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Abstract

Purpose—To reduce acquisition time needed to obtain reliable parametric maps with Magnetic 

Resonance Fingerprinting.

Methods—An iterative-denoising algorithm is initialized by reconstructing the MRF image 

series at low image resolution. For subsequent iterations, the method enforces pixel-wise fidelity 

to the best-matching dictionary template then enforces fidelity to the acquired data at slightly 

higher spatial resolution. After convergence, parametric maps with desirable spatial resolution are 

obtained through template matching of the final image series. The proposed method was evaluated 

on phantom and in-vivo data using the highly-undersampled, variable-density spiral trajectory and 

compared with the original MRF method. The benefits of additional sparsity constraints were also 

evaluated. When available, gold standard parameter maps were used to quantify the performance 

of each method.

Results—The proposed approach allowed convergence to accurate parametric maps with as few 

as 300 time points of acquisition, as compared to 1000 in the original MRF work. Simultaneous 

quantification of T1, T2, proton density (PD) and B0 field variations in the brain was achieved in 

vivo for a 256×256 matrix for a total acquisition time of 10.2s, representing a 3-fold reduction in 

acquisition time.

Conclusions—The proposed iterative multiscale reconstruction reliably increases MRF 

acquisition speed and accuracy.

INTRODUCTION

The recently proposed Magnetic Resonance Fingerprinting (MRF) technique allows fast and 

simultaneous acquisition of quantitative tissue parameters (1). In MRF, the temporal signal 

evolution follows a pattern (a “fingerprint”) assumed to be unique to a specific combination 

of quantitative parameters such as T1, T2 and PD. MRF can then quantify these parameters 

by comparing the acquired signal pattern to a dictionary of pre-simulated fingerprints based 

on the Bloch equations or another simulation method, such as extended phase graphs (2). 
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This pattern matching operation is performed in (1) by selecting the fingerprint presenting 

the highest inner-product with the signal. This approach was shown to be robust to 

incoherent signal perturbations. This property can be used to acquire an image series at a 

very high sampling reduction factor (R), as long as the aliasing noise at each voxel is 

temporally incoherent with the signal of interest.

The parameter mapping strategy employed by MRF uses an analogous sparsity constraint to 

Compressed Sensing (CS) methods, which use a learned temporal signal dictionary or an a 

priori temporal evolution model to accelerate quantitative (3–5) and dynamic acquisitions 

(6,7). These CS reconstruction methods are iterative: the noise-like incoherent aliasing 

artifacts are gradually removed from the undersampled images until convergence to a sparse 

solution in good agreement with the acquired data (a process which we refer to as “image 

denoising”). In comparison the MRF method as presented in (1) is non-iterative: the 

quantitative maps are produced without denoising of the image series and there is no 

enforcement of data fidelity. As a result a large number of images must be acquired to 

correctly identify the noise-corrupted fingerprint. In essence MRF compensates a high R 

with additional temporal measurements. However once the temporal evolution of a pixel 

value is known, this knowledge can be exploited to reduce the aliasing noise generated by 

the pixel. Therefore if the undersampled images could be denoised, the number of images to 

acquire would be reduced, adding further speed and efficiency to the technique.

The objective of this work is to implement an efficient image-denoising method to decrease 

the number of repetition times needed for MRF acquisition. To this end an iterative multi-

resolution CS reconstruction approach was chosen, in which the sources of mapping errors 

are reduced before gradually adding higher resolution information. The benefits of this 

approach are established for simultaneous mapping of T1, T2, PD and off-resonance 

frequency in both phantoms and in vivo.

METHODS

Reconstruction Algorithm

This work considers a series of L undersampled images x with N voxels obtained from a 

measured k-space signal y, each acquired with a pseudo-random schedule of Repetition 

Time (TR) and flip angle (FA). Each image xt of x is obtained by xt = (yt), where yt is the 

k-space measurement from the tth TR, and  performs the inverse Fourier transform; or 

inverse non-uniform Fourier transform if the trajectory is non-Cartesian.

