. Several algorithms have been designed that

enable suchdecompositions and the selectionof anyparticular

approach depends on the application in hand.

For example, the Continuous Wavelet Transform

(CWT), used mainly in the processing of medical images

and seismic signals, calculates the wavelet transform as an

integral product of the given signal and the wavelet function.

The coefficients of the wavelet transform of a square-integr-

able continuous-time signal, f(t), are defined by the linear

integral operator:

C(a, τ) ¼
Z

∞

�∞

f(t)ψa,τ(t)dt where ψa,τ(t) ¼
1
ffiffiffi

a
p ψ

t� τ

a

� �

ð1Þ

The function ψ(t), which can be real or complex, plays

the role of a convolution-kernel and is called a wavelet.

The parameter a can be interpreted as a dilation (a> 1)

or a contraction (a< 1) factor of the wavelet function ψ(t)

corresponding to different scales of observation. The par-

ameter τ can be interpreted as a temporal translation or

shift of the function ψ(t) and allows discrimination of the

signal f(t) locally around time τ. The wavelet function

ψ(t) is designed with the following properties (Burrus

et al. ):

1. The function integrates to zero:

Z

∞

�∞

ψ(t)dt ¼ 0 ð2aÞ

2. The function is square integrable or, equivalently, has

finite energy:

Z

∞

�∞

jψ(t)j2dt<∞ ð2bÞ

A disadvantage of these non-orthogonal wavelets is that

the CWT of a given signal is characterised by redundancy of

information among the wavelet coefficients. This redun-

dancy, on account of the correlation between coefficients,

is intrinsic to the wavelet kernel and not a characteristic

of the analysed signal. As an alternative, for practical appli-

cations (as in the study of noise reduction models for

communication systems and image and signal compression),

the Discrete Wavelet Transform (DWT) is usually preferred.

In this approach, wavelet coefficients are calculated at every

dyadic step, i.e. the operation of WT is carried out at dyadic
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dilations and integer translations. The wavelet function in its

dyadic form can be represented as:

ψ j,k(t) ¼ 2 j=2
ψ(2jt� k) ð3Þ

In Equation (3), ψ(t) is the mother wavelet, and j and k

are the translation and dilation indices.

In DWT, decimation is carried out so that only half of

the coefficients of the detailed component are left at the cur-

rent level and half of the coefficients of the smooth version

are recursively processed using high-pass and low-pass fil-

ters for coarser resolution levels. Due to the decimation,

the number of the wavelet coefficients is halved with each

move to a coarser level. The consequence is that, at the coar-

ser level, there is lesser information available to train the

forecasting model and, consequently, leading to overall pre-

dicting inaccuracy.

This problem, caused by decimation, may be overcome

by introducing the stationary or, alternatively, à trous wave-

let transform (Shensa ). The basic idea of the à trous

wavelet transform is to fill the resulting gaps using redun-

dant information obtained from the original series.

Corresponding to the original series to be x(t), smoother ver-

sions of x(t) are defined at different scales as given by

Equations (4) and (5):

c0(t) ¼ x(t) ð4Þ

ci(t) ¼
X

∞

l¼�∞
h(l)c j�1(tþ 2i�1l) ð5Þ

In the preceding Equation (5), i takes values from 1 to p

and h is a low pass filter with compact support such as the

B3 spline defined as (1/16, 1/4, 3/8, 1/4, 1/16) and Haar

defined as (1/2, 1/2).

The detail component of x(t) at level i is defined as:

di(t) ¼ ci�1(t)� ci(t) ð6Þ

The set {d1, d2,…, dp, cp} represents the additive wavelet

decompositions of the data up to the resolution level p. The

term cp is the residual component or the approximation.

Accordingly, for reconstruction, the inverse transform is

given by:

x(t) ¼ cp(t)þ
X

p

i¼1

di(t) ð7Þ

Here, unlike the classical DWT, the decimation is left

out, which renders the components at different scales to

be of the same length.

Treatment of boundary details

Estimation of wavelet coefficients requires the selection of

appropriate boundary conditions and this exercise does

indeed require special care. From Equation (5), it is seen

that estimation of the wavelet coefficient at time t uses

observations over the neighbourhood between (t� p) and

(tþ p), depending on the filter length. In general wavelet

applications, various kinds of boundary conditions such

as: (i) periodic boundary, (ii) reflective boundary extension,

and (iii) constant extension are usually used for extending

the series up to (t� p) and (tþ p) (Strang & Nguyen ).

However, in the case of forecasting models, these extensions

cannot work (Renaud et al. ).

For clarity, consider a simple example where the B3-

spline wavelet is used for computing c(t) from the series

x(t). At each time step, according to Equation (5),

calculation of c1(n) requires x(nþ 1) and x(nþ 2).

Similarly, c2(n) requires x(nþ 1), x(nþ 2),…, x(nþ 6). In

general, computation of ci(n) would require x(t) defined at

t¼ nþ 1, nþ 2,…, nþ (2iþ1� 2) and clearly are not avail-

able prior to their actual realization in time as these refer

to future observations.

