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Abstract. We describe multiscale representations for data observed on equispaced grids and
taking values in manifolds such as the sphere S2, the special orthogonal group SO(3), the positive
definite matrices SPD(n), and the Grassmann manifolds G(n, k). The representations are based
on the deployment of Deslauriers–Dubuc and average-interpolating pyramids “in the tangent plane”
of such manifolds, using the Exp and Log maps of those manifolds. The representations provide
“wavelet coefficients” which can be thresholded, quantized, and scaled in much the same way as
traditional wavelet coefficients. Tasks such as compression, noise removal, contrast enhancement, and
stochastic simulation are facilitated by this representation. The approach applies to general manifolds
but is particularly suited to the manifolds we consider, i.e., Riemannian symmetric spaces, such as
Sn−1, SO(n), G(n, k), where the Exp and Log maps are effectively computable. Applications to
manifold-valued data sources of a geometric nature (motion, orientation, diffusion) seem particularly
immediate. A software toolbox, SymmLab, can reproduce the results discussed in this paper.
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1. Introduction.

1.1. The challenge. The current “data deluge” inundating science and tech-
nology is remarkable not merely for the often-mentioned volumes of data but also for
the rapid proliferation in new data types. In addition to the old standby of simple nu-
merical arrays, we are starting to see arrays where the entries have highly structured
values obeying nonlinear constraints.

Many such examples can be given. We have in mind data arrays of the form p(t),
p(x, y), or p(x, y, z), where t, x, y, z run through equispaced values in a Cartesian
grid, and p takes values in a manifold M . Consider these examples:

• Headings. Here p specifies directions in R2 or R3, and so M is either the unit
circle S1 ⊂ R2 or the unit sphere S2 ⊂ R3. Such data can arise as a time
series of observations of vehicle headings.

• Orientations. Here p gives “tripods,” i.e., orientations belonging to M =
SO(3). Such data can arise as a time series of aircraft orientations (pitch,
roll, yaw).

• Rigid motions. Here p specifies rigid motions in the special Euclidean group
M = SE(3). Such data can arise as a time series of placements of an object
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in space (position, orientation), or as a spatially organized array giving the
displacements and orientations of marker particles having undergone a defor-
mation.

• Deformation tensors. Here p is a symmetric positive definite matrix in M =
SPD(n). Spatially organized data of this kind can arise from measurements of
strain/stress and deformation in materials science and earth science. Arrays
of this kind also arise in cosmological measurements of gravitational lensing.

• Distance matrices. Here each p is an n×n matrix giving the pairwise distances
between all pairs in a cloud of n points. Time series of this kind can arise as
representing the state of a swarm of maneuvering vehicles, each of which can
sense its distance to all other members of the swarm.

• Projections, subspaces. Here p is a projector with k-dimensional range or,
what is the same thing, a k-subspace of Rn. Such values belong to the
Grassmann manifold G(k, n). Time series of this kind can arise in array
signal processing, where the subspace is associated with the signal-generating
sources.

The proliferation of novel data types presents a challenge: find data representa-
tions which are sufficiently general to apply to many data types and yet respect the
manifold structure.

1.2. Our approach. In this article, our goal is to generalize wavelet analysis
from the traditional setting of functions indexed by time or space and taking real
values to the case where functions, still indexed by time or space, take values in a
more general manifold M . We discuss two basic approaches: (a) interpolatory schemes
and (b) midpoint-interpolatory schemes. Each gives a meaningful generalization of
wavelet analysis to the manifold case; the second one is most appropriate for “noisy”
data. However, strictly speaking, this is not a wavelet analysis in the traditional
sense. Our “wavelet” transform generates arrays which are organized like wavelet
coefficients, stratified by location and scale, but the values in the array are more
complex. It might also be called a pyramid transform; however, that terminology is
more typically used for transforms which are overcomplete (i.e., n data points result
in more than n coefficients), whereas the transforms we describe take n values and
produce n “coefficients.”

The approach we discuss requires the computation of differential-geometric Exp
and Log maps associated with the manifold M ; for some spaces this task will be easier
than for others. We focus here on the Riemannian symmetric spaces, where the notion
of midpoint is well defined, and we have implemented our proposals extensively in a
wide range of example spaces. The spaces we have studied all involve in some way
the general linear group GL(n).

• Subgroups of GL(n). We treat the special orthogonal group and special Eu-
clidean group which allow us to handle orientations and rigid motions.

• Quotients of GL(n). We treat various quotient spaces of GL(n), includ-
ing Grassmann manifolds, Stiefel manifolds, and the special case of spheres.
These allow us to handle subspaces of Rn and to handle headings (direction
fields) in Rn.

• Jordan algebras. We treat the manifold of symmetric positive definite matri-
ces SPD(n), allowing us to handle deformation tensors and diffusion tensors.

All our examples are in some way representable using the general linear group
GL(n) and the differential-geometric Exp and Log maps and involve, as we show, as-
tute use of the matrix exponential and matrix logarithm. Taking the matrix logarithm
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and matrix exponential as given efficiently computable primitives, our algorithms are
computationally practical, giving order O(n) algorithms for wavelet analysis and re-
construction.

