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Abstract—The nonparametric Poisson intensity and density es-
timation methods studied in this paper offer near minimax conver-
gence rates for broad classes of densities and intensities with arbi-
trary levels of smoothness. The methods and theory presented here
share many of the desirable features associated with wavelet-based
estimators: computational speed, spatial adaptivity, and the capa-
bility of detecting discontinuities and singularities with high reso-
lution. Unlike traditional wavelet-based approaches, which impose
an upper bound on the degree of smoothness to which they can
adapt, the estimators studied here guarantee nonnegativity and
do not require any a priori knowledge of the underlying signal’s
smoothness to guarantee near-optimal performance. At the heart
of these methods lie multiscale decompositions based on free-knot,
free-degree piecewise-polynomial functions and penalized likeli-
hood estimation. The degrees as well as the locations of the poly-
nomial pieces can be adapted to the observed data, resulting in
near-minimax optimal convergence rates. For piecewise-analytic
signals, in particular, the error of this estimator converges at nearly
the parametric rate. These methods can be further refined in two
dimensions, and it is demonstrated that platelet-based estimators
in two dimensions exhibit similar near-optimal error convergence
rates for images consisting of smooth surfaces separated by smooth
boundaries.

Index Terms—Classification and Regression Tree (CART) al-
gorithm, complexity regularization, nonparametric estimation,
piecewise-polynomial approximation, platelets, wavelets.

I. DENSITY AND POISSON INTENSITY ESTIMATION

P
OISSON intensity estimation is a vital task in a variety

of critical applications, including medical imaging, astro-

physics, and network traffic analysis. Several multiresolution

methods for estimating the time- or spatially varying intensity

of a Poisson process in these and other applications have been

presented in the literature [1]–[3], generating wide interest

[4]–[6]. Experimental results suggest that these methods can

produce state-of-the-art results, but until now there has not been

a thorough analysis of the theoretical underpinnings of these

methods. This paper addresses this gap by casting the Poisson

intensity estimation problem in a density estimation frame-

work. Not only does this allow us to theoretically characterize

multiscale methods for photon-limited imaging applications,
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but it also leads to a general framework for univariate and

multivariate density estimation which both performs well in

practice and exhibits several important theoretical properties.

Accurate and efficient density estimation is often a fundamental

first step in many applications, including source coding, data

compression, statistical learning, and signal processing.

The primary contributions of this paper are twofold: 1) a the-

oretical characterization of photon-limited (Poisson) image pro-

cessing tools, and 2) a data-adaptive multiscale density estima-

tion method with several advantages over traditional wavelet-

based approaches. These theoretical results will be supported

with a number of experiments which demonstrate that our tech-

niques can frequently outperform the best known wavelet-based

techniques. The performance improvement is due to two key

factors: 1) the ability of our method to adapt not only to singu-

larities or discontinuities in the underlying intensity but also to

arbitrary degrees of smoothness, and 2) the ability of our method

to adapt to boundaries and edge structures in image data.

The approach studied in this paper involves using penalized

likelihood estimation on recursive dyadic partitions in order to

produce near-optimal, piecewise-polynomial estimates, analo-

gous to the methodologies in [7]–[9]. This results in a multiscale

method that provides spatial adaptivity similar to wavelet-based

techniques [10], [11], with a notable advantage. Wavelet-based

estimators can only adapt to a function’s smoothness up to the

wavelet’s number of vanishing moments; thus, some a priori

notion of the smoothness of the true density or intensity is re-

quired in order to choose a suitable wavelet basis and guarantee

optimal rates. The partition-based method, in contrast, automat-

ically adapts to arbitrary degrees of the function’s smoothness

without any user input or a priori information. (Although the

Meyer wavelet basis has infinitely many vanishing moments,

its applications to density and intensity estimation on compact

sets is unclear because the wavelets are defined in the frequency

domain and have infinite time domain support.) Like wavelet-

based estimators, the partition-based method admits fast estima-

tion algorithms and exhibits near-minimax optimal rates of con-

vergence in many function spaces. The partition-based method

has several additional advantages: estimates are guaranteed to

be positive and the method exhibits rates of convergence within

a logarithmic factor of the parametric rate for certain classes

of densities and intensities. (While some methods (e.g., [12])

produce guaranteed positive density estimates by estimating the

log-density, these methods are akin to fitting piecewise-expo-

nential functions to the density and hence are optimal for dif-

ferent classes of densities.) We elaborate on these points below.

While we focus on a particular class of problems in this paper,

the ideas presented here are very general and simple to extend

to other frameworks. For example, the partition-based technique

could easily be used to find a piecewise-polynomial estimate of

the log of the density or intensity to form piecewise-exponential
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estimates. The work in [13] extended the results presented here

and described in a technical report [14] to show that nonpara-

metric estimation using generalized linear models in conjunc-

tion with the techniques described in this paper also results in

nearly optimal rates of convergence for certain classes of func-

tions.

A. Problem Formulation

The basic setup considered in this paper is as follows. Assume

a series of independent and identically distributed (i.i.d.) ob-

servations , are made of a random variable ,

with density . Let . In this paper, we consider pe-

nalized likelihood estimation, in which the density estimate is

where is a finite collection of candidate estimates

(1)

and

denotes the likelihood of observing if had density and

where is the penalty associated with a density .

The methods presented in this paper are also applicable to

estimating the temporally or spatially varying intensity of a

Poisson process: both problems are concerned with estimating

the distribution of events over some domain. The critical

distinction between the two problems is that in density esti-

mation, the density is known to integrate to one, while in

the Poisson case, there is no such constraint on the integral of

the intensity. The number of observed events is random, with

a mean equal to the integral of the intensity, and the mean

must be estimated along with the distribution of events. In

general, intensity estimation can be broken into two distinct

subproblems: 1) estimation of the distribution of events, and 2)

estimation of the integral of the intensity. The first subproblem

is exactly the density estimation problem, and so everything

said about density estimation above extends to Poisson inten-

sity estimation. In the context of univariate Poisson intensity

estimation, we let be a series of events, and

let be the time or location of the th event. The

underlying intensity is denoted by , and the total intensity is

denoted .

Because of the close ties between Poisson intensity and den-

sity estimation and for simplicity of exposition, we focus on

density estimation for most of this paper, and then explain the

connections to and differences from Poisson intensity estima-

tion in Section III-B.

B. Relation to Classical and Wavelet Density and Intensity

Estimators

Classical nonparametric estimation techniques, e.g., kernel

or histogram methods, have been thoroughly explored in the

density estimation literature [15]–[21]. Most of the theoretical

analysis associated with these methods pertains to linear estima-

tors, which are known to be suboptimal (in the sense of rates of

convergence) for many classes of densities, e.g., Besov spaces

[22]–[25]. In fact, is has been demonstrated that the error of

nonnegative, fixed-bandwidth kernel density estimators cannot

exceed the rate of (where is the number of observa-

tions) for any density [16], [26]. Because linear estimators do

not adapt to spatial changes in the structure of the data, their

density estimates are in practice frequently oversmoothed where

the density is changing rapidly, or undersmoothed where the

density is changing more slowly. Such estimators do not pre-

serve singularities or sharp changes in the underlying density.

