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ABSTRACT Deep learning-based networks have achieved great success in the field of image super-
resolution. However, many networks do not fully combine high-level and low-level information, and fuse
local and global information. A multiscale recursive feedback network (MSRFN) for image super-resolution
is proposed. First, multiscale convolution is integrated into the feedback network to propose multiscale
projection units that adaptively capture image features of different scales by driving a multipath information
flow. Next, recursive learning is applied to multiscale projection groups composed of up- and down-
multiscale projection units to construct a feedback module that exploits high-level information to correct
the low-level representation and refines the features in the early layers. Then, global residual learning and
local residual feedback were combined to provide more contextual information for the final reconstruction.
Experimental results demonstrate that MSRFN can predict more high-frequency details and alleviate the
ringing effect and checkerboard artifacts inherently in CNN-based models. Even when the training datasets
are relatively small, MSRFN is still superior to most state-of-the-art methods, especially for large scaling
factors (×8).

INDEX TERMS Image super-resolution, feedback, multiscale convolution, large factors, back-projection,
residual learning.

I. INTRODUCTION
Super-resolution (SR), an important image processing tech-
nology in the field of computer vision, is widely applied
in medical imaging [1], security and surveillance [2], satel-
lite remote sensing images [3], image compression [4] and
small object detection [5], [6]. It aims to establish a suitable
model for converting a low-resolution (LR) image to a high-
resolution (HR) image [7]. Because a given LR image may
correspond to a series of possible HR images rather than a
single unique image, SR is a challenging ill-posed inverse
problem. Currently, numerous SR methods have been pro-
posed to address this problem, which are primarily divided
into three types: interpolation-based, reconstruction-based,
and learning-based methods [8], [9]. The SR model based on
deep learning has gained wide attention in recent years owing
to its superior reconstruction performance.

The associate editor coordinating the review of this manuscript and
approving it for publication was Tony Thomas.

SRCNN [10], [11] is the first network that applies con-
volutional neural networks (CNNs) to SR, which directly
learns the nonlinear mapping from interpolated LR images
to HR images in an end-to-end manner. As a simple shallow
linear network, its performance is superior to that of most
traditional networks, which demonstrates the superiority of
CNNs in solving the SR problem. Subsequently, a series of
SR algorithms based on the SRCNN were proposed. Depth
can provide larger fields and more contextual information as
a key factor in deep neural networks. However, two problems
were caused by deepening the network, including gradient
disappearance/explosion and numerous parameters. To alle-
viate the gradient problem effectively, researchers have intro-
duced residual learning [12] and succeeded in training deeper
networks, including VDSR [13] and EDSR [14]. In addition,
dense connections [15] are often employed, which enables
networks not only to alleviate the gradient vanishing problem,
but also encourage feature reuse, such as SR-DenseNet [16],
RDN [17], and DBPN [18]. To reduce the network parame-
ters, some networks, such as DRCN [19], DRRN [20], and
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DRFN [21], employ recursive learning to facilitate weight
sharing. Owing to these mechanisms, a growing number of
algorithms tend to design more complex and deeper networks
to obtain a higher peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) [22].

The following problems exist in many present networks:
First, many SR networks ignore the training difficulty in
achieving excellent performance of depth models, result-
ing in a huge training setting, more training ticks, and
more time. For example, DBPN [18] employs a very large
training setting, including DIV2K (1,000 2 K resolution
images, including 800 training images and 200 evaluation
images) [23], Flickr2K [14] (2650 2 K resolution images),
and ImageNet [24] dataset (over 14 million). Second, most
SR networks learn hierarchical representations of LR images
in a feedforward manner, which relies on their limited fea-
tures. In addition, the pre-processed feedforward networks
can only accommodate a single upsampling factor, and they
require a large adjustment and retraining each time they
migrate to other upsampling factors, which is extremely
inflexible. Owing to the lack of feedback, feedforward net-
works such as DRRN [20] have difficulty with large scal-
ing factors. Although MSRN [25] and LapSRN [26] with
feedforward architectures can perform the experience of ×8
enlargement, there is still an improvement in the ×8 recon-
struction performance. Third, a few SR studies introduced
feedback mechanisms, but they obtained image features at a
single scale without taking full use of image features. Due to
the inadequate utilization of features, the features gradually
disappear in the process of transmission, especially for large
factors SR (such as×8 SR). Networks such asDBPN [18] and
SRFBN [27], [28] fail to cope with the drawbacks of single-
scale feedback networks and cannot learn feature mapping at
multiple context scales.