Alternatives that do not involve the use of future values

while calculating the wavelet coefficients include the use of

causal filters as these use only the past values to calculate

wavelet coefficients at time t. Renaud et al. () proposed

a redundant Haar wavelet transform and Luan () pro-

posed a shifted B3-spline wavelet so that the filtering is

done with the past values of x(t) and not with future ones.

Selection of the wavelet

Selection of the ‘most appropriate’ wavelet for the appli-

cation at hand is indeed very intriguing and requires a
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prior understanding of the important attributes of the candi-

date wavelet such as region of support and vanishing

moments required for that application. The energy content

of the Haar wavelet is concentrated over the narrowest sup-

port band and, therefore, has good localization properties.

This attribute makes it the most suitable for change detec-

tion studies (Ahuja et al. ; Khosa et al. ). On the

other hand, the B3-spline wavelets have a wider support

and result in the dispersion of its energy content over a

wider region and, consequently, reduced energy density.

Appropriately, therefore, this particular wavelet is ideally

suited to studies that require long-term averaging. The pre-

sent study employs the shifted B3-spline wavelet for multi-

resolution decomposition based on the perception that, in

order to understand the internal dynamics of the underlying

generating system, the past history over a reasonable dur-

ation is required while seeking to estimate amplitudes of

the various derived component processes at any time pos-

ition. A brief description of the formulation is presented

below.

Let X¼C0¼X1,X2,…,Xp represent the original

time series of observations on the state variable under

scrutiny. The first level wavelet decomposition of this

series, denoted as C1, can be obtained from the original

series C0 by convolving the latter with h¼ {1/16, 1/4,

3/8, 1/4, 1/16}.

Mathematically

C1(n) ¼
1

16
C0(n)þ

1

4
C0(n� 1)þ 3

8
C0(n� 2)

þ 1

4
C0(n� 3)þ 1

16
C0(n� 4)

w1(n) ¼ C0(n)� C1(n)

9

>

>

>

>

>

=

>

>

>

>

>

;

(8)

More generally

Ciþ1(n) ¼
1

16
Ci(n)þ

1

4
Ci(n� (2i × 1))þ 3

8
Ci(n� (2i × 2))

þ 1

4
Ci(n� (2i × 3))þ 1

16
Ci(n� (2i × 4))

wiþ1(n) ¼ Ci(n)� Ciþ1(n)

9

>

>

>

>

>

=

>

>

>

>

>

;

ð9Þ

From (9) it can be seen that at any time point, n,

the decompositions do not use prospective

information (time-wise) beyond n for calculating

wavelet coefficients, thus illustrating the contention

that the ‘à trous transform’ provides a convincing

and computationally very straightforward solution while,

at the same time, avoiding the troublesome boundary

effects.

MULTISCALE NONLINEAR MODEL DEVELOPMENT

Consider a multiscale system whose internal (underlying)

processes respond to the stimulus of external causal fac-

tors to produce the observable output variable. The

scheme of this system is shown in Figure 1(a). Here, the

processes u1, u2,…, u5 depict the unobservable processes

at different scales. W(t) is the unobservable noise-free

system output, v(t) is the noise that contaminates the

system output and y(t) is the observable, noise-

contaminated, system output. The foregoing depiction

can be assumed to be a reasonable representation of the

streamflow dynamics where unknown component pro-

cesses combine together at different scales to produce

the observed streamflow. The wavelet-based approach to

obtain such a multicomponent representation is devel-

oped as described below.

Methodology

Let {X} be the time series of observations on streamflows

which carries the information about the system. Let the

corresponding descriptive wavelet coefficients at each

scale be denoted by û1, û2,…, ûJ and the scaling coeffi-

cients be denoted by ûJþ1 where J is the level of

decomposition. The time series of actual observations

may be assumed to be a result of integration of these indi-

vidual decompositions which, in turn, are assumed to be

outputs of individual Volterra generators and integrated

together in a nonlinear manner. Accordingly, therefore,

the wavelet and scaling coefficients may be combined non-

linearly to produce y(t), a particular value of {X}, using the

Volterra model within a multiple-input–single-output fra-

mework. The multiscale nonlinear model formulation is
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given by:

y(t) ¼
X

Jþ1

n¼1

X

m

τ¼1

h(n)
1 (τ)un(t� τ)

þ
X

Jþ1

n¼1

X

m

τ1¼1

X

m

τ2¼1

h(n)
2s (τ1, τ2)un(t� τ1)un(t� τ2)

þ
X

Jþ1

n1¼1

X

n1�1

n2¼1

X

m

τ1¼1

X

m

τ2¼1

h(n1,n2)
2x (τ1, τ2)un1

(t� τ1)un2
(t� τ2)

ð10Þ

The first-order kernel, h1
(n), describes the linear

relation between the nth input un and y. The second-

order self-kernel function h2s
(n) describes the second-order

nonlinear relation between the nth input un and y,

respectively. The second-order cross-kernels h
ðn1 ,n2Þ
2x

describe the second-order nonlinear interactions

between each unique pair of inputs (un1 and un2) as

they affect y and m denotes the memory length of the

process.