Similar issues arise when using a single (not piecewise) polyno-

mial for density estimation. Barron and Sheu [27] use Legendre

polynomials to approximate the log of a density, resulting in a

near-minimax optimal exponential estimate when the log of the

density is in a Sobolev space. The much larger class of densi-

ties in Besov spaces cannot be optimally estimated with their

method due to its lack of spatial adaptivity. Spatially adaptive

kernel methods [28]–[30] and wavelet-based density estimation

techniques [22], [23] have been proposed to overcome such lim-

itations; however, these methods generally require wavelets or

kernels with more vanishing moments than degrees of density

smoothness (e.g., the Besov smoothness parameter in (7); this

is explained in detail below); this limits the ability of these esti-

mators to adapt to arbitrary degrees of smoothness. Histograms

on data-dependent partitions also produce tractable, spatially

adaptive density estimators, but while such estimators exhibit

strong and consistency [31], [32], they can only achieve

minimax rates of convergence for limited degrees of smooth-

ness [33].

Wavelet-based techniques overcome this lack of spatial

adaptivity because wavelets are well localized in both time

and frequency and hence can provide good local estimates

of the density. The estimation scheme presented by Donoho,

Johnstone, Kerkyacharian, and Picard [23] is representative of

many wavelet-based density estimators and summarized here

in order to highlight its similarities to and differences from the

partition-based in this paper. Any piecewise-smooth density

, such as one in a Besov space [24], [25], can be represented

in terms of scaling and wavelet coefficients

(2)

where is a scaling function and is a wavelet function,

dilated to scale and shifted by units, and is the coarsest

scale considered. In an orthogonal system, each wavelet coeffi-

cient is the inner product of the density and the wavelet function

at a particular scale and shift, so if is a random variable with

density , then we can express each coefficient as

Thus, a Monte Carlo estimate of each wavelet coefficient can be

computed as

where is the th realization of . Assuming that there are

enough observations falling in the support of , the central

limit theorem can be invoked and can be assumed to
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be approximately Gaussian distributed with mean and

some variance. In wavelet-based density estimation, the means

of these empirical coefficients are improved using a hard

or soft thresholding scheme based on the gaussianity of the

coefficients, and then the thresholded coefficients are used to

synthesize the final density estimate. To guarantee that (on

average) a sufficient number of samples fall within the support

of each wavelet basis function to justify the Gaussian approxi-

mation, wavelet-based density estimates are restricted to scales

no finer than .

Similar problems arise with classical and wavelet-based esti-

mators in the context of Poisson intensity estimation. Statistical

methods which account for the unique properties of the Poisson

distribution can be effective [34]–[39], but are not well suited for

the detection of discontinuities or singularities. Wavelet-based

techniques [40]–[47], designed for effective approximation of

singularities are difficult to analyze in the presence of Poisson

noise. Gaussian approximations are usually only appropriate

when the number of events per interval or pixel is suitably large.

This constraint is typically satisfied by binning observations

until each interval or pixel contains a fairly large number of

events; this process immediately limits the ultimate resolution

the system can attain and any method’s ability to reconstruct

some fine scale structures.

C. Multiscale Partition-Based Estimators

Wavelet-based techniques are advantageous for both their

near-minimax convergence rates and the computational

simplicity of filter-bank implementations. Near-optimal con-

vergence rates are possible as long as a priori knowledge of

the density or intensity smoothness can be used to select a

wavelet function which is smooth enough (i.e., with a suffi-

cient number of vanishing moments). The method introduced

in this paper also admits a computationally efficient analysis

and spatial adaptivity, but it exhibits the same convergence

rates as wavelet-based techniques without any a priori upper

bounds on smoothness. The partition-based method has two

key additional benefits. First, the estimator always results in

bona fide estimates (i.e., nonnegative estimates which integrate

to one). Second, we demonstrate that for piecewise-analytic

densities and intensities, the proposed free-knot, free-degree

estimator results in near-parametric rates of convergence.

In our partition-based method, polynomials are fitted to a re-

cursive dyadic partition (RDP) of the support of the density or

the Poisson intensity. Our approach, based on complexity reg-

ularization, is similar in spirit to the seminal work of Barron

and Cover [48]. This work expands upon previous results (see,

e.g., [49], [50], and [51]) by introducing an adaptivity to spa-

tially varying degrees of smoothness. Barron et al. [49] consider

estimation of log densities and show that maximum penalized

likelihood estimation using piecewise-polynomials on regular

partitions can result in a near-minimax optimal estimator when

the log density is in a Hölder smoothness class (a much more

restrictive assumption than the Besov space considered in this

paper [24]). Furthermore, the authors assume that the estimator

uses polynomials with degree no less than the smoothness of the

density. Castellan [50] and Reynaud-Bouret [51] independently

address a problem similar to the one studied in this paper, but,

like [49], only consider uniform partitions of the domain of the

density; such partitions are not spatially adaptive and so cannot

achieve optimal convergence rates for densities or log densities

in Besov spaces. Nonuniform partitions are mentioned as a vi-

able alternative in [50], but Castellan does not prove bounds as-

sociated with these partitions and does not propose a computa-

tionally tractable method for choosing the optimal nonuniform

partition. This paper addresses these theoretical and practical

challenges.

The RDP framework studied here leads to a model selection

problem that can be solved by a tree-pruning process. Appro-

priate pruning of this tree results in a penalized likelihood es-

timate of the signal as described in Section II. The main con-

vergence results are summarized in Section III. Upper bounds

on the estimation error (expected squared Hellinger distance)

are established using several recent information-theoretic re-

sults, most notably the Li–Barron bound [52], [53] and a gen-

eralization of this bound [8]. We focus on multivariate density

and Poisson intensity estimation in Section IV. A computation-

ally efficient algorithm for computing piecewise-polynomial es-

timates is presented and computational complexity is analyzed

in Section V, and experimental results demonstrate the advan-

tages of the partition-based approach compared to traditional

wavelet-based estimators in Section VI. Section VII discusses

some of the implications of our results and directions for future

work.

II. MULTISCALE DENSITY ESTIMATION IN ONE DIMENSION

The multiscale method presented here finds the optimal free-

knot, free-degree piecewise-polynomial density estimate using

penalized likelihood estimation. The partition-based method de-

termines the optimal partition of the interval and optimal

polynomial degree for each interval in the partition based on the

observations; maximum-likelihood polynomials of the optimal

degree are then fit to the data on each interval. The optimal parti-

tion and polynomial degrees are selected using a simple frame-

work of penalized likelihood estimation, wherein the penaliza-

tion is based on the complexity of the underlying partition and

the number of degrees of freedom in each polynomial.