To solve the above problems, we designed a novel mul-
tiscale recursive feedback network (MSRFN). The structure
is illustrated in Fig. 1. MSRFN uses much fewer training
datasets thanDBPNwith only 800 images fromDIV2K, but it
outperforms DBPN even on large scaling factors. Moreover,
owing to the introduction of multiscale feedback, theMSRFN
can not only learn rich hierarchical feature representations at
multiple context scales, but also refine low-level information
with high-level information and better represent the mutual
relationships between LR-HR image pairs. In addition, the
MSRFN can extend to any upscaling factors with only minor
adjustments of the network, and it can also provide the flex-
ibility to define and train networks with different depths,
which benefits from a modular end-to-end structure. It is
more exciting that MSRFN can effectively alleviate the ring-
ing and jaggy effect at the edge structures and produce more
competitive SR results, particularly for ×8 enlargement.
The main contributions of our study are as follows.
First, a multiscale projection unit (MSPU) is proposed

by incorporating a multiscale convolution kernel into the
feedback connection. Different kernel sizes are introduced
in each branch to drive the multipath information flow for

up- or down-sampling operations. The MSPU can adaptively
capture image features at different scales, which are regarded
as local multiscale features. In addition, multiscale receptive
fields and information sharing performed between different
bypasses contribute to the full use of local features. Fur-
thermore, the 1 × 1 convolution layer is applied to achieve
dimensional reduction and cross-channel multiscale feature
fusion; it also improves the generalization ability of the net-
work by adding a nonlinear activation to the learning repre-
sentation of the previous layer. This kind of local multipath
learning enhances branch information communication, fur-
ther increases the receptive field of the network, and improves
guide reconstruction.

FIGURE 1. The structure of a multiscale recursive feedback network.

Second, in the MSRFN, a pair of up- and down-MSPUs
constitutes a multiscale projection group (MSPG) that can
realize the local feedback process. MSPG not only generates
HR features from the LR input, but also projects them back
to the LR spaces. Only one MSPG is used for recursive
learning to form a feedback scheme. This kind of top-down
work allows previous layers to access useful information
from the following layers to refine low-level representation
and enrich high-level features. Meanwhile, such a recurrent
structure with feedback flow can not only constantly correct
the mutual relationship between LR and HR features, but
also effectively reduce the network parameters and support a
deeper structure. MSRFN has a powerful early reconstruction
ability. In addition, the reconstruction module concatenates
the HR multiscale feature maps generated by MSPG, which
can transfer more abundant elements for the reconstruction of
the HR images.
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Third, in addition to combining high-level and low-level
information, we also combine local and global information
by the fusion of local multiscale residual features and global
residual features tomaximize the utilization of image features
and overcome defect features that disappear in the transmis-
sion process. On the one hand, MSRFN applies the iterative
up- and down-sampling framework to provide local residual
feedback for the multiscale projection residuals of MSPG,
acquiring finer initial features in the early layers. On the other
hand, the global residual skip connection adds the residual
image to the global identity mapping from the LR input and
helps the network recover the residual between the LR and
HR images, greatly reducing the learning difficulty and pro-
moting faster convergence of the network. The combination
of local residual feedback and global residual learning helps
feature reuse and provides more contextual information for
creating SR images.

II. RELATED WORK
A. IMAGE SUPER-RESOLUTION
SR based on deep learning is a trainable data-driven model
that can directly learn the non-linear mapping between
LR and HR images in an end-to-end manner [11]. The
upsampling operation is the key step because it deter-
mines how to generate the HR output from the LR input.
In view of the different locations of upsampling oper-
ations in the model, SR frameworks are divided into
four types [29]: pre-upsampling, post-sampling, progres-
sive upsampling, and iterative up- and down-sampling
frameworks.

SRCNN is a pioneering framework that adopts a pre-
upsampling framework [10], [11]. It is characterized by the
completion of the upsampling operation in the pre-processing
step. The LR image is enlarged to the target size by the
interpolation algorithm, and then the algorithm inputs the
interpolation image into the network to establish the mapping
relationship with the HR image. Hence, the pre-upsampling
SR comes with the defect of poor scalability and difficulty in
accommodating any scaling factors with minor adjustments
to the network. Although the framework has a lower learning
cost owing to its simple structure, it is subject to side effects,
including additional noise from coarse images, noise amplifi-
cation, blurring, and exponentially increasing computational
complexity.

To avoid learning most mappings in high-dimensional
space, researchers proposed a post-sampling framework that
aims to integrate the upsampling layer at the end of the
network and directly learn hierarchical feature representa-
tion from the LR input. FSRCNN [30] and ESPCN [31]
are representative algorithms that improve the computational
efficiency and quality of SR images compared with SRCNN.
However, because of the limited learnable features in the LR
images and the performance of the upsampling operation only
once, it is difficult to characterize the complex mapping from
the LR to HR images, which greatly increases the learning
difficulty for large scaling factors of ×4 and ×8.

