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Multiscale pulse dynamics in communication systems
with strong dispersion management
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The evolution of an optical pulse in a strongly dispersion-managed fiber-optic communication system is studied.
The pulse is decomposed into a fast phase and a slowly evolving amplitude. The fast phase is calculated
exactly, and a nonlocal equation for the evolution of the amplitude is derived. In the limit of weak dispersion
management the equation reduces to the nonlinear Schrödinger equation. A class of stationary solutions of
this equation is obtained; they represent pulses with a Gaussian-like core and exponentially decaying oscillatory
tails, and they agree with direct numerical solutions of the full system.  1998 Optical Society of America
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The use of asymptotic methods to describe the long-
time dynamics of a physical system is an essential tool
in a variety of situations. The nonlinear Schrödinger
(NLS) equation, derived by asymptotic methods from
Maxwell’s equations, plays a central role in fiber
optics in the study of long-distance communication
systems. The NLS equation also appears as an av-
erage equation when one is considering perturbations
such as damping–amplification and moderate disper-
sion management.1,2 In the past few years widespread
interest has focused on transmission links that make
substantial use of dispersion management, owing to
their many remarkable features when compared with
systems with constant dispersion.3 – 9 In this Letter we
obtain the asymptotic equations governing pulse dy-
namics in such systems. By formulating an appropri-
ate multiscale perturbation expansion, we decompose
the dynamics of the pulse in the Fourier domain into
the product of a rapidly varying phase and a slowly
evolving amplitude. The rapid phase is completely de-
termined by the large periodic variations of the disper-
sion, while the amplitude satisfies a nonlocal equation
[Eqs. (5) below] that reduces to the usual NLS equa-
tion in the limit of weak dispersion management. In-
terestingly, the equation has dual representation in the
Fourier and the temporal domains. We derive a two-
parameter family of localized traveling-wave solutions.
These solutions are characterized by a Gaussian-like
core with exponentially decaying oscillatory tails and
are consistent with direct numerical simulations of the
perturbed NLS equation with dispersion management.

We start from the perturbed NLS equation

iuz 1 s1y2dDszdutt 1 juj2u ­ 0 , (1)

where all quantities are expressed in dimensionless
units: t is the retarded time, z is the propagation dis-
tance (with the unit length defined in terms of the
path-average dispersion), u is the slowly varying en-
velope of the optical field, and Dszd represents the
fiber dispersion. Loss and amplif ication can be in-
cluded by a change of variables.4 We model strong
dispersion management by splitting the dispersion
Dszd into two components: Dszd ­ da 1 s1yzadDszyzad.
The variable za is the dispersion-map period, which
is assumed to be small compared with the disper-
0146-9592/98/211668-03$15.00/0
sion length, i.e., za ,, 1. The constant da represents
the small path-average dispersion, whereas Dszyzad,
which is periodic with zero average, describes the
large, rapid variations that correspond to the local
changes of the value of fiber dispersion. Here and
below all averages are taken over one period of the
dispersion map, za: k f l ; s1yzad

Rza
0 dzf szd. The pro-

portionality factor 1yza in front of Dszyzad is cho-
sen so that both da and Dszyzad are quantities of
order one.

Equation (1) contains both large and rapidly vary-
ing terms. To obtain the asymptotic behavior we in-
troduce fast and slow z scales as2 z ­ zyza and Z ­ z,
respectively, and we expand the field u in powers of za:

usz , Z, td ­ us0dsz , Z, td 1 zaus1dsz , Z, td 1 · · · . (2)

In this way Eq. (1) breaks into a series of equations cor-
responding to the different powers of za. In general, at
order Oszn21

a d we have

F fusndg := iusnd
z 1 s1y2dDsz dusnd

tt

­ 2Pnfus0d, us1d, . . . , usn21dg , (3)

where P0 ­ 0, P1fus0dg ­ ius0d
Z 1 s1y2ddaus0d

tt 1

jus0dj2us0d ­ 0, and so on. At Osz21
a d we have

F fus0dg ­ 0. That is, to leading order, the evolu-
tion of the pulse is determined solely by the large
variations of Dszd about its mean: nonlinearity and
residual dispersion represent only a small perturbation
to the linear solution.8 Employing Fourier transforms
[defined as f std ­ s1y2pd