The minimization is performed over a nested hierarchy of

partitions defined through an RDP of the unit interval, and

the optimal partition is selected by optimally pruning a tree

representation of the initial RDP of the data range. The effect

of polynomial estimation on dyadic intervals is essentially

an estimator with the same approximation capabilities as a

wavelet-based estimator (for a wavelet with sufficiently many

vanishing moments); this is established using approxima-

tion-theoretic bounds in [25]. Thus, there is no disadvantage (in

an approximation-theoretic sense) in using a piecewise-poly-

nomial basis instead of a wavelet basis.

As mentioned earlier, the piecewise-polynomial multiscale

analysis presented here is performed on RDPs of the unit

interval. The set of all intervals formed by recursively splitting

the unit interval into equally sized regions until there are

regions with width no greater than

is referred to as the complete RDP (C-RDP). Any RDP can

be represented with a binary tree structure. In general, the

RDP framework can be used to perform model selection via
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a tree-pruning process. Each of the terminal intervals in the

pruned RDP corresponds to a region of homogeneous or

smoothly varying density. Such a partition can be obtained by

merging neighboring intervals of (i.e., pruning) a C-RDP to

form a data-adaptive RDP and fitting polynomials to the

density on the terminal intervals of . Let be a vector of poly-

nomial coefficients for all of the intervals in . Note that some

intervals of may contain higher degree polynomials than

others, so that the length of may not be an integer multiple

of the number of intervals in . Then any candidate density

estimate is completely described by and ; i.e., .

We penalize the piecewise-polynomial estimates according

to a code length required to uniquely describe each such model

(i.e., codes which satisfy the Kraft inequality). These code

lengths will lead to near-minimax optimal estimators, as dis-

cussed in Section III. Because the proposed code lengths are

proportional to the partition size and the number of polynomial

coefficients associated with each model, penalization leads to

estimates that favor fewer degrees of freedom. In particular, the

penalty assigned to is

(3)

where is the size of the RDP (i.e., the number of terminal

intervals) and is the total number of polynomial co-

efficients in the vector . A detailed derivation of this penalty

is in Appendix I. The penalty can be interpreted as a negative

log-prior on the space of estimators. It is designed to give good

guaranteed performance by balancing between fidelity to the

data (likelihood) and the estimate’s complexity (penalty), which

effectively controls the bias–variance tradeoff. Since the penalty

is proportional to , it facilitates estimation of the optimal poly-

nomial degree on each interval of , leading to a “free-degree”

piecewise-polynomial estimate.

The solution of

(4)

(5)

is called a penalized likelihood estimator (PLE). The collection

of candidate estimates, , is described in detail in Appendix I;

it consists of all piecewise-polynomial estimates, where the dif-

ferent polynomials are defined on the intervals of an RDP ,

the polynomial coefficients have been quantized to one of

levels, and the resulting piecewise-polynomial is nonnega-

tive and integrates to one. Section III demonstrates that this form

of penalization results in near-minimax optimal density esti-

mates. Solving (4) involves adaptively pruning the C-RDP based

on the data, which can be performed optimally and very effi-

ciently. The pruning process is akin to a “keep or kill” wavelet

thresholding rule. The PLE provides higher resolution and detail

in areas of the density where there are dominant discontinuities

or singularities with higher density. The partition underlying the

PLE is pruned to a coarser scale (lower resolution) in areas with

lower density and where the data suggest that the density is fairly

smooth.

III. ERROR ANALYSIS

In this section, we establish statistical risk bounds for free-de-

gree piecewise-polynomial estimation, as described above, and

the resulting bound is used to establish the near-optimality of

the partition-based estimation method. We then describe how

these theoretical results can be applied to Poisson intensity es-

timation.

In this paper, risk is defined to be proportional to the expected

squared Hellinger distance between the true and estimated den-

sities as in [48], [53]; that is,

(6)

where the expectation is taken with respect to the observations.

The squared Hellinger distance is an appropriate error metric

here for several reasons. First, it is a general nonparametric mea-

sure appropriate for any density. In addition, the Hellinger dis-

tance provides an upper and lower bounds on the error be-

cause of the relation

for all distributions and [16]. The metric is particularly

useful for density estimation because of Scheffé’s identity [16],

which states that if is the class of all Borel sets of , then

Scheffé’s identity shows that a bound on the error provides

a bound on difference between the true probability measure and

the density estimator’s measure on every event of interest.

Lower bounds on the minimax risk decay rate have been es-

tablished in [23]; specifically, consider densities in the Besov

space

(7)

for and , where and

are the scaling and wavelet coefficients in the wavelet expan-

sion (2). Besov spaces are described in detail in [24], [25], and

are useful for characterizing the performance of the proposed

method because they include piecewise-smooth densities which

would be difficult to estimate optimally with classical, nonadap-

tive density estimation methods. The parameter is the degree

of smoothness (e.g., number of derivatives) of the functions in

the space, refers to the space in which smoothness is mea-

sured, and gives a more subtle measure of smoothness for a

given pair. For these densities
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for some [23]. Likewise, the error is lower-bounded

by for some . We establish that the risk of the

solution of (4) decays at a rate within a logarithmic factor of

this lower bound on the rate.

A. Upper Bounds on Estimation Performance

Using the squared Hellinger distance allows us to take advan-

tage of a key information-theoretic inequality derived by Li and

Barron [52], [53] to prove the following main theorem.

Theorem 1: Assume samples are drawn from a density ,

which is a member of the Besov space where

, , and . Further assume

that . Let be the free-degree PLE

satisfying (4) using the penalty in (3). Then

(8)

for sufficiently large and for some constant that does not

depend on .

Theorem 1 is proved in Appendix I.

Remark 1: While the Theorem 1 considers densities in a

Besov space, it may be more appropriate in some contexts to

assume that the density is in an exponential family and that the

log of the density is in a Besov space (for examples, see [49],

[50]). If desired, it is straightforward to adapt the method and

analysis described in this paper to near-optimal estimation of

the log density.

Remark 2: The space of densities considered in Theorem 1

is quite general, and includes many densities for which optimal

rates would not be achievable using nonadaptive kernel-based

methods, such as a piecewise-smooth (e.g., piecewise Hölder

[24]) density with a finite number of discontinuities. Besov em-

bedding theorems and other discussions on this class of densities

can be found in [25] and [23].

Remark 3: The penalization structure employed here min-

imizes the upper bound on the risk. Furthermore, this upper

bound is within a logarithmic factor of the lower bound on the

minimax risk, demonstrating the near-optimality of the parti-

tion-based method, even when or an upper bound on is un-

known.

Remark 4: The constant in Theorem 1 and the proceeding

theorems and corollaries is independent of but still is a func-

tion of the “smoothness” of the class of densities under consid-

eration. For example, in Theorem 1 it is related to the radius of

the Besov ball in which resides, in Example 1 below it is re-

lated to the number of pieces in a piecewise-analytic function,

and in Theorem 3 it is related to the Hölder exponents and

. For ease of presentation, we state the bounds with constants,

with the understanding that these constants depend on the func-

tion class under consideration, but we do not explicitly state this

in each case.