To overcome this drawback, LapSRN [26] employs a pro-
gressive upsampling framework that uses multiple upsam-
pling modules to progressively reconstruct higher-resolution
images. By adding a multi-stage design to the feed-forward
network and upsampling the image to a higher resolution at
each stage, the complex large-scale factor reconstruction can
be decomposed into multiple simple small-scale reconstruc-
tions. The scheme of gradually reconstructing multiple SR
images of different scales reduces the difficulty of learning
and improves the SR performance on large scaling factors.
However, its essence is the stacking of a single upsampling
network, which is still limited by LR features and subjected
to feature underutilization.

To address the above problems, Haris et al. innovatively
proposed the DBPN algorithm and constructed an iterative
up-down sampling framework, which better explores the
mutual dependency of LR-HR images by introducing itera-
tive back-projection [18]. The framework alternates up- and
down-sampling operations to generate deeper HR features
and combines HR images of different depths to produce
the results. The authors also introduced a dense connection
to improve the network accuracy. This scheme can capture
the deep mapping relationship between LR and HR, which
improves the reconstruction performance and successfully
implements a large scaling factor. However, training this net-
work requires an extremely large dataset and requires more
training time and skills. In addition, the network only uses a
single-scale convolution kernel, and it is difficult to extract
feature information at different scales.

B. NETWORKS
Based on the above four SR frameworks, researchers have
applied different network design strategies to construct vari-
ous SR networks with distinctive characteristics.

DRCN [19] and DRRN [20] are typical models that apply
recursive learning to the pre-sampling framework, which
stacks multiple identical layers or units in a recursive man-
ner to increase the network depth. Shared weights between
recursive modules prompt the network to greatly reduce the
introduced parameters and gain a larger receptive field to
learn more features. However, recursive learning easily leads
to the inherent degradation of deep networks, so it often needs
to be combined with residual learning.

Residual learning only learns residual mappings to recover
high-frequency information, which avoids direct conversion
from LR to HR images. Therefore, it solves the overfit-
ting problem of deep networks and improves the conver-
gence speed. Unlike DRCN, DRRN replaces a recursive layer
consisting of a single convolutional layer with a recursive
block consisting of several residual units. ResNet [12] and
VDSR [13] applied local residual learning and global residual
learning to a pre-sampling framework, respectively. Inspired
by this, DRRN introduces skip connections in both local
residual units and the global network, which reduces the
difficulty of training deep models and alleviates the vanishing
or exploding gradient problem.
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Compared with a simple linear network, the multipath
structure designed by DRRN further facilitates learning,
in which the residual path can learn high-frequency features,
and the identity path transmits rich early image information
to the later layers and promotes gradient back propagation.
Based on the residual module proposed by Kim [12], Huang
introduced dense connections [15]. Unfortunately, this results
in an exponential increase in computational complexity and
applies a single-size convolution kernel to both the residual
and dense modules.

FIGURE 2. Multiscale projection units (MSPUs). (a) Up multiscale
projection unit. (b) Down multiscale projection unit.

Multipath learning aims to transfer diverse feature settings
through multiple branches of the model and fuse these ele-
ments to provide better performance. Under the progressive
upsampling framework, LapSRN [26] introduced global mul-
tipath learning, which predicts the sub-band residuals with
a feature extraction path and reconstructs different scaling
HR images through multipath signal flow. Under the post-
sampling framework, MSRN [25] introduced local multipath
learning, which achieves adaptive detection of image fea-
tures at different scales using the proposed multiscale feature
extraction module. Multiple branches can extract image fea-
tures of different aspects and continuously exchange infor-
mation with each other during propagation, further enhancing
the ability to learn and extract features.

However, all of the above SR networks learn one-way
mapping from LR to HR in a feed-forward manner. This
feed-forward structure prevents early layers from effectively
utilizing useful information from later layers. Therefore,
a few SR algorithms introduce a feedback mechanism that
allows the model to convert the output into input to correct
the previous state. DBPN [18] proposed an iterative error
feedback based on iterative up- and down-sampling layers to
enable the network to implement a self-correcting procedure.
SRFBN [27] uses hidden states in an RNNwith constraints to
construct a feedback module to drive the feedback stream and
generate powerful high-level representations. However, all of
these feedback networks use a single-scale kernel to learn the
mapping functions.

To the best of our knowledge, there is no model that
integrates local multiscale feature learning into a feedback
network for SR.

III. MULTISCALE RECURSIVE FEEDBACK NETWORK
We first focus on the details of MSPU in the network in
Section 3.1, which is divided into up and down MSPUs
(Fig. 2 (a) and (b)). The feedback module composed of the
recursive multiscale projection group (MSPG) is described
in Section 3.2. Finally, we divide into three main modules to
specifically analyze the MSRFN in Section 3.3 (Fig. 1).

