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A new rolling bearing fault diagnosis approach based onmultiscale permutation entropy (MPE), Laplacian score (LS), and support
vector machines (SVMs) is proposed in this paper. Permutation entropy (PE) was recently proposed and de�ned to measure the
randomicity and detect dynamical changes of time series. However, for the complexity of mechanical systems, the randomicity and
dynamic changes of the vibration signal will exist in di	erent scales. 
us, the de�nition of MPE is introduced and employed
to extract the nonlinear fault characteristics from the bearing vibration signal in di	erent scales. Besides, the SVM is utilized
to accomplish the fault feature classi�cation to ful�ll diagnostic procedure automatically. Meanwhile, in order to avoid a high
dimension of features, the Laplacian score (LS) is used to re�ne the feature vector by ranking the features according to their
importance and correlations with the main fault information. Finally, the rolling bearing fault diagnosis method based on MPE,
LS, and SVM is proposed and applied to the experimental data. 
e experimental data analysis results indicate that the proposed
method could identify the fault categories e	ectively.

1. Introduction


e vibration signals of mechanical systems, especially for
ones with fault, o�en show mutation, nonlinearity, and
nonstationarity because of the strike, velocity chopping,
structure transmutation, loading, and friction. Hence, it is
very crucial for mechanical fault diagnosis to extract the fault
feature information from the nonlinear and nonstationary
signal. A primary method for dealing with the nonlinear and
nonstationary signal is time-frequency analysis [1], which has
been applied to the mechanical fault diagnosis �eld widely
for its ability to provide local information both in time and
frequency domains of vibration signals [2]. However, the
time-frequency analysis method, such as wavelet transform
or Hilbert-Huang transform [3, 4], which decomposes the
vibration signal into several stationary monocomponent
signals, cannot reect the subtle dynamic changes of vibration
signal e	ectively and, therefore, inevitably will have some
limitations [5].

With the development of nonlinear dynamic theories,
especially in recent years, a number of nonlinear parameters

and methods, such as chaos theory, fractal dimension, and
information entropy, have been applied tomachine condition
monitoring and fault diagnosis. For instance, Logan and
Mathew elaborated the application of the correlation dimen-
sion to vibration fault diagnosis of rolling element bearing
[6]; Jiang et al. used the correlation dimension in gearbox
condition monitoring [7]. However, reliable estimation of
correlation dimension requires very long datasets, which
might be di�cult or even impossible to be achieved especially

in online, real-time monitoring and diagnosis [5]. Lately,
approximate entropy (ApEn) was introduced and selected as
a tool for rolling bearing health monitoring by Yan and Gao
[5]. Unfortunately, the estimation of ApEn depends heavily
on the data length, and the estimated value is uniformly lower
than the expected one, especially for a short dataset, and lacks

relative coherence as well [8, 9]. In order to overcome the
shortcomings of ApEn, the sample entropy (SampEn) was
proposed by Richman andMoorman [9, 10]. However, ApEn
and SampEn both measure the complexity of time series in a
single scale. Based on SampEn,multiscale entropy (MSE) was
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introduced by Costa as an enhanced approach to evaluate
the complexity of complex time series in di	erent scales
[11, 12]. MSE has been recently utilized to extract the fault
feature information from rolling bearing vibration signal
by Zhang et al. [8]. However, the SampEn estimation will
be a	ected by the nonstationarity, outliers, and artifacts of
time series, which changes the standard deviation of time
series and similarity criterion [13] and hence will cause a bad
estimation of MSE. In addition, the computations of MSE
are also very time-consuming, especially for a very long time
series.

Recently, permutation entropy (PE) was proposed by
Bandt and Pompe [14, 15] for measuring the randomicity
and detecting the dynamic changes of time series. Compared
with the parameters mentioned above, the computation of
PE is simple, immune to noise, and suitable for online
monitoring. Recently, Yan and Liu [16] viewed PE as a tool for
status characterization of rotary machines and their research
indicates that PE could e	ectively detect and amplify the
dynamic change of rolling bearing vibration signals. Nicolaou
and Georgiou [17] used PE and SVMs to detect the epileptic
electroencephalogram. 
eir �ndings indicate that the low
computational complexity of PE makes it a highly favorable
feature to be employed as part of a system for real-time
automated seizure detection.