The upper bound derived here is also within a logarithmic

factor of the lower bound on the minimax error, as stated in

the following corollary.

Corollary 1: Let and be defined as in Theorem 1. Then

for sufficiently large and for some constant that does not

depend on .

Corollary 1 is proved in Appendix II.

These results demonstrate the near-optimality of the penal-

ization structure in (3) for free-degree piecewise-polynomial

estimation. In fact, as the smoothness of the density ap-

proaches infinity, the asymptotic decay rate for this nonpara-

metric method approaches the parametric rate of . This

can be made explicit for piecewise-analytic densities, as in the

following example.

Example 1: Assume samples are drawn from a piecewise-

analytic density with a finite number of pieces , such that

. Let be the free-degree PLE

satisfying (4) using the penalty in (3). Then

(9)

for sufficiently large and some constant .

For the piecewise-analytic densities of the form in Example

1, the error of a free-knot, free-degree polynomial approxi-

mation with a total of coefficients decays like , and the

variance of the estimator would decay like because co-

efficients must be estimated with observations; balancing the

approximation error with the estimation error leads to a total

error decay of . The additional log terms are due to

the RDP underlying the estimation method; a detailed deriva-

tion of the rate in Example 1 is provided in Appendix III.

B. Poisson Intensity Estimation

Recall that in Poisson intensity estimation, we let

be a series of events, and let

be the time or location of the th event. The underlying intensity

is denoted by and . Using the above

density estimation framework, it is possible to estimate the

distribution of events, , such that and the max-

imum penalized likelihood intensity estimate is then ;

then

Since , this renormalization generates an intensity

estimate with overall intensity equal to the maximum likelihood

estimate of .

IV. MULTIDIMENSIONAL OBSERVATIONS

In this section, we explore extensions of the above method to

two-dimensional image estimation, particularly relevant in the

context of Poisson intensity estimation, and multivariate estima-

tion in higher dimensions.
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A. Image Estimation

For the analysis in two dimensions, consider intensities which

are smooth apart from a Hölder smooth boundary over .

Intensities of this form can be modeled by fusing two (every-

where) smooth intensities and into one single intensity

according to

for all , where if and

otherwise, and the function describes a smooth boundary

between a piece of and a piece of . This is a generalization

of the “Horizon” intensity model proposed in [54], which con-

sisted of two constant regions separated by a smooth boundary.

The boundary is described by , where

and for is the set of functions satis-

fying

for all . For more information on Hölder spaces

see [24].

The smoothness of the intensities and is characterized

by a two-dimensional Hölder smoothness condition defined in

[55]

where is the set of functions

with continuous partial derivatives satisfying

for all , where is the Taylor polynomial

of order for at point .

The model describes a intensity composed of two smooth sur-

faces separated by a Hölder smooth boundary. This is similar to

the “grey-scale boundary fragments” class of images defined in

[55]. The boundary of the model is specified as a function of

one coordinate direction (hence the name “Horizon”), but more

complicated boundaries can be constructed with compositions

of two or more Horizon-type boundaries, as in the following

definition.

Definition 1: Let denote the class of intensities

for such that

or

for all where , , and

with . The class of piecewise-

-smooth images is the set of all images which can be written as

a finite concatenation or superposition of .

In [1], we introduced an atomic decomposition called

“platelets,” which were designed to provide sparse approx-

imations for intensities in this class. Platelets are localized

functions at various scales, locations, and orientations that

produce piecewise-linear two-dimensional intensity approx-

imations. A wedgelet-decorated RDP, as introduced in [54],

is used to efficiently approximate the boundaries. Instead of

approximating the intensity on each cell of the partition by a

constant, however, as is done in a wedgelet analysis, platelets

approximate it with a planar surface. We define a platelet

to be a function of the form

(10)

where , is a dyadic square or wedge asso-

ciated with a terminal node of a wedgelet-decorated RDP, and

denotes the indicator function on . Each platelet requires

three coefficients, compared with the one coefficient for piece-

wise-constant approximation. The dictionary is made discrete

by quantizing both the platelet coefficients and the number of

possible wedgelet orientations. A “resolution ” approximation

means that the spacing between possible wedgelet endpoints on

each side of a dyadic square in is ; see [54] for details.

The following theorem, which bounds the global squared

approximation error of -term platelet representations for in-

tensities of this form, was proved in [1].

Theorem 2: Suppose that , with . The

squared error of an -term, -scale, resolution platelet

approximation to a piecewise- -smooth image is less than

or equal to , where depends on

and .

Theorem 2 shows that for intensities consisting of smooth re-

gions separated by smooth boundaries ,

-term platelet approximations may significantly outperform

Fourier, wavelet, or wedgelet approximations. For example, if

the derivatives in the smooth regions and along the boundary are

Lipschitz ( , i.e., smooth derivatives), then the -term

platelet approximation error behaves like , whereas

the corresponding Fourier error behaves like and

the wavelet and wedgelet errors behave like at best.

Wavelet and Fourier approximations do not perform well on

this class of intensities due to the boundary. The reader is re-

ferred to [54], [56], [57] for the Fourier and wavelet error rates.

Wedgelets can handle boundaries of this type, but produce

piecewise-constant approximations and perform poorly in the

smoother (but nonconstant) regions of intensities. Curvelets

[56] offer another, in some ways more elegant, approach to the

issue of efficient approximation of piecewise-smooth images.

However, while platelets and curvelets have the same approx-

imation capabilities, platelets are much easier to apply in the

context of Poisson imaging due to the fact that they are based

on recursive dyadic partitions, just as tree-based methods offer

several advantages over wavelets in the context of univariate

intensity and density estimation.

As with the one-dimensional construction, we penalize the

platelet estimates according to the code length required to

uniquely describe each model. The penalty assigned to

is

(11)
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The solution of (4), where is a wedgelet-decorated RDP and

contains platelet coefficients is then the platelet PLE. This con-

struction can now be used to analyze platelet estimation error.

Theorem 3: Assume samples are drawn from a intensity

, which is a piecewise- -smooth image. Further assume

that . Let be the platelet estimator

satisfying (4) using the penalty in (11). Then

(12)

for sufficiently large and for some constant that does not

depend on .

Theorem 3 is proved in Appendix IV. The denominators

and on the left-hand side of the inequality normalize the

intensities and , respectively, so they both integrate to one.

This rate is within a logarithmic factor of the minimax lower

bound on the rate ; see [54], [55] for

details.

B. Multivariate Estimation

The partition-based approach can easily be extended to mul-

tivariate estimation. We now assume that the true density is in a

Hölder smoothness space because the relevance of singularities

in multidimensional Besov spaces to practical problems is un-

clear. Specifically, information-bearing singularities in multiple

dimensions, such as “ridges” or “sheets” have a much richer

structure than one-dimensional singularities.