A. MULTISCALE PROJECTION UNIT
Inspired by the idea of GoogleNet [28], we introduce a mul-
tiscale convolution kernel in the projection unit, in which
we construct two branch networks and apply different scale
convolution kernels to different branches to capture image
features at different scales. Such local multipath learning is
introduced not only to make information sharing between
different bypasses, but also to help make full use of the local
features. According to the iterative up and down sampling
framework, up and down MSPUs are designed for upsam-
pling and downsampling operations, respectively.

1) UP MULTISCALE PROJECTION UNIT
As shown in Fig. 2(a), the up MSPU mainly consists of six
steps to map the LR feature, Lg−1, to the HR feature,Hg. The
details are as follows.

Step 1: Using the previously calculated LR feature map,
Lg−1, as input, and, respectively, using deconvolution layers
with kernels of different sizes, D↑u1 and D↑u2, to perform
upsampling operations on two branches, Lg−1 is mapped into
the HR feature maps, Hg

u1 and H
g
u2.

Hg
u1 = D↑u1(L

g−1) (1)

Hg
u2 = D↑u2(L

g−1) (2)

D↑u1 and D↑u2 represent Deconv1(k1, n) and Deconv2(k2, n),
respectively; k1 and k2 represent the kernel size, and n repre-
sents the number of kernels.

Step 2: Concatenating the HR feature maps, Hg
u1 and Hg

u2,
and using convolution layers with kernels of different sizes,
C↓u1 and C↓u2, to perform downsampling operations on two
branches, the concatenated HR feature map is mapped into
the LR feature maps, Lg

u1 and Lg
u2.

Lgu1 = C↓u1([H
g
u1,H

g
u2]) (3)

Lgu2 = C↓u2([H
g
u1,H

g
u2]) (4)

C↓u1 and C↓u2 represent Conv1(k1, 2n) and Conv2(k2, 2n),
respectively. Here, the number of channels in each branch
is 2n.

Step 3: Concatenating the LR feature maps, Lgu1 and Lgu2,
and using a 1× 1 convolution to perform feature pooling and
dimension reduction, two LR maps are merged into the LR
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feature map, Lg
u, to achieve cross-channel feature fusion.

Lgu = Cu([L
g
u1,L

g
u2]) (5)

Cu represents Conv(1, n), and the number of channels in each
branch becomes n from 2n. In addition, the 1×1 convolution
adds non-linear activation to the learning representation of
the previous layer to improve the expression ability of the
network.

Step 4: The residual, egu, is obtained by calculating the
difference between the observed LR map, Lg−1, and the
reconstructed LR map, Lgu .

egu = Lgu1 − L
g−1 (6)

Step 5: Two deconvolution layers with kernels of differ-
ent sizes, D↑e1 and D↑e2, are used to upsample the residual,
egu, on the two branches. The residual in the LR space is
mapped to the HR space, producing new residual HR feature
maps, Hg

e1 and H
g
e2.

Hg
e1 = D↑e1(e

g
u) (7)

Hg
e2 = D↑e2(e

g
u) (8)

D↑e1 and D↑e2 represent Deconv1(k1, n) and Deconv2(k2, n),
respectively, and the number of channels in each branch is n.

Step 6: Concatenating the residual HR feature maps, Hg
e1

and Hg
e2, and summing with HR feature maps concatenated

in step 2, the HR feature map, Hg, obtained by a 1 × 1
convolution is the final output of the up-MSPU.

Hg
= Ch

([
Hg
u1,H

g
u2

]
+
[
Hg
e1,H

g
e2

])
(9)

Ch represents Conv(1, n). The number of channels is 2n
after summing, and then Conv(1, n) reduces the number of
output channels to n, which is consistent with the input. Both
the input and output of the MSPU have the same number
of channels. This structure allows multiple MSPUs to be
mutually connected.

2) DOWN MULTISCALE PROJECTION UNIT
As shown in Fig. 2(b), a down-multiscale projection unit was
defined. Its function is to map the input HR feature,Hg, to the
LR feature, Lg. Details are as follows.
Step 1: Taking the HR feature map, Hg, from the previous

upMSPU as input, and using two convolution layers,C↓d1 and
C↓d2, with kernels of different sizes to perform upsampling
operations on two branches,Hg is mapped into the LR feature
maps, Lgd1 and L

g
d2.

Lgd1 = C↓d1
(
Hg) (10)

Lgd2 = C↓d2
(
Hg) (11)

C↓d1 and C↓d2 represent Conv1(k1, n) and Conv2(k2, n),
respectively, and k1 and k2 represent the size of the kernels.
Step 2: Concatenating the LR feature maps, Lgd1 and Lgd2,

and using deconvolution layers with kernels of different sizes,
D↑d1 and D↑d2, to perform upsampling operations on two

branches, the concatenated LR feature map is mapped into
the HR feature maps, Hg

d1 and H
g
d2.