R
`

2` dvexpsivtdf̂ svd], we
obtain

ûs0dsz , Z, vd ­ Û sZ, vdp̂sCsz d, vd , (4)

where p̂sx, vd ­ expf2siy2dxv2g and Csz d ­ C0 1Rz

0 dz 0Dsz 0d, with C0 arbitrary. The integration
constant Û sZ, vd represents the slowly evolving
amplitude of ûs0d, whereas p̂sCsz d, vd contains the
fast oscillations induced by the local values of the
dispersion. The function Û sZ, vd is arbitrary at this
stage and needs to be determined at higher orders.
 1998 Optical Society of America
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At the next-to-leading order in the expansion we
have F fus1dg ­ 2P1fus0dg. Again, we use Fourier
transforms to solve explicitly for ûs1dsz , Z, vd. To
avoid secularities, we need the forcing term in the
Fourier domain to be orthogonal to p̂sCsz d, vd, i.e.,R1

0 dz p̂psCsz d, vdP̂1fus0dsz , Z, ?dg ­ 0. This condition
determines a nonlinear evolution equation for the
unknown function Û sZ, vd:

iÛZ 2
1
2

dav2Û 1
Z1`Z
2`

dv1dv2Û sZ, v 1 v1d

3 Û sZ, v 1 v2dÛpsZ, v 1 v1 1 v2drsv1v2d ­ 0 , (5a)

where the kernel rsxd is given by rsxd ­ 1ys2pd2 3R1
0 dzexpfiCsz dxg. By taking the inverse Fourier

transform of Eq. (5a) we obtain the corresponding
evolution equation in the time domain:

iUZ 1
1
2

daUtt 1
Z1`Z
2`

dt1dt2U sZ, t 1 t1d

3 U sZ, t 1 t2dUpsZ, t 1 t1 1 t2dRst1, t2d ­ 0 , (5b)

where Rst1, t2d ­
RR`

2` dv1dv2expsiv1t1 1 iv2t2d 3
rsv1v2d.

Equation (5b) is the universal asymptotic equation
that governs the evolution of the amplitude of an opti-
cal pulse in a strongly dispersion-managed system de-
scribed by Eq. (1). All fast and large variations have
been removed. Note that Eq. (5b) is not limited to the
case da . 0 and applies equally well to description of
pulse dynamics with zero or normal values of aver-
age dispersion. If Dsz d ­ 0 (that is, if the fiber dis-
persion is constant) and C0 ­ 0, then Csz d ­ 0; hence
rsxd ­ 1ys2pd2 and Rst1, t2d becomes a two-dimensional
Dirac delta: Rst1, t2d ­ dst1ddst2d. As a consequence,
Eqs. (5a) and (5b) reduce to the usual NLS equation,
written in the Fourier and the temporal domain, re-
spectively. Note that Eq. (5a) is invariant under the
combined transformations rsxd ! expsiC0xdrsxd and
Û sZ, vd ! expsiC0v2y2dÛ sZ, vd; therefore the con-
stant C0 appearing in Csz d can be chosen arbitrarily
and does not affect the solution of the original problem.
Equation (5b) is also invariant under Galilean trans-
formations: if U sZ, td is a solution of Eq. (5b), then
U 0sZ, td ­ expfsiy2d svt 2 v2Zy2dgU sZ, t 2 vZd also sat-
isfies Eq. (5b), for any real v. Finally, the pulse en-
ergy, defined as kUk2 ­

R
dtjU sZ, tdj2, is conserved,

and two additional conserved quantities exist in the
form of the momentum and the Hamiltonian.

All the calculations presented above are valid for a
general dispersion map. In the special case of a piece-
wise constant map, the integration kernels can be cal-
culated explicitly. For a two-step map we take Dsz d to
be the periodic extension of Dsz d ­ D1 for 0 # jz j , uy2
and Dsz d ­ D2 for uy2 # jz j , 1y2. Then the con-
dition kDl ­ 0 yields D1u ­ 2D2s1 2 ud. We intro-
duce the parameter s ­ fuD1 2 s1 2 udD2gy4, which
provides a measure of the normalized map strength.
Then, if we fix the integration constant C0 by requir-
ing that the average chirp along one dispersion map
be zero, we have C0 ­ 0 and the points where Csz d is
zero are the midpoints of each fiber segment: z ­ 0
and z ­ 1y2. Since p̂s0, vd ­ 1 and ps0, td ­ dstd,
at these values of z the solution us0dsz , Z, td coin-
cides with U sZ, td. For these two-step maps the ker-
nels rsxd and Rst1, t2d are rsxd ­ sinssxdyfs2pd2sxg
and Rst1, t2d ­ s1y2pjsjdcist1t2ysd, respectively, where
cisxd ­

R`

1 dy cossxydyy is the cosine integral. Note
that, since jrsxdj # 1ys2pd2, the strength of the coupling
between different frequencies is always less than that
for the ordinary NLS equation.