Assume that the true density is at

least smooth everywhere. This condition means

for all , where is the th-order Taylor

series polynomial expansion of about evaluated at

, and where . For this class of densities,

wavelet-based approaches can achieve an error decay rate

of if a wavelet with more than

vanishing moments is selected [55]. Similarly, the same rate is

achievable with a multivariate extension of the partition-based

method studied in this paper without any a priori knowledge of

the underlying smoothness.

From the Hölder condition, it is straightforward to verify that

an order- piecewise polynomial would accurately approximate

a function in this class. Next note that multivariate tree pruning

can be implemented in practice using -ary trees instead of bi-

nary trees to build a recursive dyadic partition. The appropriate

penalty is

to see this, follow the derivation of the one-dimensional penalty

in Appendix I and note that a -ary tree with leafs would

have a total of nodes. It is straightforward

to demonstrate, using arguments parallel to the ones presented

in the univariate case, that this leads to an error decay rate of

without any prior knowledge of . This is

within a logarithmic factor of the minimax rate.

This is particularly significant when estimating very smooth

densities in multiple dimensions. For example, consider a multi-

variate Gaussian, which is infinitely smooth. Any wavelet-based

approach will be unable to exceed the rate ,

where is the number of vanishing moments of the wavelet;

kernel-based methods will also have a convergence rate limited

by the bandwidth of the kernel. In contrast, the partition-based

method will approach the parametric rate of . We are un-

aware of any alternative nonparametric method with this prop-

erty.

V. ALGORITHM AND COMPUTATIONAL COMPLEXITY

The previous sections established the near-optimality of the

partition-based method using information-theoretic arguments

to bound the statistical risk. This section demonstrates that the

partition-based estimator can be computed nearly as computa-

tionally efficiently as a traditional wavelet-based estimator in

addition to having the theoretical advantages discussed in the

previous sections.

A. Algorithm

Observe that the structure of the penalized likelihood criterion

stated in (1) and the RDP framework allow an optimal density

estimate to be computed quickly using a fast algorithm rem-

iniscent of dynamic programming and the Classification and

Regression Tree (CART) algorithm [7], [9]. This reduces the

large optimization problem of computing the optimal free-de-

gree, free-knot polynomial to a series of smaller optimization

problems over disjoint intervals. The density is estimated ac-

cording to (4) with an algorithm which iterates from bottom to

top through each level of the C-RDP of the observations. At

each level, a multiple hypothesis test is conducted for each of

the nodes at that level. The hypotheses for the node associated

with interval are as follows.

• (terminal node): Order polyno-

mially varying segment which integrates to on , where

is the number of observations falling

in the interval .

• (nonterminal node): Concatenate optimal estimate

of the left child , scaled by with the optimal

estimate of the right child , scaled by .

(Note that if we were to restrict our attention to polynomials

of degree zero, the algorithm coincides with Haar analysis with a

hereditary constraint [8].) The algorithm begins one scale above

the leaf nodes in the binary tree and traverses upwards, per-

forming a tree-pruning operation at each stage. For each node

(i.e., dyadic interval) at a particular scale, the maximum-like-

lihood parameter vector is optimally determined for each hy-

pothesis and the penalized log likelihoods for each hypothesis

are calculated.

In particular, the penalized log likelihood for the split

is computed using the optimal penalized log like-

lihoods computed at the previous, finer scale for both of the

two children. To see the origin of the scaling factors
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and , let be a density defined on which mini-

mizes on the interval , subject to the constraints

and . Note that can be computed indepen-

dently of the observations which do not intersect . Due to the

additive nature of the penalized log-likelihood function and the

restriction of the estimator to a recursive dyadic partition

must either be a single polynomial defined on or the concate-

nation of and for some positive numbers

and which sum to one. A simple calculation reveals

that and minimize

over subject to the given constraints.

The algorithm pseudocode is in Appendix V.

B. Computational Complexity

The partition-based method’s overall computational com-

plexity depends on the complexity of the polynomial fitting

operation on each interval in the recursive dyadic partition.

There is no closed-form solution to the MLE of the polynomial

coefficients with respect to the likelihood; however, they can be

computed numerically. The following lemma ensures that the

polynomial coefficients can be computed quickly.

Lemma 1: Assume a density is a polynomial; that is,

, where is a vector containing the polynomial coefficients

and is a known linear operator relating the polynomial co-

efficients to the density. Denote the negative log likelihood of

observing as . Let de-

note the set of all coefficient vectors which result in a bona

fide density. Then is a convex function on , which is a

convex set.

Lemma 1 is proved in Appendix VI. Because is twice

continuously differentiable and convex in the polynomial coef-

ficients and the set of all admissible polynomial coefficients is

convex, a numerical optimization technique such as Newton’s

method or gradient descent can find the optimal parameter

values with quadratic or linear convergence rates, respectively.

The speed can be further improved by computing Monte Carlo

estimates of the polynomial coefficients to initialize the mini-

mization routine. Specifically, if is a th-order orthonormal

polynomial basis function, then the optimal polynomial coeffi-

cient is

which can be estimated as . In practice, we

have found that computing such estimates with (appropriately

weighted) Chebyshev polynomials is both very fast and highly

accurate, so that calls to a convex optimization routine are often

unnecessary in practice.

This lemma is a key component of the computational com-

plexity analysis of the partition-based method. The theorem

below is also proved in Appendix VI.

Theorem 4: A free-degree piecewise-polynomial PLE in one

dimension can be computed in calls to a convex

minimization routine and comparisons of the re-

sulting (penalized) likelihood values. Only log-likelihood

values and polynomial coefficients need to be available in

memory simultaneously. A platelet estimate of an image with

pixels can be calculated in calls to a convex

minimization routine.

Note that the order of operations required to compute the esti-

mate can vary with the choice of optimization method. Also, the

computational complexity of the platelet estimator is based on

the exhaustive search algorithm described in this paper, but re-

cent work has demonstrated that more computationally efficient

algorithms, which still achieve minimax rates of convergence,

are possible [58].

VI. SIMULATION RESULTS

The analysis of the previous sections demonstrates the

strong theoretical arguments for using optimal tree pruning for

multiscale density estimation. These findings are supported by

numerical experiments which consist of comparing the density

estimation techniques presented here with a wavelet-based

method for both univariate density estimation and bivariate

Poisson intensity estimation.

A. Univariate Estimation

Two test densities were used to help explore the efficacy

of the proposed method. The first is a smooth Beta density:

, displayed in Fig. 1(a). The second is a piece-

wise-smooth mixture of beta and uniform densities designed to

highlight the our method’s ability to adapt to varying levels of

smoothness

where refers to a Beta distribution shifted and scaled to

have support on the interval and integrate to one. This

density is displayed in Fig. 2(a). While the distribution in

particular could be very accurately estimated with a variety

of methods designed for smooth densities, this experiment

demonstrates that very accurate estimates of smooth densities

are achievable by the proposed method without prior knowledge

of the density’s smoothness.