The MRF template matching process can then be viewed as a CS image denoising step for x:

[1]

where D (matrix of dimension L×M) is the dictionary of M fingerprints and c is a M×N 

sparse coefficient matrix. For pixel location p, the column cp of c reduces D to the best 

matching fingerprint and scales this fingerprint according to the estimated PD value. 

Equation [1] is analog to the sparse coding stage of the k-SVD algorithm (3,8) where only 

one atom of the dictionary is selected to approximate the temporal signal at a given pixel. 
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After solving for c in [1], the image series x can be updated based on Dc and y (3), and [1] 

can be solved in a new iteration.

This approach has been shown to successfully denoise images acquired at R=10 to 15 but 

starts to show limitations at higher reduction factors (3). In contrast, MRF image series are 

often acquired at R=48 or higher. Moreover, this work assumes a reduced MRF acquisition 

where L, the length of the image series, would lead to large errors with the original MRF 

implementation. If those errors are too numerous, the algorithm may not converge or could 

become stuck in a local minima. However, here we take advantage of the fact that CS and 

MRF acquisition trajectories can be more densely sampled in the center of k-space. 

Therefore it is possible to produce an image series x at a low resolution with an effectively 

smaller R for which [1] can be used for effective denoising.

In this work, a Gaussian weighting of k-space is used to produce this low resolution image 

series. For iteration i, let G(i) be a matrix of the same dimensions as y whose elements 

follow a Gaussian distribution depending on their k-space location:

[2]

where Gq
(i) is the qth element of G(i). Then a low resolution image series x(i) is easily 

produced by setting y(i) = G(i) * y and xt
(i) = (yt

(i)), with * denoting element-wise 

multiplication. The effective resolution of x(i) is then controlled by the standard deviation σi 

of the distribution. While equation [2] describes a distribution for a 2D acquisition, its 

extension to a 3D acquisition is trivial.

The following MRF denoising algorithm is proposed:

Initialization:

• Set x(0) = 0.

• Let kmax be the largest k-space distance to the origin sampled during the 

acquisition. Set σ0 so that σ0<kmax.

• Set y(0)=G(0)* y.

For iteration i:

1. Compute xt
(i) = (yt

(i−1)) for all t ∈ [1,L].

2. Find cp
(i) so that Dcp

(i) ≈ xp(i)† and set x ̃p
(i) = Dcp

(i) for all p ∈ [1,N].

3. Compute yt
(i) = (x̃t

(i)) for all t ∈ [1,L].

4. a. Set σi so that σi−1<σi.

If σi<kmax, set  for all element q of G(i)

Else set Gq
(i) = 1 for all q

†this step is performed by selecting the fingerprint yielding the highest vector dot-product with xp
(i).
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b. For all element q corresponding to a sampling location after Cartesian 

gridding, substitute yq
(i) = Gq

(i) yq.

5.
Repeat steps 1 to 4 until a convergence criterion  is reached.

Once convergence is reached, each column of the last computed c matrix is used to produce 

the quantitative parameter maps. A graphic representation of this algorithm is given in 

Figure 1, starting from the top. At initialization, Step 4b is bypassed, i.e., y(0) is left zero-

filled. As described above in Step 4, if kmax<σi there is no Gaussian weighting and y is used 

at its maximum image resolution.

This algorithm is described here for a single receive coil acquisition. For a multi-coil 

acquisition, all xt
(i) would be coil combined after Step 1, and estimated coil sensitivities 

would be applied on each xt̃
(i) before Step 3. It should be noted that MRF performs a 

complex template matching which requires preserving the phase information of each 

temporal signal. Therefore coil combination should be performed by summing each channel 

image weighted by the complex conjugate of the coil sensitivities, instead of a simple sum-

of-squares, for example.

Further image or transform sparsity could also be enforced in Step 2. For example, one 

could apply wavelet denoising (9) or total variation constraints either on x(i) or x̃(i) (10). 

Another approach offered by MRF is to apply wavelets or total variation-type constraints on 

the parameter maps themselves, which can be done much faster than on the entire image 

series. Indeed, parameter maps can be obtained from x(i) at any iteration. The denoising 

scheme of choice can then be applied on these parameter maps (9,10). Then for each pixel 

location p, x ̃p
(i) can be obtained by assigning the temporal signal evolution equal to the 

database fingerprints with the closest parameters to the denoised parametric maps.