However, like traditional single scale nonlinear dynamic
parameters ApEn and SampEn, PE detects the dynamic
changes and randomness of time series only in a single scale.
Recently, multiscale permutation entropy (MPE) was intro-
duced by Aziz and Arif in the literature [13] to measure the
complexity of time series in di	erent scales and is compared
with MSE through analyzing the physiological time series
and the results show that MPE is more robust than MSE in
analyzing the presence of artifacts and white Gaussian noise.

As the vibration signals collected from normal rolling
bearing are random and irregular, the randomness and the
dynamic behavior of the vibration signal will change abruptly
when the rolling bearing of equipment works under a bad
condition. Due to the complexity of mechanical system, the
vibration signal is much more complex and contains much
more important information in di	erent scales. Hence, MPE
is employed to detect the dynamic changes and fault features
from the rolling bearing vibration signal.

In the paper, �rstly the PE values with di	erent scales are
served as initial feature parameters to extract fault feature
information from the bearing vibration signal. Since the
feature vector concludesMPEvalues in di	erent scales, which
will lead to a high dimension and information redundancy,
and it is also di�cult to �nd out the features containing
the main fault information, in this paper the LS proposed
by He et al. [18] is employed to re�ne the feature vector
and rank the feature values according to their importance.

en the several most important features are reconstructed
as the new feature vector for the SVM training and testing.
Next, naturally, a multifault classi�er needs to be constructed
to ful�ll the diagnostic procedure automatically. As support
vector machine (SVM) has the merits of suitability for small
sample data classi�cation and fast training, in this paper,
SVM is adopted to construct the multifault classi�er [19–21].


e rest of the paper is organized as follows. In the
second section, the de�nitions of PE andMPEare introduced,
respectively. In the third section, the Laplacian score (LS)
is introduced �rstly, and then a new rolling bearing fault
diagnosis method based on MPE, LS, and SVM is proposed.
In the fourth section, the proposed method is applied to
rolling bearing experimental data and some comparisons are
made. Finally, the ��h section concludes the paper.

2. Algorithms of PE and MPE

2.1. Algorithm of PE. Permutation entropy (PE) was intro-
duced recently to detect dynamic changes of time series by
Bandt and Pompe [14, 15], which is based on comparison of
neighboring values and therefore has the advantages of sim-
ple computation, less calculating amounts and time. Besides,
it has been veri�ed that, similar to Lyapunov exponents, PE
is particularly useful and robust in the presence of dynamic
or observational noise [22], and its algorithm is described as
follows.

Consider a time series, {�(�), � = 1, 2, . . . , �}, with length
�, which can be reconstructed as

� (1) = {� (1) , � (1 + �) , . . . , � (1 + (� − 1) �)}

...

� (�) = {� (�) , � (� + �) , . . . , � (� + (� − 1) �)}

...

�(� − (� − 1) �) = {� (� − (� − 1) �) ,

� (� − (� − 2) �) , . . . , � (�)} ,

(1)

where� is the embedding dimension and � is the time delay.
As described in [16, 22], for a given but arbitrary �, the� real
values {�(�), �(� + �), . . . , �(� + (� − 1)�)}, contained in each
�(�), can be rearranged in an increasing order as

� (�) = {� (� + (
1 − 1) �) ≤ � (� + (
2 − 1) �)

≤ ⋅ ⋅ ⋅ ≤ � (� + (
� − 1) �)} .
(2)

If there exist two elements in �(�) that have the same
value, for example, �(� + (
�1 − 1)�) = �(� + (
�2 − 1)�),
then we order the quantities � according to the values of their
corresponding 
’s; namely, if 
�1 < 
�2, then �(� + (
�1 − 1)�) ≤
�(� + (
�2 − 1)�) is written. Accordingly, any vector �(�) can
be mapped onto a group of symbols as