In each of one hundred experiments, an i.i.d. sample of 1000

observations was drawn from each density. The densities were

estimated with the free-degree PLE method described in this

paper (using only Monte Carlo coefficient estimates for speed),

the wavelet hard- and soft-thresholding methods described in

[23], and the wavelet block-thresholding method described

in [59]; Daubechies 8 wavelets were used for the second two

methods. Like the method described in this paper, both of the

wavelet-based approaches have strong theoretical characteris-

tics and admit computationally fast implementations, although

as described above, they have some limitations. The hard-

and soft-wavelet threshold levels were chosen to minimize the

average estimation error over the two distributions. (

errors were approximated using discretized versions of the

densities and estimates, where the length of the discrete vector

was much greater than the number of observations, 1000.)

A data-adaptive thresholding rule was proposed in [11], but

the computational complexity of determining the threshold
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Fig. 1. Density estimation results for the Beta density. (a) True Beta density. (b) Wavelet estimate [23] with clairvoyant hard threshold; L error = 0:0755. (c)
Wavelet estimate [23] with clairvoyant soft threshold; L error = 0:0870. (d) Wavelet estimate [59] with clairvoyant hard block threshold; L error = 0:1131.
(e) Wavelet estimate [59] with clairvoyant soft block threshold; L error = 0:0701. (f) Free-degree estimate (with theoretical penalty); L error = 0:0224.

is combinatorial in the number of observations, which is

impractical for large sets of observations. Furthermore, it

entails either keeping or killing all wavelet coefficients on a

single scale. This lack of spatial adaptivity could easily lead

to poorer numerical results than the “clairvoyant” threshold

weights used for this experiment. The clairvoyant thresholds

used in this simulation could not be obtained in practice; in

fact, the optimal threshold weights vary significantly with

the number of observations. However, here they provide an

empirical lower bound on the achievable mean square error

(MSE) performance for any practical thresholding scheme. The

MSE of these estimates are displayed in Table I. Clearly, even

without the benefit of setting the penalization factor clairvoy-

antly or data adaptively, the multiscale PLE yields significantly

lower errors than wavelet-based techniques for both smooth

and piecewise-smooth densities. Notably, unlike wavelet-based

techniques, the polynomial technique is guaranteed to result in a

nonnegative density estimate. Density estimates can be viewed

in Figs. 1 and 2. Note that both the partition-based method and

the wavelet-based methods result in artifacts for small numbers

of observations. Piecewise-polynomial estimates may have

breakpoints or discontinuities at locations closely aligned with

the underlying RDP. Wavelet-based estimates have negative

segments and either undersmooth or oversmooth some key fea-
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Fig. 2. Density estimation results for the mixture density. (a) True mixture density. (b) Wavelet estimate [23] with clairvoyant hard threshold; L error = 0:2806.
(c) Wavelet estimate [23] with clairvoyant soft threshold; L error = 0:2320. (d) Wavelet estimate [59] with clairvoyant hard block threshold; L error = 0:2702.
(e) Wavelet estimate [59] with clairvoyant soft block threshold; L error = 0:2495. (f) Free-degree estimate (with theoretical penalty); L error = 0:1048.

TABLE I
DENSITY ESTIMATION L ERRORS

tures; artifacts in all situations can be significantly reduced by

cycle-spinning. This method can also be used effectively for uni-

variate Poisson intensity estimations in applications such as net-

work traffic analysis or Gamma Ray Burst intensity estimation,

as demonstrated in [60].

B. Platelet Estimation

In this section, we compare platelet-based Poisson intensity

estimation with wavelet denoising of the raw observations and

wavelet denoising of the Anscombe transform [61] of the obser-

vations. For this simulation, we assumed that observations could

only be resolved to their locations on a grid, as

when measurements are collected by counting photons hitting
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Fig. 3. Poisson intensity estimation. (a) True intensity. (b) Observed counts
(mean = 0:06). (c) Wavelet denoised image, using D6 wavelets and a clair-
voyant penalty to minimize the L1 error. Mean (per pixel) absolute error =
8:28e�3. (d) Wavelet denoised image after applying the Anscombe transform,
using D6 wavelets and a clairvoyant penalty to minimize the L error. Mean
absolute error = 2:00e � 3. (e) Piecewise-linear estimate, using theoretical
penalty. Mean absolute error = 4:47e � 3. (f) Platelet estimate, using theoret-
ical penalty described in analysis above. Mean absolute error = 3:09e� 3.

an array of photomultiplier tubes. An average of counts

were observed per pixel. The true underlying intensity is dis-

played in Fig. 3(a), and the Poisson observations are displayed

in Fig. 3(b).

For each of the intensity estimation techniques shown here,

we averaged over four shifts (no shift, in the vertical di-

rection only, in the horizontal direction only, and

in both the horizontal and vertical directions) to reduce the ap-

pearance of gridding artifacts typically associated with multi-

scale methods. The wavelet denoised image in Fig. 3(c) was

computed using a Daubechies 6 wavelet and a threshold was

chosen to minimize the L1 error. The artifacts in this image

are evident; their prevalence is intensity dependent because the

variance of Poisson observations is equal to the intensity. The

Anscombe transformed data ( , where is

a Poisson count statistic) was also denoised with Daubechies

6 (D6) wavelets (Fig. 3(d)), again with a threshold chosen to

minimize the L1 error. Here artifacts are no longer intensity de-

pendent, because the Anscombe transform is designed to stabi-

lize the variance of Poisson random variables. However, there

are still distinct ringing artifacts near the high-contrast edges in

the image. Furthermore, the overall intensity of the image is not

automatically preserved when using the Anscombe transform

, and important feature shared by the

platelet- and wavelet-based methods.

We compared the above wavelet-based approaches with

two RDP-based estimators: one composed of linear fits on

the optimal rectangular partition (called the piecewise-linear

estimator), and one composed of linear fits on the optimal

wedgelet partition (called the platelet estimator). Like the

wavelet estimators, the piecewise-linear estimator is unable to

optimally adapt to image edges, as seen in Fig. 3(e). However,

comparing the images, we see that the piecewise-linear esti-

mator significantly outperforms the wavelet estimators. The

wedgelet partition underlying the platelet estimator (Fig. 3(f)),

in contrast, is much better at recovering edges in the image and

provides a marked improvement over the piecewise linear esti-

mator. It is important to note that both the piecewise-linear and

platelet estimates were computed using the theoretical penalties

without the benefit of clairvoyant penalty weightings given to

the wavelet-based estimates. Of course curvelets, mentioned in

Section IV-A, also have the ability to adapt to edges in images;

however, we anticipate that the platelet estimator would out-

perform the curvelet estimator for intensity estimation just as

the piecewise-linear estimator outperforms the wavelet-based

estimates. Because of use of curvelets for intensity and density

estimation is beyond the scope of this paper, we do not provide

experimental curvelet results here.