Figure 1 | (a) Multiscale system. (b) Model scheme for the multiscale nonlinear model.
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Combining the last two terms we get:

y(t)¼
X

Jþ1

n¼1

X

m

τ¼1

h(n)
1 (τ)un(t� τ)

þ
X

Jþ1

n1¼1

X

Jþ1

n2¼1

X

m

τ1¼1

X

m

τ2¼1

h(n1,n2)
2 (τ1, τ2)un1

(t� τ1)un2
(t� τ2) ð11Þ

Estimation of kernels h1 and h2

The four summation terms in Equation (11) may be modified

by denoting each of the variables u1(t�1), u1(t�τ), u2(t�1),

u2(t�τ),…, as a new set of variables denoted as x1(t), x2(t),

x3(t),…, xM(t). Equation (11) may now be written as:

yðtÞ ¼
X

P

l¼1

h1ðlÞxlðtÞ þ
X

P

l1¼1

X

P

l2¼1

h2ðl1; l2Þxl1ðtÞxl2ðtÞ

yðtÞ ¼ y1ðtÞ þ y2ðtÞ

9

>

>

=

>

>

;

ð12Þ

xl(t) ¼ uk(t) 1 � k � J þ 1f ; 1 � l � J þ 1

xl(t) ¼ fuk(t� τ) 1 � k � J þ 1; J þ 1< l<M;

τ ¼ 1, 2, 3 . . . q

q ¼ qth lagged value:

P ¼ total number of input values:

The entire model scheme is shown in Figure 1(b). The top

block diagram shows the overall model scheme and

the middle and bottom parts show the linear and second-

order kernels of the Volterra model. The conventional

method for identifying the Volterra model is inefficient and

inaccurate (Nikolaou & Mantha ) on account of the

large number of parameters that must be estimated. In this

regard, Nikolaou & Mantha () have demonstrated how

to use wavelets for reparameterization of second-order Vol-

terra models in terms of a substantially smaller number of

coefficients. The resulting structure retains several of the

advantages of the Volterra structure while, at the same time,

being parsimonious. In the present study too, the method

using the wavelet-based least squares and described by

Nikolaou & Mantha () has been used to estimate the

unknown kernel functions in (12). Additionally, the optimal

value of: (i) the level of decomposition, and (ii) the memory

‘m’ at each scale also needs to be established and is a trial-

and-error-based iterative process.

Performance measures

In addition to factors such asmodel structure, complexity and

computational requirements, forecast accuracy may be the

most important consideration that provides an objective

basis for comparison between various competing models as

a measure of their respective performances. Various

measures to evaluate model performance are available in

the published literature and amongst these theNash–Sutcliffe

criterion (Nash & Sutcliffe ) has been widely used. A dis-

advantage of the Nash–Sutcliffe efficiency criterion that is

often quoted in the literature arises from the use of squared

differences that causes the criterion to accordmoreweightage

to observations that have larger numerical values as com-

pared to lower magnitude values. The choice of ‘no model’

forecast is another issue of concern with regards to the

Nash–Sutcliffe criterion and has been discussed extensively

in the published literature (see, for example, Garrick et al.

()). The present study has also used performance criteria

based on Root Mean Squared Error (RMSE), Mean Absolute

Error (MAE) and the Correlation Coefficient (CC).

Karunanithi et al. () suggested that RMSE is a good

measure for indicating goodness of fit at high flows, while

the MAE provides a more balanced perspective of the good-

ness of fit at moderate flows. In general, RMSE>MAE, and

the degree to which RMSE exceeds MAE is an indicator of

the extent to which large outliers (discrepancy between the

observed and the forecasted values) exist in the evaluation set.

Equations (13)–(16) below have been used to estimate

these performance measures:

NSC ¼ R2 ¼ E ¼ 1�
PN

t¼1 (Q
t
o �Qt

m)
2

PN
t¼1 (Q

t
o � �Qo)

2
ð13Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

t¼1
(Qt

o �Qt
m)

2

r

ð14Þ

MAE ¼
X

N

t¼1

jQt
o �Qt

mj ð15Þ

CC ¼
X

N

t¼1

ðQt
o � �QoÞðQt

m � �QmÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
t¼1ðQt

o � �QoÞ2
PN

t¼1ðQt
m � �QmÞ2

q ð16Þ
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where Qm is model output, Qt
o is observed discharge at time

t and �Qo denotes the mean discharge of the observed series

for the corresponding month.

DATA USED FOR THE STUDY

Average monthly streamflow data collected over a period of

60 years (October 1931 to September 1993) at 30 stations in

the western USA have been studied. The data were obtained

from www.usgs.com and Table 1 presents the details of

these stations (i.e. station numbers, states in which they

are located, catchment area and elevation) and also some

important statistics of the observed streamflows, namely

mean, standard deviation, maximum and minimum values.