Hg
d1 = D↑d1

([
Lgd1,L

g
d2

])
(12)

Hg
d2 = D↑d2

([
Lgd1,L

g
d2

])
(13)

D↑d1 andD
↑

d2 represent Deconv1(k1, 2n) andDeconv2(k2, 2n),
respectively. The number of channels in each branch is 2n.
Step 3: The HR feature maps, Hg

d1 and Hg
d2, are concate-

nated and sent to a 1×1 convolution to obtain the HR feature
map, Hg

d .

Hg
d = Cd

([
Hg
d1,H

g
d2

])
(14)

Cd represents Conv(1, n), and the number of channels in each
branch is changed from 2n to n.
Step 4: The residual, egd , is obtained by calculating the

difference between the observed HR map, Hg, and the recon-
structed HR map, Hg

d .

egd = Hg
d1 − H

g−1 (15)

Step 5: Two convolution layers with kernels of different
sizes, C↓e1 and C↓e2, are used to downsample the residual,
egd , on the two branches. The residual in the HR space is
mapped to the LR space, producing new residual LR feature
maps, Lge1 and L

g
e2.

Lge1 = C↓e1
(
egd
)

(16)

Lge2 = C↓e2
(
egd
)

(17)

C↓e1 andC
↓

e2 represent Conv1(k1, n) and Conv2(k2, n), respec-
tively, and the number of channels in each branch is n.
Step 6: Concatenating the residual LR feature maps, Lge1

and Lge2, and summing with LR feature maps concatenated
in step 2, the LR feature map, Lg, obtained by a 1 × 1
convolution, is the output of the down-multiscale projection
unit.

Lg = Cl
([
Lgd1,L

g
d2

]
+
[
Lge1,L

g
e2

])
(18)

Cl represents Conv(1, n). The number of channels is 2n after
summing, and then Conv(1, n) reduces the number of output
channels to n, which is the same as the input.

B. RECURSIVE MULTISCALE PROJECTION GROUP
The feedforward structure only maps the rich representation
of the input space to the output space, and this one-way map-
ping is limited to the LR features from the input space. An up
MSPU followed by a down MSPU constitutes a multiscale
projection group, which can project LR multiscale features to
HR space and then back to LR space. Let the output of the pre-
vious projection groupmodulate the input of the next iteration
to form feedback. As the feedback flow alternates between
the up- and down-sampling processes, the projection residual
is fed into the sampling layer, and then local residual feedback
is employed to change the solution to form a self-correcting
process iteratively. Multiple recurrent MSPGs are considered
an efficient iterative process to optimize reconstruction errors
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to capture the interdependence between LR and HR images
more deeply and enhance the utilization of local features.
Significantly, our entire network uses only one MSPG, and
recursive learning allows it to be shared among all recursive
stages, which greatly increases the network depth without
increasing the network capacity. In addition, our network can
directly obtain the HR feature output from the MSPG at each
stage and then fuse the HR features of different depths from
each iteration.

To control the number of parameters and reduce the com-
putational complexity, many network models use a 3 × 3
convolution to complete the feature mapping. This can avoid
the increase in computational cost and the decrease in conver-
gence speed caused by large-scale convolution kernels, but at
the expense of a part of the reconstruction performance. How-
ever, recursive MSPG implements the iterative utilization of
theMPU, which not only greatly promotes the shared weights
and reduces the parameters, but also suppresses the limitation
that the large-scale kernel brings slow convergence speed and
may produce suboptimal results. This allows our network
to design large-scale kernels with multibranched structures.
Hence, each branch of our MSPU uses a large-scale kernel
such as 10 × 10, which can extract more image features and
improve the reconstruction result.

C. NETWORK STRUCTURE
TheMSRFN ismainly divided into three components: feature
extraction, feedback, and reconstruction modules, as shown
in Fig. 1. Significantly, because global residual learning is
applied, the entire network takes the original LR image as
input and only needs to learn the residual image between the
HR image and the interpolated LR image. Here, let conv(f , n)
denote the convolution layer, where f is the size of the kernel
and n is the number of channels. The introduction of these
three modules is as follows:

The original LR image, ILR, is input into the feature-
extraction module to produce the initial LR feature map, L0.

L0 = f0 (ILR) (19)

The feature extraction module is composed of two convo-
lution layers, conv(3, n0) and conv(1, n). n0 is the number
of channels in the initial LR feature extraction layer. n is the
number of input channels in MSPG. It first uses conv(3, n0)
to generate shallow features L0 with LR image information
from the input ILR, and then uses conv(1, n) to reduce the
number of channels from n0 to n.
Subsequently, the initial LR feature map, L0, flows into the

feedback module formed by the recursive MSPG and outputs
a series of HR feature maps, Hg.