� (�) = [
1, 
2, . . . , 
�] , (3)

where � = 1, 2, . . . , �, � ≤ �!. �! is the largest number of
distinct symbols and �(�) is one of the m! permutations of
� distinct symbols, which is mapped onto the � number
symbols (
1, 
2, . . . , 
�) in �-dimensional embedding space.
When each such permutation is considered as a symbol, then
the reconstructed trajectory in the �-dimensional space is
represented by a symbol sequence [22].
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erefore, if we suppose that the probability distribution

for the distinct symbols be as �1, �2, . . . , ��, ∑��=1 �� = 1,
where � ≤ �!, then the PE for the time series {�(�), � =
1, 2, . . . , �} can be de�ned as the Shannon entropy for the �
distinct symbols:

�� (�) = −
�
∑
�=1
�� ln��. (4)

It is noticed that ��(�) attains the maximum value,
ln(�!), when �� = 1/�!. For convenience, ��(�) can be
normalized by ln(�!) as

�� =
�� (�)
ln (�!) .

(5)

Obviously, 0 ≤ �� ≤ 1. A smaller value of �� indicates
that the time series is much more regular and the smallest
value of �� (zero) means that the time series is very regular
as the periodic signal. And a larger �� means a much more
random time series and the largest possible value of�� (one)
is realized when all permutations have equal probability, as is
in the case of white noise [16].
erefore, PE is a very suitable
tool for describing local order structure and amplifying the
dynamic changes of time series.


ere are three parameters to be considered in the calcu-
lation of PE, namely, the length of time series�, embedding
dimension, and time delay �. Bandt recommended� = 3∼7.
However, in the following research we will �nd that � = 6
seems to be the most suitable. In order to investigate the
e	ect of� and� on computation of PE, �ve Gaussian white
noise signals, respectively, with lengths 128, 256, 512, 1024, and
2048, are under our consideration. For convenience, their PE
values are denoted by PE1, PE2, PE3, PE4, and PE5. Figure 1
shows their PE relationships with di	erent � and � when
� = 1.

As the Gaussian white noise signal is random and it
should have an estimated value close to 1, therefore when �
is less than 2048, � should be no more than 7 (where the
estimated PE is smaller than 0.9). From Figure 1 it can be
found that the di	erence between PE4 with length 1024 and
PE3 with length 512 is only 0.0659 when� = 6. Hence when
� = 6,� > 512 is su�cient for PE calculation.

In addition, the time delay � has a little e	ect on the
estimation of PE. Take the Gaussian white noise signal with
length 512 as an instance. Its PE is shown in Figure 2 with
� ranging from 1 to 6 in di	erent embedding dimensions
(� ranging from 2 to 8). And from Figure 2 it can be found
that there are very small di	erences among the PEs between
di	erent time delays. 
erefore, in this paper, we set � = 1.

2.2. Calculation of MPE. Multiscale permutation entropy
(MPE) is de�ned as the PE set of time series in di	erent scales
and is calculated as follows [13].
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Figure 1: 
e PEs of white Gaussian noise signals with di	erent
lengths when � = 1.
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Figure 2:
ePEs ofwhiteGaussian noisewith di	erent time delays.

(1) Consider the time series, {�(�), � = 1, 2, . . . , �},
which can be divided into several coarse-grained time

series {�(�)� } in the form as

�(�)� =
1
�

��
∑

�=(�−1)�+1
��, 
 = 1, 2, . . . ,

�
� , (6)

where � = 1, 2, . . . is the scale factor. Obviously, when
� = 1, �(1)� (
 = 1, 2, . . . , �) is the original time

series {�(�), � = 1, 2, . . . , �}. When � > 1, �(�)� (
 =
1, 2, . . . , �) is a coarse grained time series with length
�/�.

(2) Calculate PE of each coarse-grained time series

�(�)� (
 = 1, 2, . . . , �) under the same parameters, and
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Figure 3: 
e MPE of Gaussian white noise signal with di	erent
embedding dimensions. Here �

max
= 12 and � = 1.

then plot these PE values as a function of scale factor
�. We call this procedure multiscale permutation
entropy analysis.