In the present study, for convenience and brevity, the orig-

inal station numbers are replaced by serial numbers

starting from 01 to 30. The data for these stations show a

large range of variation and may be attributed mainly to sig-

nificant differences in the prevailing climate. Most of the

Table 1 | Statistics of streamflow data observed at 30 stations in the western USA

Serial number Station number State Area (km2) Elevation (m) Mean (m3/s) SD (m3/s) Maximum value (m3/s) Minimum value (m3/s)

01 6191500 MT 6,794 2,573 86.4 97.3 563.8 11.6

02 6207500 MT 2,989 2,265 26.0 35.6 187.8 127.6

03 6214500 MT 30,549 939 199.0 210.3 1,164.4 38.6

04 6620000 CO/WY 3,706 2,713 11.4 15.1 103.3 0.7

05 14321000 OR 9,539 756 212.1 213.0 1,447.5 22.0

06 6725500 CO 93 3,170 1.5 2.2 11.2 0.1

07 7203000 NM 780 2,850 0.5 0.9 10.5 0.0

08 9299500 UT 293 3,161 3.2 3.9 33.4 0.5

09 10128500 UT 420 2,771 5.8 8.2 49.9 0.8

10 11058500 CA 23 1,067 0.2 0.3 2.9 0.0

11 11237500 CA 60 2,316 1.2 2.3 18.3 0.0

12 11264500 CA 469 2,743 10.1 14.7 93.9 0.1

13 11266500 CA 831 2,682 17.7 25.8 177.8 0.2

14 11281000 CA 225 1,585 2.8 3.7 21.5 0.0

15 11282000 CA 192 1,707 2.3 3.4 24.8 0.0

16 11522500 CA 1,945 610 51.1 50.7 318.8 2.8

17 11532500 CA 1,577 457 106.8 118.4 668.8 5.2

18 12010000 WA 142 277 12.2 11.1 71.6 0.6

19 12134500 WA 1,386 1,128 112.3 71.4 463.4 9.8

20 12306500 ID 1,476 1,484 19.8 29.0 145.3 1.1

21 12321500 ID 251 1,417 5.6 8.1 47.0 0.4

22 12401500 WA 5,750 1,390 43.9 65.3 295.6 1.8

23 12404500 WA 9,842 435 82.6 116.4 511.7 3.7

24 12414500 ID 2,668 1,283 66.8 76.0 393.6 6.7

25 12445000 WA 18,803 262 84.2 99.8 784.9 6.5

26 12451000 WA 831 1,564 40.3 40.4 219.1 3.2

27 13082500 ID 1,639 1,838 1.3 1.6 17.7 0.0

28 13313000 ID 552 2,185 9.8 14.7 99.9 1.2

29 13317000 ID 35,094 2,048 317.7 363.5 2,338.9 70.4

30 13336500 ID 4,947 1,719 106.2 135.6 690.1 9.2
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drainage basins are medium to smallsized (less than approxi-

mately 1,000 km2) and are located in elevation zones higher

than approximately 500 m (Sivakumar ).

For the present analysis, the 30 stations are grouped

under three categories based on the magnitude of mean

streamflow as follows: (1) low-flow stations (mean stream-

flow values less than 2.832 m3/s); (2) high-flow stations

(mean values more than 28.32 m3/s); and (3) medium-flow

stations (mean values greater than 2.832 m3/s but lower

than 28.32 m3/s). For more details about the station details

the reader is referred to Sivakumar ().

MODEL APPLICATION

The multiscale nonlinear model described in the foregoing

discussion was use to forecast monthly streamflows at

each of the 30 stations for which data were available.

Model design was based on the ‘split sample’ approach in

which the available data for 700 months was split into two

segments. The first segment, comprising of data for the

first 500 months, was used to calibrate the model and the

second segment, comprising of data for the remaining 200

months, was set aside for model validation.

Model performance is evaluated based on one-time-step-

ahead forecast (i.e. a lead time of one month) for each of the

30 sites. Detailed analyses and results are presented only for

stations 6, 20 and 29 (three stations in all), whereas the final

results are presented for all 30 stations. It is important to

note that the catchment areas corresponding to these obser-

vation stations are 93, 1,476 and 35,094 km2, respectively.

Each of the aforementioned stations (nos. 6, 20 and 29)

are taken as being a representative member of their

respective group of low- medium- and high-flow categories.

Figures 2(a)–(c) show the hydrograph of monthly streamflows

respectively for stations 6, 20 and 29 while Figures 3(a)–3(c)

show their corresponding wavelet decomposition.

For each station, deemed to be a general characteristic

of their respective flow regime, the models are also cali-

brated for their specific levels of decomposition and

Figure 2 | Variation of monthly streamflow series in the western USA representing: (a) low-flow (station 06), (b) medium-flow (station 20) and (c) high-flow (station 29).
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memory. The optimal structure was obtained using a trial-

and-error approach and Table 2 presents some combi-

nations of parameters and corresponding results. It can be

seen that in most of the cases the level of decomposition

was found to be 4 and the memory at each level depends

on the time series. The values in the braces show the

number of lagged values that were taken at each level (for

the details and the approximation component).