For purposes of clarity, the algorithm described above will be referred to as Iterative Multi-

Scale MRF (IMS-MRF). The MRF method as proposed in (1) will be referred to as “original 

MRF”. It should be noted that the original MRF method corresponds to a single iteration of 

IMS-MRF without any Gaussian weighting.

MRF parameters

The MRF acquisition parameters used for this work are given in Figure 2. Figure 2a–b 

shows the variations in TR length and FA for 3000 undersampled image acquisitions. The 

phase of the excitation pulse alternates by 180° between two consecutive acquisitions. A 

Variable Density Spiral (VDS) trajectory was used to sample k-space after each excitation 

pulse (Figure 2c). The zero and first order moments of the trajectory (solid and dashed lines) 

were zero, and the slice excitation gradients were balanced. The k-space samples used for 

image reconstruction are shown in full lines. With respect to Nyquist sampling, the 

trajectory had R =24 within a radius of 25% of kmax from the center of k-space, and R=48 

outside of this radius. The VDS trajectory was rotated by 2π/48 radians after each TR. The 

Field of View (FOV) was 300mm and the matrix size 256×256.
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The dictionary D of fingerprints was calculated based on the pulse sequence schedule 

described above using Bloch equations as in the original MRF work. The simulated T1 and 

T2 values were chosen to span typical ranges found in brain tissues. Simulated T1 values 

ranged from 100 to 1000 ms in increments of 20 ms, from 1000 to 2000 ms in increments of 

50 ms, and from 2000 to 5000 ms in increments of 300 ms. Simulated T2 values went from 

20 to 110 ms in increments of 10 ms, from 110 to 300 ms in increments of 20 ms, and from 

300 to 2000 ms in increments of 200 ms. B0 field inhomogeneity (ΔB0) was also included in 

the simulations, with ranges from −60 to 60 Hz by increments of 1 Hz, and −300 to −150 Hz 

and 150 to 300 Hz by increments of 20 Hz. Combination of T1 and T2 values where T1<T2 

were excluded, leading to a total of 186046 fingerprints.

All numerical computations and simulations for this work were performed in Matlab 

R2012b programming environment (The Mathworks, Natick, MA) on a personal computer 

with 2.0GHz Intel Xeon CPU and 32 GB RAM.

Numerical Phantom Study

The proposed IMS-MRF was first tested on a numerical brain phantom, using the numerical 

T1, T2 and PD maps obtained from the MNI brain atlas (11,12). A ΔB0 field was arbitrarily 

simulated as a linear variation from −60 to +60 Hz, from left to right. A series of 3000 

images was produced by simulating the signal evolution on a pixel-wise basis based on the 

parameter values and the pulse sequence described above. Complex normally distributed 

noise was added to the image series to simulate a peak SNR of 100, calculated within a ROI 

mask of the numerical brain. The mean±standard deviation SNR within the same ROI for the 

fully-sampled image series was 17.5±8.9. The non-uniform Fast Fourier Transform (nuFFT) 

was applied on each image to the corresponding VDS trajectory to simulate the matrix of 

undersampled k-space measurements. In this work, all nuFFT and inverse nuFFT operations 

were done using the image reconstruction toolbox provided by Jeffrey Fessler (13).

Quantitative maps of T1, T2, ΔB0 and PD were computed with IMS-MRF from series of the 

first 300, 500, 1000, 2000 and 3000 simulated spiral measurements. The standard deviation 

for the Gaussian weighting was chosen empirically as σ0=0.125kmax, σ1=0.25kmax and 

σ2=0.75kmax respectively at initialization, first and second iteration. No Gaussian weighting 

was applied on subsequent iterations (i.e. σi>kmax in step 4 described above). The 

convergence criterion was ε=0.5%, calculated within the numerical mask. Quantitative maps 

were also computed with original MRF for comparison. To illustrate the ability of the multi-

resolution approach to avoid local minima, quantitative maps were also computed from a 

series of 300 spirals using the proposed algorithm without any Gaussian weighting (referred 

to as “purely iterative MRF”). The benefit of further constraints was also evaluated by 

applying wavelet (WV) denoising on quantitative maps with automated thresholding 

selection (9) using the same image series. The performance evaluation function for all 

parameters was chosen as the Root Mean Square Error Normalized by the dynamic range of 

the image (NRMSE).