For g in G,

Hg
= f gFM

(
Lg−1

)
, 1 ≤ g ≤ G, (20)

where G represents the number of MSPGs equivalent to
the total recursion time. f gFM represents the feature mapping
process of theMSPG at the g-th stage in the feedbackmodule.

TABLE 1. The settings of input patch sizes and network parameters.

When g is 1, the initial LR feature map L0 is taken as the
input of the first MSPG, and when g is greater than 1, the LR
feature map Lg−1 generated by the previous MSPG is taken
as the current input.

The reconstruction module is expressed as follows:

IRes = fRM
([
H1,H2, · · · ,Hg

])
(21)

Here,
[
H1,H2, · · · ,Hg

]
represents the deep concatenation

of multiple HR feature maps. fRB represents the operation
of the reconstruction module, which concatenates a series of
HR feature maps generated in the feedback module and then
flows across conv(3, 3) to generate a residual image, IRes.

Through the global residual skip connection, the final out-
put SR image can be expressed as

ISR = IRes + fUS
(
ILR
)

(22)

Here, fUS represents an upsampling operation with interpo-
lation. According to the given scaling factor, bilinear inter-
polation is applied to enlarge the original input image ILR

to the target size (other interpolation algorithms may also be
used, e.g., bicubic interpolation). Then, the interpolation LR
image bypassing the main body of the network is transferred
to the end of the network and summed with the reconstructed
residual image IRes to generate the final image ISR.

As their name implies, different modules play different
roles in our deep neural network, and the three major modules
constitute our SR framework. Assuming that the number of
MSPGs is g, the network contains a total of (10g+ 3) layers.
Two layers were used for the feature extraction. (5 + 5)
∗ g layers were used for feature mapping in the feedback
module, and one layer was used for the final reconstruction.
We abstract these modules by defining multiple basic blocks
and parameterizing the modules in the network in a concise
manner. Owing to the introduction of modules in network
design, we can change the depth of the network by only
changing G, which makes it more convenient to train the net-
work with different depths or different numbers of MSPGs.
In addition, it is easier to migrate to any upsampling factor
with only minor adjustments to the network parameters.
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TABLE 2. Quantitative comparisons of the MSRFN with 20 algorithms for ×2, ×3, and ×4 SR. Red numbers denote the best performance.
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TABLE 2. (Continued.) Quantitative comparisons of the MSRFN with 20 algorithms for ×2, ×3, and ×4 SR. Red numbers denote the best performance.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
The performance of the MSRFN was evaluated using sev-
eral benchmark datasets. We first introduce the experimental
setting, evaluation metrics, and implementation details, then
provide the quantitative comparison results with mainstream
methods, and finally show the visualization results of dif-
ferent methods from the perspective of qualitative analysis.
Comparative analysis of various SRmodels demonstrated the
superiority of the MSRFN.

A. IMPLEMENTATION AND TRAINING DETAILS
1) EXPERIMENTAL PLATFORM
The operation system is win10, the CPU is Intel Core i5-7500,
and the GPU is NVIDIA RTX-2080. All experiments were
completed using the deep learning framework Pytorch 1.2.0,
and the accelerator library was CUDA Toolkit 10.0.

2) DATASETS AND METRICS
We used 800 images in DIV2K [23] as the training set.
DIV2K contains 800 2 K resolution train images collected
from the Internet. Rotation and flipping are used for data
augmentation to fully utilize the training data [14]. During
the test, we selected PSNR and SSIM [22] as metrics to eval-
uate SR image quality on five standard benchmark datasets:
Set5 [32], Set14 [33], BSD100 [34], Urban100 [35], and
Manga109 [36]. The Set5 dataset has 5 images (‘‘baby,’’
‘‘bird,’’ ‘‘butterfly,’’ ‘‘head,’’ ‘‘woman’’). The Set14 dataset
is a dataset consisting of 14 images. The BSD100 dataset
has 100 test images and it is composed of a large variety
of images ranging from natural images to object-specific
such as plants, people, food etc. The Urban100 dataset con-
tains 100 images of urban scenes. Manga109 is composed
of 109 manga volumes drawn by professional manga artists
in Japan. They are commonly used for testing performance
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TABLE 3. Quantitative comparisons of the MSRFN with 11 algorithms for ×8 SR. Red numbers denote the best performance.

of SR models. The larger the metric value, the better is
the reconstruction performance. To be consistent with the
existing network, all evaluations were performed only on the
luminance channel (Y).

3) TRAINING SETTINGS
We set the batch size to 16. To take full advantage of themem-
ory resources and contextual information from LR images,
we feedRGB image patcheswith different patch sizes accord-
ing to the upscaling factor (Table 1), which are used for
training together with the corresponding HR patches. Bicubic
down sampling is used as the degradation model to produce
LR images from the ground truth HR image. We apply the
method proposed by He et al. [37] to initialize the weights
and use theADAM [38] optimizer to optimize the parameters.
The learning rate was initialized to 0.0001 and decayed by
half per 200 epochs. We adopted L1 loss to train the network.