Table 3 shows the optimal model structure for the

three stations under consideration. In general, for the

station corresponding to the low-flow regime, the optimal

number of decomposition levels (J ) was found to be 4 and

the memory at each level had an optimal value of

{2,2,1,1,2}. For the station corresponding to the medium-

flow regime, the number of decomposition levels, J, was

found to be equal to 4 and memory, M, equal to 1 for

the high-frequency details (D1, D2) and was equal to 2

for D3 and equal to 3 for D4 and C4. In the case of

the station corresponding to the high-flow regime, the

optimal value for J was equal to 4; whereas M was

Figure 3 | Wavelet decomposition of the monthly streamflow series: (a) low-flow (station 06), (b) medium-flow (station 20) and (c) high-flow (station29).
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equal to 2 for D1 and D2, D3 and M was equal to 3 for

D4, C4.

Figures 4(a)–(c) present a comparison, using time series

plots, between the forecasts and observed streamflow

values for the above three stations, respectively, and, as is

evident, the forecasts are in reasonable agreement with

the observations. From these figures it is observed that,

while the peak values are predicted to a satisfactory

level, however, there is a lag between the observed and

forecast peaks at some points. Additionally, it is also

seen that some of the forecast values are either zero or

negative.

In order to rectify this, as the next stage ofmodel building,

log transformation has been used as a pre-processor for

the data. The corresponding results are presented in

Figures 5(a)–(c) and show a significant improvement in

performance in terms of a much improved match in both

the peak values as well as time of occurrence and, impor-

tantly, without resulting in negative forecasts. Further, a

closer look at the observed time series and its model-derived

forecasts reveals that the proposed multiscale nonlinear

model captures, to a reasonable detail, not only the major

trends but also the minor fluctuations in the streamflow.

The summary statistics for the wavelet model with log trans-

formation is given in Table 4 for the three stations namely 6,

20 and 29.

Similar results were achieved for the remaining 27

stations (figures not shown) and are presented in Table 5

in terms of the CC and the other model performance

measures along with the results for stations 6, 20, and 29

(all 30 stations) and are grouped under low-flow, medium-

flow and high-flow regimes. As can be seen, for streamflow

from all the stations, irrespective of the flow regime, the

CC values are higher than 0.80.

Results for ‘high-flow’ regime

The 1-month-ahead multiscale wavelet-based nonlinear

forecast model for station 29 (as a representative member

of the ‘high-flow’ regime category, is presented below as

Equation (17):

Ytþ1 ¼ 0:57D1t�1 þ 0:082D1t�2 � 0:07D2t�1 � 0:08D2t�4

� 3:23D3t�4 þ 1:63D4t�1 þ 1:02C4t�10:08D2t�1

×D4t�1 þ 0:0235D4t�1D4t�4 � 0:076D2t�4D4t�2

þ 0:05C4t�1D1t�1 � :036D3t�1D4t�1 ð17Þ

In general, for the high-flow regimes, it can be seen that

for all stations, barring two, the model performance in terms

of CC were near about 0.90. For the remaining two stations

in this category, the value was nearly not as good but

still yielded a CC value in the vicinity of a high of 0.85. Nota-

bly, the results for four stations, namely 03 (USGS:6214500),

Table 2 | Different wavelet models for the various flow regimes

Flow

regime

Level of

decomposition

Memory (m) at each

level {DWi’s , C}

RMSE

(m3/s)

MAE

(m3/s)

Low-flow regime

6 3 {2,2,2,1} 0.87 0.46

4 {2,2,1,1,2} 0.70 0.31

3 {1,1,1,2} 1.17 0.69

7 3 {2,2,2,1} 0.72 0.32

3 {1,2,1,2} 0.79 0.43

4 {1,2,2,1,1} 0.60 0.26

5 {1,1,1,2,2,2} 0.82 0.44

Medium-flow regime

09 3 {2,2,2,1} 4.20 2.29

4 {1,2,2,3,3} 3.12 1.96

5 {1,1,2,2,2,2} 4.62 2.68

4 {1,1,1, 2,1} 5.94 4.06

20 3 {1,2,2,2} 12.71 7.42

4 {1,1,2,3,3} 9.79 6.51

5 {1,1,2,2,2,1} 13.00 8.57

4 {1,1,2,2,2} 20.19 13.61

High-flow regime

30 3 {2,2,2,1} 61.96 35.65

4 {2,2,1,1,2} 57.54 31.65

4 {2,2,2,3,3} 47.90 26.30

5 {1,1,2,2,3,1} 100.23 55.23

29 2 {3,2,1} 250.23 130.25

3 {1,2,2,3} 165.83 79.31

4 {2,2,2,3,3} 141.74 67.23

4 {1,3 2,2,1} 163.17 77.97

Table 3 | Wavelet model structure for the various stations

Station Levels of decomposition (J ) Memory (M) at each level

6 4 {2,2,1,1,2}

20 4 {1,1,2,3,3}

29 4 {2,2,2,3,3}
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29 (USGS:13317000), 22 (USGS:12401500) and 01

(USGS:6191500), show a marked improvement with the

application of wavelet analysis when compared with

results obtained with ARMA-type models and presented in

Table 5. It can be seen that, for the four stations, ARMA

models produced CC values of 0.71, 0.72, 0.74 and 0.77,

respectively, while the nonlinear approximation method of

Sivakumar () produced CC values of 0.773, 0.795, 0.82

and 0.824, respectively, for these stations. In contrast, using

the proposed wavelet-based, multiscale nonlinear model, the

CC values have increased beyond 0.92 for all these cases.