To reduce computational time, pixel-wise MRF template matching was only performed 

within the mask of the numerical brain.

Pierre et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Agar Phantom Study

While the numerical phantom experiment allows quantification of the denoising 

performance of IMS-MRF on the aliased images of a complex object such as a brain, the 

quantification of the accuracy of IMS-MRF in a more realistic acquisition setting is also 

desirable. To this end an undersampled image series was acquired from ten GdCl3 and 

Agarose phantoms with the above MRF sequence and 3000 undersampled image 

acquisitions at 3T on a Siemens Skyra (Erlangen, Germany), using 8 channels of a head coil 

array.

The phantom T1 values were first measured with a standard single Spin-Echo (SE) inversion 

recovery experiment with TR=6s, echo time (TE) of 12ms and seven different inversion 

times (TI) of 50, 100, 200, 500, 1000, 2000 and 3500ms, for a total acquisition time of 42 

min. The T2 values were measured with single-echo SE with TR=6s using eight different TE 

of 20, 40, 60, 100, 150, 200, 400 and 800ms, for a total time of 48 min. The T1 and T2 

values of the phantoms ranged from 200 to 1500ms and 30 to 110ms, respectively.

The acquired MRF images were summed together to produce a fully sampled composite 

image, from which an estimate of the coil sensitivities was computed using the adaptive 

combination method (14). A ROI mask of the composite image was produced using Otsu’s 

automatic segmentation method (15).

T1 and T2 maps were computed with the IMS-MRF and original MRF using the first 300, 

500, 1000, 2000 and 3000 undersampled images. All template matching computations were 

performed within the ROI mask. The mean value and standard deviation for each parameter 

was computed within an ROI for each phantom. Concordance correlation coefficients (16) 

between the measured parameter values and the corresponding SE measurements were 

calculated for original and IMS-MRF for each image series length.

In Vivo Study

Finally the proposed algorithm was tested to perform brain tissue parameter mapping on in 

vivo data. An undersampled brain image series was acquired from a healthy volunteer with 

the above MRF sequence and 3000 undersampled image acquisitions on the same 3T 

scanner as the phantom experiment. In this Institutional Review Board approved and 

HIPAA-compliant study, informed consent was obtained from the volunteer prior to the 

experiment. Parameters maps for T1, T2, ΔB0 and PD were produced with original MRF and 

IMS-MRF using the first 500, 1000, and 3000 undersampled image acquisitions. As an 

approximate measure of quantification error, maps produced from 3000 images were chosen 

as a reference to compute an NRMSE.

RESULTS

Numerical Phantom Study

Figure 3a compares the ground truth T1 and T2 maps (left) with the maps obtained using 

IMS-MRF (middle), and using purely iterative MRF (right) from a series of 300 simulated 

images. Without a multi-scale approach, the recovered maps are entirely corrupted with 
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errors. In contrast, the IMS-MRF T1 and T2 maps are in good agreement with the ground 

truth, though T2 maps have more substantial errors. The algorithm’s convergence behavior 

of IMS-MRF and purely iterative MRF are displayed in Figure 3b–c. Figure 3b plots the T2 

NRMSE against the number of iterations. Purely iterative MRF shows a decrease of errors 

after iteration 1, and the NRMSE appears the same between iteration 1 and 2, but the maps 

actually changed with each iteration and eventually diverged out of their local minima. In 

contrast, IMS-MRF led to consistent improvement until convergence within 7 iterations. 

These convergence behaviors are illustrated in Fig 3c with the corresponding T2 maps after 

initialization, iteration #3, iteration #6 and the last computation iteration.