VII. CONCLUSION AND ONGOING WORK

This paper studies methods for density estimation and

Poisson intensity estimation based on free-degree piece-

wise-polynomial approximations of functions at multiple

scales. Like wavelet-based estimators, the partition-based

method can efficiently approximate piecewise-smooth func-

tions and can outperform linear estimators because of its ability

to isolate discontinuities or singularities. In addition to these

features, the partition-based method results in nonnegative

density estimates and does not require any a priori knowledge

of the density’s smoothness to guarantee near-optimal per-

formance rates. Experimental results support this claim, and

risk analysis demonstrates the minimax near-optimality of the

partition-based method. In fact, the partition-based method

exhibits near-optimal rates for any piecewise-analytic density

regardless of the degree of smoothness; we are not aware of

any other density estimation technique with this property.

The methods analyzed in this paper demonstrate the power

of multiscale analysis in a more general framework than that of

traditional wavelet-based methods. Conventional wavelets are

effective primarily because of two key features: 1) adaptive re-

cursive partitioning of the data space to allow analysis at mul-

tiple resolutions, and 2) wavelet basis functions that are blind
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to polynomials according to their numbers of vanishing mo-

ments. The alternative method presented here is designed to

exhibit these same properties without retaining other wavelet

properties which are significantly more difficult to analyze in the

case of non-Gaussian data. Furthermore, in contrast to wavelet-

based estimators, this method allows the data to adaptively de-

termine the smoothness of the underlying density instead of

forcing the user to select a polynomial order or wavelet smooth-

ness. Because of their ability to adapt to smooth edges in im-

ages, platelet-based estimators also offer a notable advantage

over traditional wavelet-based techniques; this is a critical fea-

ture for photon-limited imaging applications. These estimators

have errors that converge nearly as quickly as the parametric rate

for piecewise-analytic densities and intensities.

As with wavelet-based and most other forms of multiscale

analysis, the estimates produced by the partition-based PLE

method commonly exhibit change-points on the boundaries

of the underlying recursive dyadic partition. Because we only

consider piecewise polynomials with first-order knots, and

not splines, density estimates produced by the partition-based

method often exhibit such discontinuities. Smoother estimates

with the same theoretical advantages can be obtained through

the use of Alpert bases [62] for moment interpolation as de-

scribed by Donoho [63]. Fast, translation-invariant tree-pruning

methods for first-order polynomials have been developed in

[64]. Future work in multiscale density and intensity estimation

includes the investigation of translation-invariant methods for

higher order polynomials.

Finally, note that in many practical applications, observations

have been quantized by the measurement device, sometimes to

such an extent that one can only observe binned counts of events.

The effect of this binning or quantization is to limit the accuracy

achievable by this or any other method. Nevertheless, the parti-

tion-based method studied in this paper can easily handle binned

data to produce accurate estimates with near-optimal rates of

convergence.

APPENDIX I

PROOF OF THE RISK BOUND THEOREM

Proof of Theorem 1: The proof of this theorem consists of

four steps. First, we will apply the Li–Barron theorem [53] to

show that, if we consider all density estimates in a class and

if the penalties for each density in satisfy the Kraft inequality,

then

where

denotes the Kullback–Leibler (KL) divergence between and

. Second, we will verify that the proposed penalties satisfy the

Kraft inequality. Third, we will upper-bound the KL term, and

finally, we will apply approximation-theoretic results to bound

the risk.

The first step closely follows Kolaczyk and Nowak’s gener-

alization of the Li–Barron theorem [8], [53], but exhibits some

technical differences because we consider continuous time (not

discrete) densities.

Theorem 5: Let be a finite collection of estimators for

, and a function on satisfying the condition

(13)

Let be a PLE given by

(14)

Then

(15)

Remark 5: Minimizing over a finite collection of estima-

tors in (14) is equivalent to minimization over the finite col-

lection of recursive partitions and coefficients described in

(4) in Section II.

Remark 6: The first term in (15) represents the approxi-

mation error, or squared bias; that is, it is an upper bound on

how well the true density can be approximated by a density in

the class . The second term represents the estimation error, or

variance associated with choosing an estimate from given

observations. Both of these terms contribute to the overall per-

formance of the estimator, and it is only by careful selection of

and the penalty function that we can ensure that the estimator

achieves the target, near minimax optimal error decay rate.

Proof of Theorem 5: Following Li [52], define the affinity

between two densities as

Also, given a random variable with density

, let denote the probability

density function associated with drawing the observations

from . Then

From here it is straightforward to follow the proof of Theorem 7

in [8] to show

We now define as follows. First consider the collection

of all free-knot, free-degree piecewise-polynomial functions

which map to and which integrate to one. (Note
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that the knots in these densities will not normally lie on end-

points of intervals in the C-RDP, but rather within one of these

intervals.) For each of these densities, shift each knot to the

nearest dyadic interval endpoint, quantize the polynomial coef-

ficients, clip the resulting function to be positive, and normalize

it to integrate to one. This collection of densities constitutes .

We quantize the coefficients of an orthogonal polynomial basis

expansion of each polynomial segment to one of levels;

this will be discussed in detail later in the proof. This definition

of allows us to prove the Kraft inequality when the penalty

is defined as in (3).

Lemma 2: Let , and let denote the partition on

which is defined, and be the vector of quantized polynomial

coefficients defining (prior to clipping and renormalization).

If , then

(16)

Proof of Lemma 2: Note that any can be described

by the associated quantized density (denoted ) prior to the

deterministic processes of clipping and renormalization. Con-

sider constructing a unique code for every . If consists of

free-degree polynomials on each of dyadic intervals, then

both the locations of the intervals and all the coef-

ficients need to be encoded. The intervals can be encoded

using bits. To see this, note that dyadic intervals can be

represented as leaf nodes of a binary tree, and a binary tree with

leaf nodes has a total of nodes. Thus, each node

could be represented by one bit—a zero for an internal node and

a one for a leaf node. This can easily be verified with an induc-

tive argument.

The th of these intervals, , contains observations,

and the density on this interval is a polynomial of order ,

, where and . For

the th interval, bits are needed to encode each quan-

tized coefficient. These coefficients can be prefix-encoded by

following each encoded quantized coefficient with a single bit

indicating whether all coefficients have been encoded yet. A

total of of these indicator bits will be required. Thus, the total

number of bits needed to uniquely represent each is

We know that the existence of this uniquely decodable

scheme guarantees that

Therefore, if , then

as desired.

The next step in bounding the risk is to bound the KL diver-

gence in (15).

Lemma 3: For all densities and all

Proof of Lemma 3:

(17)

where first inequality follows from and the

second inequality follows from .

The above construction of can be used to bound the ap-

proximation error .

Lemma 4: Let , where ,

, and be a density, let be the best

-piece approximation to , and let denote the number of

polynomial coefficients in this approximation. Then

(18)

for sufficiently large and for some constant that does not

depend on .