Results for ‘medium-flow’ regime

Equation (18) presents the derived 1-month-ahead forecast

model for station 20 as a candidate member of the

‘medium-flow’ regime category:

Ytþ1 ¼ 1:044D1t�1 � 1:82D1t�2 þ 3:72D2t�1

þ 3:130D2t�4 � 1:6012D3t�4 þ 1:9061D4t�1

� 0:7061C4t�1 � 0:60D1t�1D3t�1

þ 0:48D22t�1 þ 0:64D3t�4D4t�1 � 0:65D3t�1D4t�4

ð18Þ

Figure 4 | Validation results of the wavelet models (without log) for various flow regimes: (a) low-flow (station 06), (b) medium-flow (station 20) and (c) high-flow (station 29).
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In the case of the medium-flow regimes, the results show

that six stations have CC greater than 0.90 and two

stations greater than 0.80 for the wavelet model with log

transformation. Similar results were obtained using the

wavelet-based-without-log transformation. The RMSE

values were also comparatively the same. From these

Table 4 | Summary statistics of the wavelet-based model for stations 6, 20 and 29

Mean (m3/s) SD (m3/s) Maximum value (m3/s) Minimum value (m3/s)

Coefficient of

variation

Serial no. Observed Model Observed Model Observed Model Observed Model Observed Model

6 1.48 1.52 2.2 2.10 11.03 9.6 0.073 0.074 1.47 1.4

20 18.0 17.03 27.0 25.32 136.16 131.68 1.08 1.32 1.50 1.48

29 343.81 332.65 411.88 365.92 2,312.8 1,800.23 92.85 71.57 1.197 1.10

Figure 5 | Validation results of the wavelet models (with log) for various flow regimes: (a) low-flow (station 06), (b) medium-flow (station 20) and (c) high-flow (station 29).
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observations, it seems that for the moderate flows the log

transformation is not having much influence.

Further, the results obtained by the nonlinear

approximation method of Sivakumar () are also seen

to be inferior to those obtained by the proposed wavelet-

based multiscale nonlinear model. For example, for stations

28 (USGS:13313000), 21 (USGS:12321500) and 20

(USGS:12306500), the nonlinear approximation method

based on chaos theory (Sivakumar ) yielded CC

values of 0.757, 0.746 and 0.802 and are markedly lower

than the corresponding values of CC (0.92, 0.916

and 0.923) obtained using the proposed wavelet-based multi-

scale nonlinear model. Interestingly, the deseasonalized

ARMA-type model (Hipel & McLeod ) yielded CC

values that were a lowly 0.71, 0.70 and 0.67, respectively.

Results for ‘low-flow’ regime

The forecast model for 1-month-ahead lead time as derived

for the monthly streamflow time series for station 6 is

given below as Equation (19):

Ytþ1 ¼ 0:4251D1t�1 � 0:181D1t�2 þ 0:014D2t�1 þ 1:00D3t�1

þ 0:9605D3t�4 þ 0:98D4t�10:437C4t�1

� 0:75D1t�1D3t�1 þ 0:0018D32t�1

þ 0:14D3t�4D3t�1 � 0:825D3t�1D4t�4 ð19Þ

Table 5 | Result statistics of the wavelet model for the various rivers in the US

Wavelet–Volterra model

With log transformation Without log transformation Nonlinear approx.

method

Deseasonalized ARMA model

Flow regimes

Serial

number R
2

RMSE

(m3/s)

MAE

(m3/s) CC

RMSE

(m3/s) CC CC

Model order

(CC)

RMSE

(m3/s)