Figure 4 plots the relative error of original MRF, IMS-MRF and IMS-MRF with wavelet 

denoising for each parameter against the acquisition length, i.e. the sum of all TR values in 

the series. As expected for original MRF, all NRMSE values decrease with longer 

acquisition, with lowest NRMSE reached with L=3000. It should be noted that the NRMSE 

curves for IMS-MRF and MRF did not converge to the same value for L=3000, with a 

slightly lower NRMSE for IMS-MRF. Supporting Figure S1 (available online) shows the 

corresponding error maps for T1 and T2 at L=3000. For both original MRF and IMS-MRF, 

the residual differences are constrained to the boundaries between tissues, where partial 

volume effects can occur. These residual errors are consistently reduced for IMS-MRF, and 

are on the order of dictionary quantization error (lower than 6% for T1, and lower than 10% 

for T2).

For all parameters, the NRMSE of IMS-MRF was lower with L=500 (5.1 s total acquisition 

length) than for the original MRF with L=3000 (30.9s total acquisition length). The NRMSE 

of IMS-MRF slightly improved with L=1000, but remained almost unchanged with a higher 

L. At L=300 (3.0 s), the additional use of wavelet denoising performed worse than IMS-

MRF alone, but a slight improvement in T2 and ΔB0 was observed with L=500.

Figure 5 shows a comparison of maps obtained with original MRF (top row), IMS-MRF 

(middle row), and IMS-MRF with additional wavelet denoising (bottom row) for L=500 

(10.2 s total acquisition time). While the original MRF was able to recover a T1 maps with 

little apparent errors, other parameter maps are severely contaminated with artifact errors. 

These artifacts are almost entirely removed with both iterative approaches. Additional use of 

wavelet denoising provided an improvement of small residual errors in T2 and ΔB0 maps in 

the right-anterior part of the brain (see arrows).

The computational time to convergence for each L are compiled in Table 1. The method 

converged in 7 iterations for L≤1000, and 5 iterations for higher L.

Agar Phantom Study

T2 maps of the agar phantoms obtained with Original MRF (a) and IMS-MRF (b) for 

various values of L can be seen in Figure 6, along with corresponding error maps. IMS-MRF 

appears to be more robust to aliasing noise than the original MRF particularly for phantoms 

with low T2 values, even with a small L. Figure 7a plots T1 (left) and T2 (right) values 

measured with original MRF (red triangles) and IMS-MRF (blue circles) using L=1000. The 

value measured with SE is used as the abscissa value, and the solid line represents the 
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identity. While T1 and T2 values were in good agreement with SE values for all methods, all 

T2 values measured with IMS-MRF display identical or slightly reduced deviation from SE 

values. This improvement is clearer in Figure 7b, when L=300. The error bars indicate the 

parameter error standard deviation in each ROI for a given GdCl3 and Agarose phantom 

with respect to the ground truth parameter value. As can be seen in figure 6a for the original 

MRF method at L=300, some phantoms are much more subject to mapping errors than 

others, leading to higher error bars in figure 7. This variability in parameter mapping 

accuracy from phantom to phantom is reduced with IMS-MRF. Figure 7c plots the 

concordance correlation coefficient with SE values for both methods against the length of 

the acquisition. For L>1000, the concordance correlation coefficient is over 0.99 for both 

methods. For L<1000, the T2 concordance coefficient starts to markedly decrease for 

original MRF, while it stays over 0.99 for IMS-MRF. Please note that the matrix size in this 

work is 256×256, while the original MRF work presented in (1) was performed at a matrix 

size of 128×128.

In Vivo Study

Figure 8 shows three sample images from the in vivo image series with and without 

denoising (top and bottom row, respectively) with L=500 for the proposed denoising 

algorithm after convergence (7 iterations). The acquisition time for each displayed image did 

not exceed 11ms. In the top row, the images used by the original MRF are entirely 

contaminated by aliasing noise. After denoising, anatomical features are clearly visible, 

though the noise level remains high. A video comparing the entire image series is available 

online as supplementary material (see Supporting Video).