In order to select the best � for MPE calculation, we
take the Gaussian white noise signal with length � = 2048
as an example. 
e MPEs are calculated under embedding
dimension � = 4, 5, 6, and 7 when the parameters maximal
scale factor �max = 12 and � = 1. Correspondingly, their
consuming times are 0.1880 second (s), 0.6710 s, 3.8290 s, and
27.6710 s, when a desktop computer with 2.0GHz, Pentium
Dual-Core CPU, 2.0GB RAM, and MATLAB (R2011a) plat-
form is utilized. 
e MPE is plotted as a function of the
scale factor and is shown in Figure 3. From Figure 3 it can
be concluded that when � is less than 6 (� = 4 and 5),
with the increase of scale factor �, the PE values change very
slowlywith a value close to 1 and could not reect the dynamic
changes sensitively. However, if � is too large (e.g., � = 7),
the calculation of PE would cost much runtime (27.6710 s for
the data with length� = 2048) and the PE value is less than
the expected one. As when � = 1, the Gaussian white noise
signal should have an expected PE value close to 1, based on
these consideration,� = 6may be the most suitable.

3. The Proposed Method

3.1. Laplacian Score (LS) for Feature Selection. 
eoretically,
the extracted MPE features in 12 scales are able to identify
the fault categories. However, the feature vector with a
high dimension will be time-consuming and information
ine�cient for fault diagnosis. 
erefore it is necessary to
select the most important features which contain the main
fault information from the 12 features, which could avoid
the dimension disaster and improve the performance and
e�ciency of rolling bearing automatically fault diagnosis.

Laplacian score (LS) is a popular feature ranking based
feature selectionmethod and is mainly founded on Laplacian

Input vibration signal

Extract MPE with 12 scales  
forming the initial feature vector

Sort the feature vector with LS 

Construct new feature vector 
by the �rst several features 

with the least LSs

Output the testing results

Train and test the
VPMCD-classi�er

Figure 4: Flow chart of the proposed method.

eigenmaps and locality preserving projection. Its basic idea
is to estimate the features according their locality preserving
power [18]. In LS algorithm those features with the lowest
scores are chosen as the most important ones. LS has not
been widely used in rolling bearing fault diagnosis for
feature selection; in this paper it is employed to decrease the
dimension of the initial fault features and select the most
important features to represent the main fault information of
vibration signal.

3.2. �e Proposed Method. Based on the advantages of MPE,
LS, and SVM, the proposed rolling bearing fault diagnosis
method is described as follows.

(1) Calculate MPE for each rolling bearing vibration
signal with parameter selection � = 6, � = 1, � =
2048, and the maximum scale factor �max = 12.

(2) 
en the obtained MPEs in all scales (i.e., 12 PEs) are
viewed as the initial feature vector to represent the
main fault information of vibration signal.

(3) LS is employed to rank the 12 features from low to high
score according to their importance and relationships
with fault information.

(4) 
e �rst several features with the least scores are
selected as the new feature vector.

(5) 
e new feature vectors are used to train and test
the SVM based multifault classi�er to ful�ll fault
diagnosis automatically.


e proposed method can be described briey as in
Figure 4.

In step (4) of the proposed method, as too many features
will cost much training time and cause information redun-
dancy while too few ones cannot completely reect the fault
information and get a lower accuracy, the novel feature vector
in this paper is constructed by the �rst �ve features with the
lowest LSs to achieve an e	ective fault diagnosis.
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Figure 5: 
e time domain waveforms of normal and fault bearing
vibration signals.

4. Analysis of Experimental Data

4.1. Experimental Data Description. 
e rolling bearing
experimental data analyzed in the paper are kindly provided
by Bearing Data Center, Case Western Reserve University
[8, 23]. 
e tested bearing is 6205-2RS JEM SKF deep groove
ball bearing, with motor load about 2206.50 watts and motor
speed 1730 r/min. Here three rolling bearings with outer
race fault (ORF), inner race fault (IRF), and rolling element
fault (REF) are under our consideration and single point
faults with defect sizes 0.5334mm in diameter and 2.794mm
in depth were set into the tested bearing using electrodis-
charge machining. 
e data collection system consists of a
high-bandwidth ampli�er particularly designed for vibration
signals and a data recorder with a sampling frequency of
12000Hz per channel. A detailed signal collection depiction
can be easily found in [8, 23].

4.2. Results and Discussions. 
e vibration signals of normal
(NORM) bearing and bearings with fault (ORF, IRF, REF) are
depicted in Figure 5.