Next we look for traveling-wave solutions of Eq. (5b).
Since this equation is invariant under Galilean trans-
formation, traveling-wave solutions can be obtained by
use of such a transformation if stationary solutions are
known. Therefore we look for solutions of the form
U sZ, td ­ f stdexpfsiy2dl2Zg, with f std real and even.
The Fourier transform F svd of f std is also real and
even. Then, using Eq. (5a), we have the following non-
linear integral equation for F svd:

sl2 1 dav2dFsvd ­ 2
Z1`Z
2`

dv1dv2F sv 1 v1dF sv 1 v2d

3 F sv 1 v1 1 v2drsv1v2d . (6)

By scaling arguments it can be shown that, if F1svd is
a solution of Eq. (6) corresponding to the eigenvalue
l ­ l1 and s ­ s1, then F2svd ­ F1svyad is also a
solution, corresponding to the eigenvalue l2 ­ al1 and
the map strength s2 ­ s1ya2. Therefore a family of
solutions can be generated from the knowledge of just
one. Note also that f2std ­ af1satd, which means that
the scaling parameter a is also directly proportional
to the pulse energy and inversely proportional to the
pulse width. That is, kf2k2 ­ akf1k2 and t2 ­ t1ya,
as for the classical NLS equation. As in Ref. 3, to get
the dependence of the energy on the map strength (that
is, the power-enhancement factor), one needs to go to
higher orders in the perturbation expansion.

The solutions in the family described above are
characterized by the same value of da. Here we re-
strict ourselves to the case da ­ 1, and we solve Eq. (6)
numerically. Figure 1(a) shows a plot of F svd versus
v for s ­ 1 and l ­ 4. The solid curves represent
the positive part of F svd, and the dotted–dashed
curves represent the negative part. The dashed
curve represents a sech pulse with the same FWHM
in the frequency domain. Figure 1(b) shows the
corresponding plot of f std versus t. Again, the solid
curve represents the positive part and the dotted–
dashed curves represent the negative part (in contrast,
the familiar soliton solutions of the NLS equation are
always positive in both the time and the frequency do-
mains), and the dashed curve is a sech pulse with the
same FWHM in the temporal domain. The agreement
of these pulses with numerical solutions of Eq. (1) with
strong dispersion management (cf. Fig. 1 in Ref. 6)
is remarkable. The main features of the new pulses
are a Gaussian-like center and exponentially decaying
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Fig. 1. Shape of the stationary pulses in the Fourier and
temporal domains for s ­ 1 and l ­ 4.

Fig. 2. Shape of the stationary pulses in the temporal
domain for l ­ 1 and various values of s.

tails, characterized by oscillations with a frequency
that increases with increasing distance from the center
of the pulse. Note also that the energy of the pulse
is more concentrated in the center than for NLS
pulses with the same FWHM. Figure 2 illustrates
the profiles of f std for a sequence of different values of
s from 0 to 16, for a fixed value of l ­ 1. By virtue of
the scaling symmetry mentioned above, the plot also
represents a class of solutions corresponding to a fixed
value of s and varying values of l. We should mention
that Eq. (6) can also be used to look for stationary
solutions in the zero or the normal average dispersion
regime, i.e., when da # 0. In fact, we already obtained
such solutions, which possess the same structure.

From F svd, using Eq. (4), we can reconstruct the evo-
lution of the solution with z. The result is a breathing
pulse that shows a remarkable correspondence with di-
rect simulations of Eq. (1) (Fig. 2 in Ref. 6). Since f std
is real and even, and since Csz d is symmetrical with re-
spect to the fiber midpoints, the values of us0dsz , Z, td
at the fiber endpoints are the complex conjugate of each
other. We further tested our model by integrating
Eq. (1) numerically. As za is decreased, the breathing
solutions of Eq. (1) rapidly converge to the solutions ob-
tained from our average equation. In particular, the
convergence rate is linear in za, and with za ­ 0.01 the
difference between solutions of Eq. (5b) and of Eq. (1)
is less than 3 3 1023 of the maximum pulse amplitude.
The slight disagreement between the two models de-
pends on the high-order corrections to the leading-order
solution, which are also responsible for the difference
between the pulse profiles taken at the fiber midpoints.

A number of problems remain to be discussed, in-
cluding a detailed study of the properties of the av-
eraged nonlocal equation (such as symmetries and
conservation laws), a complete characterization of the
stationary solutions (including the case of normal av-
erage dispersion), the role of higher-order corrections,
pulse interactions, wavelength-division multiplexing,
and the effects of damping–amplification.
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