Low-flow

regimes

6 0.860 0.757 0.385 0.956 0.817 0.930 0.832 (4,1) 0.72 1.02

7 0.73 0.72 0.322 0.86 0.603 0.322 0.862 (2,0) 0.75 1.13

10 0.79 0.1818 0.092 0.88 2.460 0.661 0.877 (3,0) 0.71 0.260

11 0.702 1.280 0.575 0.83 1.370 0.808 0.841 (1,0) 0.75 1.60

27 0.730 0.670 0.412 0.87 0.690 0.852 0.764 (2,1) 0.74 0.84

4 0.77 0.56 0.413 0.88 0.166 0.73 0.951 (4,0) 0.71 1.06

14 0.84 0.684 0.408 0.942 0.714 0.92 0.93 (1,1) 0.84 1.12

15 0.865 0.590 0.358 0.91 0.620 0.89 0.87 (2,0) 0.81 0.75

Med.-flow

regimes

2 0.814 13.230 7.745 0.930 14.230 0.920 0.802 (3,1) 0.75 15.23

08 0.79 2.020 1.02 0.860 2.220 0.850 0.850 (2,2) 0.81 2.81

09 0.780 3.381 2.04 0.90 3.781 0.890 0.701 (1,0) 0.67 4.51

20 0.84 10.23 6.87 0.93 10.89 0.923 0.810 (2,0) 0.76 12.56

21 0.82 2.98 1.91 0.92 3.313 0.916 0.746 (6,0) 0.71 3.86

28 0.835 5.84 3.60 0.925 6.050 0.920 0.757 (5,0) 0.70 7.12

12 0.85 4.91 2.58 0.89 5.025 0.880 0.853 (3,1) 0.80 6.12

13 0.87 6.12 3.49 0.942 6.45 0.93 0.922 (2,1) 0.82 7.98

18 0.854 5.07 2.95 0.932 5.32 0.92 0.873 (3,0) 0.81 7.01

High-flow

regimes

1 0.85 35.010 16.32 0.940 35.010 0.921 0.824 (2,0) 0.77 40.12

3 0.815 86.93 50.4 0.920 87.330 0.916 0.773 (3,0) 0.71 97.42

05 0.846 40.640 32.50 0.93 40.320 0.932 0.857 (4,0) 0.72 48.23

16 0.854 50.14 28.72 0.942 51.32 0.937 0.873 (5,0) 0.80 55.14

17 0.76 72.181 44.69 0.83 77.181 0.776 0.830 (3,1) 0.69 80.19

19 0.69 44.361 31.141 0.85 46.361 0.838 0.820 (4,1) 0.74 50.47

22 0.86 22.127 14.06 0.94 24.127 0.931 0.801 (4,0) 0.78 28.23

23 0.86 42.190 22.750 0.94 43.190 0.930 0.834 (3,0) 0.72 48.44

24 0.863 40.13 22.350 0.943 41.300 0.940 0.837 (3,0) 0.70 45.19

25 0.81 48.360 34.120 0.885 49.360 0.875 0.853 (2,0) 0.71 55.47

26 0.81 42.540 31.5 0.92 44.540 0.910 0.880 (4,0) 0.74 53.23

29 0.83 151.740 72.230 0.930 152.740 0.910 0.795 (2,0) 0.71 164.23

30 0.823 51.900 29.30 0.925 53.900 0.901 0.845 (1,0) 0.78 67.23
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It is seen from the results presented in Table 5 that out of

eight stations in the low-flow category, three stations have

CC above 0.90 while the remaining five stations have CC

between 0.80 and 0.90. In comparison, however, the CC

values are significantly less when implemented without log

transformation as seen in the case of stations 7 and 10 and

may be attributed to the very low flows, near to zero,

observed at these sites and, consequently, introducing

errors in calibration as well as resulting in some forecasts

to assume negative values.

DISCUSSION

It can be seen from Figures 3(a)–(c) that in all three cases

(stations 6, 20 and 29), the overall time series carry a

strong influence from the third- and fourth-level com-

ponents. This is further confirmed by the wavelet spectra

of the streamflow series as shown in Figures 7(a)–(c) as

well as the correlations between these individual com-

ponents and the parent time series for which these

components have been obtained. Table 6 presents the esti-

mated correlations and it is seen that, for station 29, the

correlation coefficients between D3 and D4 levels and the

overall flows are 0.417 and 0.835, respectively. These corre-

lations are even higher for the flows corresponding to

stations 6 and 20 as seen from Table 6.

It is also seen from Figures 7(a) and (b) that, in the case

of stations 6 and 20, there is a strong subannual component

(green band along the 4–8 months scale) which is influen-

cing the flow, apart from the annual dynamics (black band

along the 12 month scale). However, for station 29 (see

Figure 7(c)), the subannual component was comparatively

less significant than in the other two cases.

Further, from these results, it is concluded that the pro-

posed wavelet-based, multiscale nonlinear model shows a

significant improvement in the model performance over

the chaos-theory-based nonlinear approximation method

of Sivakumar () as well as the conventional ARMA-

type models for all 30 stations across the three flow regimes.

Additionally, the proposed model, in contrast to the chaos-

theory-based model of Sivakumar (), is amenable to

on-line updating in real time.

Also, the superior performance of both the proposed

models as well as the nonlinear approximation model over

the linear ARMA model does suggest, albeit indirectly, the

presence of nonlinear features in all 30 modelled time

series of monthly streamflows and merits a further

discussion.

Note on nonlinearity in the analyzed time series

of monthly streamflows

Table 7 gives a comparison between the estimated values of

the fraction of total variances explained by: (i) linear wave-

let-based forecast model, and (ii) wavelet-based model

coupled with the nonlinear Volterra kernels. It is seen

from these results that the former implementation is able

to achieve values of R2 (Equation (13)) equal to 0.66, 0.70

and 0.73, respectively, for stations 6, 20 and 29. However,

with the latter model having nonlinear Volterra kernels,

these fractional values are significantly higher at 0.86,

0.84, and 0.83, respectively, for these stations. These results

clearly establish the significant contribution of the nonlinear

Volterra kernels in the forecast models given by Equations

(17)–(19) wherein the cross-product terms such as D1 ×D3

in Equation (19), amongst other similar terms in Equations

(17) and (18), highlight the impacts of degree of nonlinearity

and interdependence among the scales.