We designed different kernel sizes and padding in each
branch of the MSPU and adjusted the sizes of the kernels
and strides according to the corresponding scaling factors.
Table 1 lists the network parameter settings for the different
SR factors. Both the input and output of the network use
RGB color channels. Except for the reconstruction layer at
the end of the network, PReLU [37] was used as the activation
function behind all the convolution and deconvolution layers.

B. COMPARISON OF RESULTS AND DISCUSSION
For four different scale factors (×2, ×3, ×4, and ×8),
we qualitatively and quantitatively compared MSRFN with
other latest SR models on five test sets with different char-
acteristics. Set5, Set14, and B100 mainly contain natural
scenes; Urban100 is composed of many regular patterns in
urban scenes and focuses onman-made structures with details
in different frequency ranges; Manga109 is comic datasets
drawn by Japanese artists.

1) QUANTITATIVE ANALYSIS
Table 2 presents the results of quantitative comparisons. It can
be seen that in these five datasets, MSRFN has higher objec-
tive evaluation metrics in terms of PSNR and SSIM. This
proves that the MSRFN is not only inclined to construct
regular artificial patterns, but also good at reconstructing
irregular natural patterns. In particular, our training sets do
not contain any comic images, but excellent experimental
results are shown for Manga109, which indicates that the
MSRFN has excellent performance in reconstructing images
with fine-structure information such as comic characters.
In short, the MSRFN is superior in adapting to various scene
features and possesses remarkable SR results for images with
different characteristics.

For small enlargement factors (×2,×3,×4), we compared
the MSRFN with 21 advanced methods, as shown in Table 2.
Because many models are not suitable for a large-scale factor
SR (×8), theMSRFN is compared with 11 advancedmethods
on ×8, as shown in Table 3. For ×2 enlargement, MSRFN
obtains the best PSNR results in five benchmark datasets, and
the SSIM values of the MSRFN are only slightly lower than
MSRN in BSD100, Urban100, and Manga109. However, for
the×3,×4, and×8 enlargements, the MSRFN is superior to
all other models in terms of PSNR and SSIM. As the upscal-
ing factor increased, the superiority became relatively more
obvious. Especially for ×8 SR, it proves the effectiveness of
MSRFN to enlarge the image with a large factor, which can
generate HR components better than other networks.

2) QUANTITATIVE ANALYSIS
For qualitative analysis, Figs. 3 to 17 display the visual effects
of multiple SR works in the above five datasets with different
scaling factors.

For small SR factors (×2, ×3, and ×4), we compared the
MSRFN with eight mainstream methods: bicubic, SRCNN,
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FIGURE 3. Visualization results for ppt3 (from Set14) for ×2 SR.

FIGURE 4. Visualization results for baboon (from Set14) for ×3 SR.

FSRCNN, SCN, DRCN, DRRN, VDSR, and LapSRN. Fig. 3
shows the visualization results for the ×2 SR. Owing to
the low magnification, the gap between different models is
subtle, but in contrast, the MSRFN still shows an obvious
advantage. The text in our reconstructed image is clearer,
there is no blur or adhesion between the letters, and the first
letter ‘‘M’’ recovered from seven CNN-based networks (from
SRCNN to LapSRN) has a crack that should not exist, but
MSRFN has avoided this defect very well. Figs. 4 and 5 show

FIGURE 5. Visualization result for Belmondo (from Manga109) for ×3 SR.

FIGURE 6. Visual result for Belmondo (from Set4) for ×4 SR.

the visualization results for the×3 SR. For the natural image
‘‘baboon,’’ the MSRFN restores sharper beard patterns than
other models; for the comic image ‘‘Belmondo,’’ the edges of
the patterns reconstructed by other models have obvious blur
artifacts, while the MSRFN accurately predicts the edges and
details of patterns. Fig. 6 shows the visualization results for
the×4 SR. For the image ‘‘Belmondo’’ with irregular charac-
teristics in Fig. 6, the eye patterns recovered by other models
all suffer from different degrees of blurring, but MSRFN
can recover more high-frequency information and details so
that the reconstructed pattern contains sharp and accurate
edges. For the image ‘‘img_096’’ with regular characteristics
from Urban100 (Fig. 7), the edge features recovered by
other models are obviously affected by the ringing effect and
checkerboard artifacts, but MSRFN successfully eliminates
these negative effects and reconstructs clearer patterns of
building and window, which are very close to original HR
image in comparison.
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FIGURE 7. Visualization results for img_096 (from Urban100) for ×4 SR.

FIGURE 8. Visualization results for butterfly (from Set5) for ×8 SR.