A comparison of all four parameter maps obtained with the original MRF and IMS-MRF 

methods for acquisition L= 500, 1000 and 3000 is displayed in Figure 9. The NRMSE of the 

L=500 and L=1000 maps compared to their L=3000 counterparts are shown as inset. For 

original MRF with L=3000, a small number of outlier pixels can be seen close to the 

ventricles for all parameter maps. These artifacts become more apparent when L=1000 and 

clearly mask anatomical information when L=500. IMS-MRF with L=500 produced T1 

maps with 0.5% lower NRMSE than the original MRF with L=1000. For other tissue 

parameters, the NRMSE with IMS-MRF and L=500 was never more than 1.2% higher than 

their original MRF counterpart with L=1000.

In comparison, no clear artifact is visible on IMS-MRF maps with either L=1000 or L=3000. 

When only L=500 are used, most of the severe artifacts seen in original MRF maps are not 

present in IMS-MRF maps. Some remaining artifacts can be seen in the anterior region of 

the maps, particularly for ΔB0 maps. However, T1 and T2 maps maintained a low NRMSE 

compared with maps obtained using a 6 times longer acquisition.

DISCUSSION

Many approaches exist to the denoising problem posed by the undersampled MRF 

acquisition. With a straightforward iterative method at full resolution, the large amount of 

aliasing can lead the algorithm to reach an unstable local minimum. While such an approach 

could converge for a higher level of sampling in k-space and/or through time, the proposed 
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multiscale approach offers a good convergence behavior with as few as L=300 at an 

acceleration factor of 48, at the price of a simple element-wise multiplication in k-space. 

While the proposed multi-scale approach avoided convergence to undesirable local minima 

in our experiments, other MRF sequence designs may require additional regularization to 

reach acceptable solutions. The proposed framework is quite flexible and can accommodate 

other constraints in addition to MRF sparse encoding. In this work, additional WV denoising 

was tested on simulated data. The benefits in reconstruction quality appeared small 

compared to the increase in computational time, and for a very small L, these additional 

constraints actually worsened the parameter map quality. However, other sparsity constraints 

may prove more useful. Due to the nature of MRF, all parameters maps are strongly linked, 

i.e. quality improvement achieved for one parameter map can induce quality improvement 

for another parameter map. Therefore, additional constraints on only one parameter map 

could be considered such as only enforcing smoothness of the ΔB0 maps. One can note that 

the strong Gaussian weighting of the proposed algorithm enforces such smooth variations on 

the first iterations, albeit for all maps.

The lengthy computational time of the proposed method is mostly due to the high number of 

NUFFT operations introduced by the algorithm. In an attempt to speed up the reconstruction 

process the tested implementation incremented σi in large steps so as to reach convergence 

faster. In particular we empirically chose kmax as the highest value for σi, leading to a rather 

large jump in effective resolution when Gaussian filtering is no longer applied. Other 

approaches could include implementing smaller σi steps up to a higher threshold than kmax, 

at the price of more iterations and lengthier computations. The best update schedule will 

likely depend on the particular application. However, performing these operations with a 

Graphics Processing Unit or other highly parallel implementation in a compiled language, 

such as C as compared to Matlab, could allow for clinically acceptable reconstruction times 

(17).

Unlike the original MRF method, the proposed algorithm maintains excellent T1 and T2 

accuracy for acquisition times as short as 3s with L=300. This reduction in acquisition time 

would have obvious benefits for patient comfort, in particular if the examination is 

performed with breath-holding for abdominal quantitative imaging. The time gains could 

also be reinvested to increase the number of slices acquired within the same acquisition time. 

Additionally, shorter dictionary fingerprints would also ease the computational requirements 

for future optimization of the pattern recognition steps in MRF. Our experience shows that 

L=300 is close to the minimum for IMS-MRF data of this resolution and dictionary 

resolution. Below this level, the performance of this method decays away rapidly.

In MRF acquisitions, the strength of the aliasing noise in the image series is inherently 

dependent on the type of tissues and their distribution in the FOV. For example, the mapping 

accuracy at the center of the FOV can be expected to be worse than at its periphery in certain 

cases, as can be seen in figure 6 and 7. By reducing the aliasing noise, IMS-MRF also 

reduces this type of error variability. It should be noted that this method provided an increase 

in the quality of the maps even near the edges of tissues, even in cases where partial volume 

effects could be present. Further improvement in future studies could potentially be obtained 

Pierre et al. Page 9

Magn Reson Med. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using more sophisticated partial volume separation methods previously described for MRF 

(1,18).