Figures 6(a)–(c) show the Volterra kernels for the three

representative station nos. 6, 20 and 29 selected from the

low-, medium- and high-flow categories, respectively. From

Figures 6(a)–(c), it is seen that numerical values of the

second-order kernel is largest for station 6 (belonging to

the ‘low-flow’ regime category) with a catchment area

equal to 93 km2 and is smallest for flows observed at station

29 and having the largest catchment area equal to

35,094 km2. The second-order kernel values corresponding

Table 6 | Correlation between the components and observed flow at each station

Sub-component Station 6 Station 20 Station 29

D1 0.2870 0.2179 0.1959

D2 0.2934 0.2440 0.1793

D3 0.8407 0.7300 0.417

D4 0.7419 0.6850 0.835

C4 0.434 0.421 0.44
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to station 20 are of intermediate magnitude and interestingly

the catchment area drained by the river at this site also has

an intermediate value between the limits defined by stations

6 (low value) and station 29 (high value). These results show

that the degree of nonlinearity is maximum in the case of

flows observed at station 6 and, amongst the three stations,

would, therefore, be least amenable to prediction by a linear

model. For station 29, based on the relatively small magni-

tude of the second-order kernel as has been obtained, the

linear model is expected to perform the best amongst

the three stations under scrutiny. This situation is also verified

by the values obtained for the fraction of total variance, equal

to 0.73, that could be explained by the linear component of

the forecast model. In comparison, the fraction of total var-

iance that the linear model explains for station 6 is the least

at 0.66. This result is indeed consistent with the general

understanding that, in large catchments, the storage-induced

inertia moderates the nonlinear features and makes these

catchments more amenable to modelling using linear

models as compared with small catchments where non-

linear features are more pronounced and clearly evident.

Computational load and model complexity

In addition to its performance efficiency, model complexity

and its corresponding computational load are concerns that

also determine, to an extent, the model’s acceptability. It is

also reasonable to aver that computational effort, measured

in terms of usage of CPU time, is a credible surrogate for

model complexity.

Accordingly, therefore, CPU time usage was recorded

for various model runs and a comparison of these times

suggests that the proposed method is indeed simple as it

involves a straightforward estimation of the Volterra ker-

nels. While the average computational time required for

the deseasonalized ARMA model was found to be 0.45 s

Figure 6 | Second-order volterra kernels for first-step forecasting model for (a) low-flow (station 06), (b) medium-flow (station 20) and (c) high-flow (station 29).
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using a 4 GB RAM and 2.66 GHz processor-based machine,

the wavelet-based nonlinear model needed an average pro-

cessing time of only 0.156 s.

CONCLUSIONS

The above study has established that the modelled time

series of monthly streamflows are a result of multiscale

and nonlinear phenomena. Wavelets are a useful tool to rep-

resent this multiscale nature through its multiresolution and

time localization capability while the Volterra represen-

tation enables the capture of the nonlinear phenomenon

detected in these flow sequences and the interdependence

that exist across scales.

Table 7 | Fraction of total variance explained by linear and second-order kernels

Station

Variance explained by wavelet

linear models

Variance explained by wavelet

Volterra models

6 0.66 0.86

20 0.70 0.84

29 0.73 0.83

Figure 7 | Wavelet analysis of the observed streamflow series at (a) station 6, (b) station 20 and (c) station 29.

440 R Maheswaran & R. Khosa | Multiscale nonlinear model for monthly streamflow forecasting Journal of Hydroinformatics | 14.2 | 2012

Downloaded from http://iwaponline.com/jh/article-pdf/14/2/424/386691/424.pdf
by guest
on 21 August 2022



A multiscale nonlinear model has been designed to

developed 1-month-ahead forecasts of monthly streamflows

for 30 stations across the western USA. The stations are

maintained by USGS and drain catchments that have dis-

tinct characteristics.

The approach was based on the concept of multiscale

representation of a univariate series to represent the under-

lying dynamics and a Volterra nonlinear model was used to

integrate together the individually significant components to

make predictions about future realizations of the time series

of flows. The proposed multiscale nonlinear model was able

to capture the major trends, wherever these were present,

minor fluctuations and the peak values and yielded good

results for most stations and significantly increased the fore-

cast accuracy when compared with the performances of

ARMA-type models as well as chaos-theory-based nonlinear

approximation models proposed by Sivakumar ().

Further, in this contribution, the study has applied the

à trous wavelet transforms, instead of the classical DWT

which has the disadvantage of boundary distortion (when

used for forecasting). Additionally, an examination of the

Volterra kernels provides an insight into the internal

dynamics of the underlying process.

As a future scope, the performance of the proposed

model could be compared with that of (i) wavelet–neural

network model and (ii) cross-wavelet-based model for one-

step- and multistep-ahead forecasting. The proposed wave-

let-based nonlinear model can also be applied for

streamflow forecasting on a daily scale where the influence

of nonlinearity is indeed expected to be significant (Wang

et al. ). Further, it may indeed be desirable to develop

precipitation–runoff forecast models that explicitly accom-

modate the role of causal variables such as rainfall and

temperature amongst others, as may be deemed necessary.

As a further development, the improved estimation of

Volterra kernels by heuristics-based evolutionary optimiz-

ation techniques like genetic algorithms and particle

swarm optimization may also be explored.
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