For a large SR factor (×8), we compared the MSRFN with
seven mainstream methods: bicubic, SRCNN, FSRCNN,
SCN, VDSR, LapSRN, and MSRN in five benchmark
datasets (Figs. 8-17). As shown in Fig. 8, the MSRFN has
an excellent reconstruction effect for irregular speckle pat-
terns, while the SR results from other models lose more edge
details and have a relatively severe blurring. Fig. 12 shows
that the MSRFN can reconstruct clear text even on large
scaling factors, and other models have difficulty in estimating

FIGURE 9. Visualization results for 302008 (from BSD100) for ×8 SR.

FIGURE 10. Visualization results for img_001 (from Urban100) for ×8 SR.

FIGURE 11. Visualization results for img_044 (from Urban100) for ×8 SR.

high-frequency information because of insufficient fea-
ture utilization, which reduces the ability to recover text
details. In Fig. 9, the other models predict the wrong stripe
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FIGURE 12. Visualization results for ppt3 (from Set14) for ×8 SR.

FIGURE 13. Visualization results for img_055 (form Urban100) for ×8 SR.

FIGURE 14. Visualization results for AkkeraKanjinchou (from Manga109)
for ×8 SR.

direction owing to their weak ability to recover high-
frequency components, but the MSRFN recovers the high-
frequency texture details to the greatest extent and the
correct direction. Figs. 10, 11, and 13, show the visualiza-
tion results of images on Urban100, from which it can be
seen that the MSRFN surpasses other advanced models in
the reconstruction performance of images containing regu-
lar modes with more mid- and high-frequency information.
Figs. 14 to 17 show the reconstruction results of the comic
images with more complex and fine textures. Other methods
have difficulty in estimating high-frequency details such that
SR images have smooth edges and blur artifacts, but the

MSRFN results have finer details such as sharper edges and
contours.

FIGURE 15. Visualization results for byebyec-boy (from Manga109)
for ×8 SR.

FIGURE 16. Visualization results for MariaSamaNihaNaisyo for ×8 SR.

FIGURE 17. Visualization results for Hamlet (from Manga109) for ×8 SR.

Owing to the loss of information during image degrada-
tion, especially the loss of high-frequency information, these
CNN-based SR models still recover smooth image edges.
As the scaling factor increases, the edge blurring becomes
more severe. However, MSRFN can suppress the smooth
component and predict more high-frequency information,
which can make SR images with sharper edges and contours,
and to a great extent alleviate the interference of checker-
board artifacts and ringing effects. Surprisingly, MSRFN still
retains this advantage at large scaling factors, generating the
SR results closest to the ground truth in comparison.
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The above qualitative and quantitative comparisons and
analyses show that the MSRFN has a persuasive reconstruc-
tion performance. Compared with feed-forward networks,
it focuses on refining well-developed information; compared
with single-scale networks, it can focus on fine details and
generate finer high-level representations. It can not only cap-
ture image features on multiple context scales and mine more
mutual dependencies between LR and HR images, but also
create contextual information from LR input, which can save
HR features better, even in the face of large scaling factors.

V. CONCLUSION
We propose a multiscale recursive feedback network for
image super-resolution. Unlike single-scale networks, the
proposed multiscale projection unit can adaptively capture
image features with different scales by constructing a two-
bypass structure with different kernels, in which feature infor-
mation can be shared between different bypasses to fully
use the local features of images. Unlike feed-forward net-
works, we design recursive multiscale projection groups to
form feedback modules that can effectively enhance features.
We also combine local and global information by the fusion
of local multiscale residual features and global residual fea-
tures. The feedback flow exploits the high-level information
extracted from deep layers to refine the low-level features
from shallow layers, which improves the early reconstruction
performance of the MSRFN. Furthermore, a combination
of global residual learning and local residual feedback can
encourage feature reuse and provide more contextual infor-
mation for the final reconstruction. Therefore, MSRFN not
only focuses on fusing local information and global informa-
tion, but also pays attention to combining low-level details
with high-level abstract semantics, which helps to produce
more faithful results to the ground truth. The experimental
results show that the MSRFN achieves encouraging perfor-
mance and is superior to other advanced SR methods, espe-
cially for large-scale factors (such as ×8).
Future research improvements mainly have the following

directions. If there is noise in images, the performance of SR
methods might become worse. We will study SR methods
for noisy images by the integration of denoising methods
[54]–[58]. In training, ADAM optimizer is commonly used
in many SR studies. The use of other optimization algorithms
[59]–[63], such as particle swarm optimization algorithm
[64]–[66], might improve the SR performance in our future
study. As theMSRFN has achieved good performance for×8
SR, we also intend to apply it to higher SR rates such as×16
and develop a single model performing multiscale super-
resolution in our future study.
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