It is unobvious to identify the normal and fault rolling
bearings from each other especially di	erentiating NORM
from REF and IRF from ORF. 
erefore MPE is utilized to
analyse above signals and theirMPEs are plotted as a function
of the scale factor in Figure 6.

From Figure 6 it can be found that the MPE with scale
factor � = 1, namely, the PE of original vibration signal, could
detect the dynamic changes of systems when the bearing
works under a faulty condition. 
e PE of original vibration
signal of normal rolling bearing is smaller than the PEs of
rolling bearings with fault, which is coincident with Yan’s
conclusions [16]. In the literature [16] Yan and Liu concluded
that the PE of normal condition is smaller than PEs of rolling
bearings with worn rolling element and broken cage. When
the rolling bearing is broken, the dynamic change will occur
and can be detected and ampli�ed by PE. 
erefore when
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Figure 6: 
e MPE of normal and faulty bearing vibration signals.

e results are the average of ten trials.

the rolling bearing is broken, the dynamic change will occur
and cause a larger PE than that of normal condition.However,
the single scale based PE only discriminates the faulty rolling
bearing from normal ones (with threshold about 0.73) and
cannot clearly identify the fault categories, that is, REF, IRF,
or ORF. As the bearing vibration signals contain much more
important fault information in other scales, it is essential to
deal with the vibration signal using a MPE method.

If the extracted MPEs with 12 scales from the vibration
signal are viewed as the feature vector, it will increase
computational time and complexity, and the redundant infor-
mation will decrease the classi�cation accuracy. However,
it is di�cult for us to �nd out which feature contains the
main fault information. In the literature [8], the statistical
features of the MSE are used for reducing the dimension
of feature vectors. However, the statistical features ignore
the characteristics of the inner relation between the features.

erefore, in this paper the LS is employed to select the most
important features to represent the vibration signal.

In this paper, normal and three faults (REF, IRF, andORF)
types of rolling bearing are under our consideration. Each
type has 30 samples and there are totally 120 samples. By
extracting MPE from each vibration signal, correspondingly,
120 initial feature vectors with 12 PEs can be obtained. For
each fault type, 10 samples are randomly chosen for training
and the remaining 20 samples are used for testing. Hence, a
training dataset (with dimension 10×12) and a testing dataset
(with dimension 20 × 12) are obtained.


en, the LS is used to rank the 12 features according to
their importance and the results are shown as follows:

LS1 < LS2 < LS9 < LS11 < LS10 < LS12 < LS6 < LS7 <
LS8 < LS3 < LS4 < LS5,

where the subscript stands for scale factor number.
erefore,
the MPEs with � = 1, 2, 9, 11, and 10 are adopted to compose
the new feature vector.
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Figure 7: Structure diagram of SVM based multifault classi�er.

Table 1: 
e SVM-classi�er outputs of testing data with feature
vector re�ned by LS.

Testing data Fault type SVM1 SVM2 SVM3

�1–�20 NORM +1 (20) — —

�21–�40 IRF −1 (20) +1 (20) —

�41–�60 REF −1 (20) −1 (20) +1 (20)

�61–�80 ORF −1 (20) −1 (20) −1 (20)

Next, a multi-fault classi�er consisting of three SVMs,
that is, SVM1, SVM2, and SVM3, is trained, where SVM1 is
used to distinguish normal from the fault, SVM2 is used to
discriminate IRF from REF and ORF, and SVM3 is used to
discriminate REF from ORF. 
e structure diagram of the
multi-fault classi�er is depicted as in Figure 7.

A�er training the SVM-classi�er with the 40 training
feature vectors, the remaining 80 testing features are used
to test the trained SVM-classi�er and the outputs of the
multiclassi�er is shown in Table 1, from which it can be
concluded that the classi�cation accuracy of the proposed
method on testing data achieves a perfect level (100%) and no
samples are misclassi�ed, which indicates that the proposed
method can identify the fault categories e	ectively.