For in vivo brain imaging, IMS-MRF allows artifact free mapping of T1, T2, PD and ΔB0 at 

256×256 matrix resolution with a 10.2s long acquisition. The original MRF method 

typically requires L>3000 (>30.6 s) to produce such artifact free maps without parallel 

imaging or other speed-up methods. With L=500, IMS-MRF can produce T1 and T2 maps in 

good agreement with maps obtained from twice the acquisition length.

CONCLUSIONS

An image denoising framework was implemented which improves MRF acquisition speed 

by iteratively enforcing dictionary sparse encoding and data consistency. Even for a highly 

reduced number of samples, the proposed algorithm can converge to a reasonable solution 

by using the more densely sampled center of k-space in the first iterations before gradually 

including higher spatial harmonics in the data consistency step. A potential 3 to 6-fold 

reduction in acquisition time was demonstrated in comparison to the original MRF method. 

Further acceleration and improvement of parameter mapping accuracy could be achieved by 

using additional constraints. The reduction in the required number of undersampled 

acquisitions could also render the fingerprint dictionary optimization problem of MRF less 

computationally intensive.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported in part by NIH grant 1R01EB016728 and Siemens Healthcare.

The authors would also like to thank Dr. Katherine Wright for her feedback and editorial review.

References

1. Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, Griswold Ma. Magnetic resonance 

fingerprinting. Nature. 2013; 495:187–92. [PubMed: 23486058] 

2. Hennig J, Weigel M, Scheffler K. Calculation of flip angles for echo trains with predefined 

amplitudes with the extended phase graph (EPG)-algorithm: principles and applications to 

hyperecho and TRAPS sequences. Magn Reson Med. 2004; 51:68–80. [PubMed: 14705047] 

3. Doneva M, Börnert P, Eggers H, Stehning C, Sénégas J, Mertins A. Compressed sensing 

reconstruction for magnetic resonance parameter mapping. Magn Reson Med. 2010; 64:1114–1120. 

[PubMed: 20564599] 

4. Huang C, Graff CG, Clarkson EW, Bilgin A, Altbach MI. T2 mapping from highly undersampled 

data by reconstruction of principal component coefficient maps using compressed sensing. Magn 

Reson Med. 2012; 67:1355–66. [PubMed: 22190358] 

5. Block KT, Uecker M, Frahm J. Model-based iterative reconstruction for radial fast spin-echo MRI. 

IEEE Trans Med Imaging. 2009; 28:1759–69. [PubMed: 19502124] 

6. Liang Z-P. Spatiotemporal Imaging with Partially Separable Functions. 2007; 2:988–991.

7. Christodoulou AG, Brinegar C, Haldar JP, Zhang H, Wu Y-JL, Foley LM, Hitchens T, Ye Q, Ho C, 

Liang Z-P. High-resolution cardiac MRI using partially separable functions and weighted spatial 

Pierre et al. Page 10

Magn Reson Med. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



smoothness regularization. Proceedings ot the Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society. 2010; 2010:871–4.

8. Aharon M, Elad M, Bruckstein A. K -SVD: An Algorithm for Designing Overcomplete Dictionaries 

for Sparse Representation. IEEE Trans signal Process. 2006; 54:4311–4322.

9. Donoho DL, Johnstone IM. Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika. 1994; 

81:425–455.

10. Lustig M, Donoho DL, Santos JM, Pauly JM. Compressed Sensing MRI. IEEE Signal Process 

Mag. 2008; 25:72–82.

11. Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC. Enhancement of MR Images Using 

Registration for Signal Averaging. J Comput Assist Tomogr. 1998; 22:324–333. [PubMed: 

9530404] 

12. Aubert-Broche B, Evans AC, Collins L. A new improved version of the realistic digital brain 

phantom. Neuroimage. 2006; 32:138–45. [PubMed: 16750398] 

13. Pipe, JG. Matlab nuFFT Toolbox. http://web.eecs.umich.edu/~fessler/code/

14. Walsh DO, Gmitroa F, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn 

Reson Med. 2000; 43:682–90. [PubMed: 10800033] 

15. Otsu N. A tlreshold selection method from gray-level histograms. Automatica. 1975; 11:285–296.

16. Lin L. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989; 45:355–

368.

17. Saybasili H, Herzka Da, Seiberlich N, Griswold Ma. Real-time imaging with radial GRAPPA: 

Implementation on a heterogeneous architecture for low-latency reconstructions. Magn Reson 

Imaging. 2014; 32:747–758. [PubMed: 24690453] 

18. Deshmane, AV.; Ma, D.; Jiang, Y.; Fisher, E.; Seiberlich, N.; Gulani, V.; Griswold, Ma. Validation 

of Tissue Characterization in Mixed Voxels Using MR Fingerprinting. Proceedings of the 22nd 

Annual Meeting of ISRMRM; 2014; p. 94

Pierre et al. Page 11

Magn Reson Med. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://web.eecs.umich.edu/~fessler/code/


Figure 1. 

Illustration of the iterative multi-scale algorithm: Starting from the top, the zero-filled 

measured k-space is Gaussian weighted at initialization. Step 1: y(i−1) is inverse-Fourier 

transformed, yielding x(i). Step 2: MRF template matching is performed to denoise image 

series. If x(i) had converged, stop here and output corresponding maps. Step 3: The denoised 

image series is Fourier transformed, yielding y(i). Step 4: A new iteration starts, with a 

weaker Gaussian weighting of the original data and its direct substitution for the acquired 

elements of y(i) at their sampled locations after Cartesian gridding.
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Figure 2. 

MRF sequence parameters. a. Sequence of pseudo random TR values. b. Sequence of FA 

values for each excitation pulse. c. example VDS trajectory. Only measurements sampled 

along the full line were used for image reconstruction.
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Figure 3. 

a. Comparison of T1 and T2 maps (upper and lower row, respectively) obtained after 

convergence of IMS-MRF (3rd from left) purely iterative MRF (2nd from left) to their 

respective ground truth (left). Error maps shown on the right. b. T2 normalized RMSE 

evolution with each iteration of IMS-MRF (light blue) and purely iterative MRF (black). c. 

From left to right, T2 maps obtained after initialization, iteration 3, iteration 6 and the last 

iteration of IMS-MRF (top row) and purely iterative MRF.
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Figure 4. 

Normalized RMSE evolution with total acquisition time for each parameters. Original MRF 

values are displayed in red squares, IMS-MRF in blue circles and IMS-MRF with WV 

denoising in green triangles.
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Figure 5. 

Maps of T1, T2, ΔB0 and PD obtained with L=500 (5.1 s total acquisition) for Original MRF 

(top row), IMS-MRF (middle row) and IMS-MRF with WV denoising (bottom row). 

Reductions of residual errors in T2 and ΔB0 maps for IMS-MRF with WV are indicated by 

arrows.
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Figure 6. 

T2 maps (top row) and corresponding error maps (bottom row) obtained with original MRF 

(a) and IMS-MRF (b) using the first 300 TRs (left), 500 TRs (middle) and 1000 TRs (right).
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Figure 7. 

Measured T1 (left) and T2 (right) comparison between SE and MRF measurements for a. 

1000 TRs (10.2 s total acquisition time) b. 300 TRs (3.0 s total acquisition time) c. 

Evolution of the concordance coefficient with length of acquisition.
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Figure 8. 

In vivo images from the 55th TR (left column), 335h TR (middle column) and 717th TR 

(right column) used to perform template matching with the original MRF method (top row) 

and IMS-MRF (bottom row) with 500 TRs. The duration of each TR is shown in 

parenthesis.
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Figure 9. 

In vivo parameter maps from the original MRF (top row) and IMS-MRF methods (bottom 

row) for L =500 (a), 1000 (b) and 3000(c). The NRMSE of the L=500 and L=1000 maps 

compared to their L=3000 counterparts are shown as inset.
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