Proof of Lemma 4: Using the construction of outlined

above and the triangle inequality, we have

(19)

where is the best free-knot, free-degree piecewise-polyno-

mial approximation of , is after its knots have been

shifted to the nearest dyadic interval endpoint, and is after

the polynomial coefficients have been quantized, and the re-

sulting function has been clipped and renormalized to produce

a bona fide density.

These three terms can each be bounded as follows.

• : The approximation error for either an

-piece free-degree piecewise-polynomial approximation

decays faster than for some constant which

does not depend on when [25].

• : Because and has compact support,

we know and . By construction, has

breakpoints, so for all but of the intervals

in the C-RDP, . For the remaining intervals,

each of length , the error is bounded by constant

independent of , leading to the bound

(20)

where is a constant independent of and .

• : Quantization of each of the polynomial coef-

ficients produces the final error term. The polynomials can
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be expressed in terms of an orthogonal polynomial basis

(e.g., the shifted Legendre polynomials), which allows the

magnitudes of the coefficients to be bounded and hence

quantized. Let denote the th-order polynomial basis

function on the interval , so that Let

. By the Cauchy–Schwarz inequality

Let ; then it is possible to quantize

to one of levels in

Let the quantized version of coefficient be denoted

. This quantization results in the function and in-

duces the following error:

for some constants and independent of and .

Next, let denote after imposing the constraints that

and by clipping and normalizing . These

operations do not increase the approximation error decay

rate. For any density and any function ,

. In addition, for any density and any

nonnegative function such that for

some

[31]. Set ; then for sufficiently

large. Thus, .

Finally, note that estimating densities on recursive dyadic par-

titions typically requires a larger number of polynomial pieces

than free-knot approximation would require. The term

was bounded assuming polynomial approximation was

conducted on (not necessarily dyadic) intervals. In practice,

however, the binary tree pruning nature of the estimator would

necessitate that any of the polynomial segments represented by

that do not lie on a dyadic partition be repartitioned a max-

imum of times. This means that the best approximation to

the density with pieces and coefficients must be penalized

like a density with pieces and

coefficients.

This, combined with the bounds in (15), (17), and (18), yield

the bound

Recalling that , this expression is minimized for

. Substitution then yields that is

bounded above by for some constant .

APPENDIX II

PROOF OF THE ERROR BOUND

Proof of Corollary 1: The risk bound of Theorem 1 can be

translated into an upper bound on the error between and

as follows. First note that

[16]. By Jensen’s inequality, we have

APPENDIX III

PROOF OF THE NEAR-PARAMETRIC RATES

Discussion of Example 1: The derivation of this rate

closely follows the analysis of Theorem 1. Assume that

is composed of analytic pieces, and the best

free-knot, free-degree polynomial has a total of coefficients.

Then

This is a result of Jackson’s Theorem V (iii) in [65].

Theorem 6: Let and

If and , then
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Applying Stirling’s inequality and assuming , we

have

For with analytic pieces, the minimax error in approx-

imating with piecewise polynomials with a total of coeffi-

cients must decay at least as fast as . (Faster rates may

be possible via a non-uniform distribution of the coefficients

over the analytic pieces.) This results in the risk bound

Recalling that , this expression is minimized for

. Substitution then yields that is bounded

above by for some constant .

APPENDIX IV

PROOF OF PLATELET ESTIMATION RISK BOUNDS

Proof of Theorem 3: This proof is highly analogous to the

proof of Theorem 1 above, and so we simply highlight some of

the most significant differences here.

First, a platelet estimate may be uniquely encoded with a

prefix code (satisfying the Kraft inequality) as follows: for each

(square- or wedgelet-decorated) leaf in the RDP, bits are

needed to uniquely encode its location. To see this, let denote

the number of square-shaped leafs, and note that

for some , where is the number of interior nodes in the

quad-tree representation of the RDP. This structure has a total of

nodes, and can be encoded using bits. Next, each

of the square-shaped leafs may or may not be split into two

wedgelet-shaped cells; these decisions can be encoded with a

single bit, for a total of additional bits. Thus, ignoring wedgelet

orientations, the entire tree structure can be encoded using a total

of bits. Let denote the total number of square-

or wedgelet-decorated leafs in the RDP; , and so at most

bits can be used to encode the structure.

For each of the cells in the partition, bits must be

used to encode its intensity: bits for each of the three

platelet coefficients, and bits to encode part of the

wedgelet orientation. These numbers can be derived by noting

that the best quantized -term squared platelet approxima-

tion error behaves like , where

is the number of possible levels to which a platelet coeffi-

cient may be quantized and is the spacing between possible

wedgelet endpoints. In order to guarantee that the risk converges

at nearly the minimax rate of , must be set to and

must be . Then for any dyadic square contained in , the

total number of possible wedgelet orientations is no greater than

. A single orientation can then be described using

bits; each of the two wedgelets in a square-shaped re-

gion of the RDP is allotted half of these bits.

With this encoding scheme in mind, we set

This, combined with the bounds in (15), (17), and Theorem 2,

yield the bound shown in the expression at the bottom of the

page.

This expression is minimized for .

Substitution then yields that is bounded above

by for some constant .

APPENDIX V

ALGORITHM

Table II contains the algorithm pseudocode. In the pseu-

docode, denotes the penalized log-likelihood term

for segment under hypothesis , denotes the polyno-

mial coefficients associated with interval , and C-RDP is

the set of all intervals in the C-RDP corresponding to a terminal

node (leaf) in the binary tree representation.

APPENDIX VI

PROOF OF COMPUTATIONAL COMPLEXITY LEMMA AND

THEOREM

Proof of Lemma 1: If is a vector of polynomial coeffi-

cients and consists of observations, then

Let and be two -dimensional vectors in , and let

and denote the th elements of and , respectively.

Using the convexity of the negative log function, we have for

all
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TABLE II
FREE-DEGREE PIECEWISE-POLYNOMIAL ESTIMATION ALGORITHM

PSEUDOCODE

and hence is a convex function of .

To see that is a convex set, consider two admissible co-

efficient vectors and defining two bona fide densities

and , respectively. Then for any , the density

is also a bona fide density, and can be described

by the coefficient vector is also admis-

sible. As a result, the set is convex.

Proof of Theorem 4: Recall that we start with

terminal intervals in the C-RDP.

Let denote the number of observations in interval . The

tree-pruning algorithm begins at the leafs of the tree and pro-

gresses upwards. At the deepest level, the algorithm examines

pairs of intervals; for each interval at this level, all of the

th-order polynomial fits for are computed.

This means that, at this level, a total of polynomial fits must

be calculated and compared. At the next coarser level, the

algorithm examines intervals, and for each interval at

this level, all of the th-order polynomial fits for

are computed, for a total of polynomial fits which must be

computed and compared. This continues for all levels of the

tree, which means a total of polynomial fits must

be computed and compared. Further note that, at each level,

only the optimal polynomial fit must be stored for each interval.

Since there is a total of intervals considered in the algorithm,

only likelihood values and polynomial coefficients must

be stored in memory.
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