For comparison, a multiclassi�er based on back propaga-
tion (BP) neural network [24–26] consisting of two layers in
which the node numbers of input layer and output layer are
8 and 4, respectively, is used to ful�ll the same classi�cation
problems. For convenience, NORM is labeled 1, IRF is labeled
2 (the output of BP-classi�er plus 1), REF is labeled 3 (the
output plus 2), and ORF is labeled 4 (the output plus 3).

e training and testing samples are the same as the above
SVM-classi�er. 
e classi�cation results of BP-classi�er are
given in Figure 8. 
e results indicate that the BP-classi�er
also recognizes the fault categories with accuracy of 100%.
However, the training time of BP-classi�er is much longer
than the SVM-classi�er’s. Moreover, the accuracy cannot
be high enough due to the limitations of “over�tting,” slow
convergence velocity, and relapsing into local extremum
easily [27].

In addition, in order to verify the essentiality ofmultiscale
analysis using MPE, the PE value of the original vibration
signal, namely, the MPE with scale factor � = 1 is taken
as the feature vector. 
en train the SVM-classi�er and BP-
classi�er with the same 40 training samples, respectively. And
the outputs of SVM-classi�er are given in Table 2, and the
outputs of BP-classi�er are depicted in Figure 9, respectively.
It can be found that there are six testing data misclassi�ed
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Figure 8: 
e BP classi�er outputs of all samples with the same
feature vector as SVM-classi�er.
e�rst 40 outputs are training data
and the remaining 80 outputs are testing data.

Table 2: 
e outputs of SVM-classi�er with feature vector consist-
ing of one PE.

Samples Fault type SVM1 SVM2 SVM3

�1–�20 NORM +1 (20) — —

�21–�40 IRF −1 (20) +1 (20) —

�41–�60 REF −1 (20) −1 (20) +1 (18), −1 (2)
�61–�80 ORF −1 (20) −1 (20) −1 (16), +1 (4)

by both SVM- and BP-classi�er with recognition rate of
accuracy 92.5%. 
erefore, the analysis results of Table 2 and
Figure 9 indicate that the single scale based PE of original
signal cannot reect the nature of fault information, and it is
necessary to handle the vibration signal using MPE method
for getting much more fault information.

To verify that it is necessary and superior to re�ne the
feature vectors using LS, without loss of generality, the MPE
with scales 1, 2, 3, 4, and 5 are taken as the feature vector to
train and test the SVM-classi�er. A�er training the classi�er,
the outputs of testing data are given inTable 3. It is easy to �nd
from the Table 3 that two testing samples are misclassi�ed
and the identi�cation rate is 97.5%, which is lower than
the proposed method (100%). 
erefore, the analysis result
indicates that it is essential to optimize features using LS.
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of the PE when � = 1.

Table 3: 
e outputs of SVM-classi�er with feature vector consist-
ing of the �rst �ve PEs.

Samples Fault type SVM1 SVM2 SVM3

�1–�20 NORM +1 (20) — —

�21–�40 IRF −1 (20) +1 (20) —

�41–�60 REF −1 (20) −1 (20) +1 (20)

�61–�80 ORF −1 (20) −1 (20) −1 (18), +1 (2)

5. Conclusion

In consideration of the nonlinearity and nonstationarity of
rolling bearing vibration signal, a novel rolling bearing fault
diagnosis method based on MPE, LS, and SVM is proposed.
Permutation entropy (PE) is de�ned to detect the dynamic
changes of time series. For the complexity of the mechanical
system, the vibration signal always contains much more
important failure information in di	erent scales. 
erefore,
in this paper MPE is adopted to extract the nonlinear fault
characteristics from vibration signal. Besides, in order to
achieve the fault diagnosis automatically, the SVM is utilized
to construct the multifault classi�er. Meanwhile, to re�ne
the feature vector and select the most important features,
Laplacian score (LS) is employed for feature selection. Finally,
the proposed method is applied to rolling bearing experi-
mental data. Also, the SVM-classi�er is compared with BP-
classi�er and the single scale based PE is compared with
MPE by analyzing the experimental data, and the comparison
result indicates that the proposed method could get much
higher identifying accuracy and has veri�ed the necessities
of analyzing the vibration signal with MPE and selecting
feature by LS as well. Finally, the proposed method is aiming
to fault diagnosis of rolling bearing and has been veri�ed
as an e	ective way by experiment data. However, the pro-
posed method also has some problems, such as the number
selection of feature vector re�ned by LS, the construction of

multiclassi�er, and its generalization to other bearings or gear
fault diagnosis, and they will be discussed and solved in the
future work.
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