1.3. Our contributions. In addition to developing a general approach to mul-
tiscale analysis which works for many specific manifolds, we consider three key appli-
cation areas:

• Compression: approximately representing an M -valued dataset using few
bits.

• Noise analysis/removal : understanding “noise” in M -valued data, represent-
ing its properties, and separating noise from signal.

• Feature extraction: representing specific properties of an M -valued dataset
in terms more amenable to pattern recognition.

Our approach provides a unified viewpoint for these practical tasks, completely par-
alleling the wavelet approaches which have proven so successful with real-valued data
and which are easily implemented in software. In effect, in our examples, real-valued
wavelet coefficients are replaced by matrix-valued coefficients.

At a higher level we contribute the following:
1. Practical tools. We have developed a toolbox of MATLAB m-files able to

handle time series and spatial arrays of M -valued data. Called SymmLab,
it is patterned after the earlier MATLAB toolboxes WaveLab [3] for wavelet
analysis and BeamLab [5] for beamlet analysis. See the companion article [1]
and the website at http://www-stat.stanford.edu/∼symmlab/.

2. Awareness of M -valued data. We make an effort to call attention to the
wide range of application areas in which manifold-valued data are now being
gathered.

3. Understanding. In generalizing “wavelet” analysis from R-valued to M -valued
data, certain new concepts arise which were not evident in the R case; an
example is the fact that wavelet coefficients must live in the tangent space
while coarse-scale coefficients of “father wavelets” live in the manifold.

4. Inertia and compression. The constructions we describe make geodesic mo-
tions highly compressible. Such motions correspond to p(t) evolving in time
on the manifold without external forces, i.e., inertial motions in M . Hence,
in our representation, inertial motions are highly compressible, which has
advantages for systems which often operate inertially.

5. Open problems. In effect we define a class of nonlinear refinement schemes:
interpolating and average interpolating refinement schemes in the tangent
space. It is empirically quite clear that these nonlinear schemes have the same
smoothness properties as their linear counterparts. Proofs for the smoothness
of the limits of those schemes remain to be found. Perhaps this article will
mobilize some interest and efforts in the direction of a solution for these
nonlinear refinement schemes.

1.4. Relation to other work. The work described here has been underway
for five years, and it was presented at a meeting on constructive approximation in
Charleston, SC in 2001 [14] and at the meeting on curves and surfaces in Saint Malo,
France in 2002 [15].

We are aware of several groups working on refinement schemes for manifold data
independently of us and will attempt to mention them. There are other approaches
to refinement schemes on manifolds: The Wallner–Dyn work [35] differs from our ap-
proach in that it requires only the ability to compute geodesics, not the full Log/Exp
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formalism, and easily generates low-smoothness schemes. On the other hand, the pro-
cedure proposed here accommodates very high-order approximation and appears to
allow arbitrarily high degrees of smoothness by the selection of D large; see section 8.2.

We are aware of work in progress on manifold-valued data by Peter Oswald of
International University Bremen and by Thomas Yu of Rensselaer Polytechnic Insti-
tute, as an adjunct [36, 37]. We also mention that, although we have not pursued
it here, our work can easily generate refinement schemes for quaternions. Quater-
nionic splines are popular in computer graphics, essentially because quaternions may
be used to represent SO(3)-valued data. An entry into this literature may be provided
by [2, 22, 23, 30] and subsequent literature.

2. Classical multiscale transforms. We now quickly review some basic nota-
tion and constructions associated with multiscale representations for real-valued data
and with the properties of such constructions. We focus on two kinds of refinement
schemes and the transforms they generate.

2.1. Interpolating approach. Each approach to multiscale representation that
we describe has three ingredients: a multiscale pyramid summarizing a function f :
R �→ R across scales and locations, a refinement scheme, showing how to impute fine-
scale behavior from coarse-scale behavior, and a wavelet analysis scheme, combining
the first two elements.

2.1.1. Pyramid of point evaluations. Let tj,k = k/2j denote the kth dyadic
point at scale j. This collection of dyadic rationals is dense in R, and each collection
(tj,k)k at one fixed scale makes a grid Z/2j . Because of the nesting Z/2j ⊂ Z/2j+1

this set of points is redundant; indeed,

tj,k = tj+1,2k, j, k ∈ Z;

the “novel” points in (tj+1,k)k not already present in (tj,k) come at the tj+1,2k+1

which fall halfway between the points in the grid Z/2j .
Suppose now we are given a uniformly continuous function f : R �→ R. It is

determined by its values at the dyadic rationals, which can be organized into the
array of point values

βj,k = f(tj,k), j ≥ 0, k ∈ Z.

This collection of values provides a multiscale pyramid—one which we will later im-
prove. It obeys the two-scale relation

βj,k = βj+1,2k, j, k ∈ Z;

at scale j+1, the novel information in (βj+1,k)k not already present in scale j’s array
(βj,k)k is contained in the midpoint values βj+1,2k+1. However, if f has any smooth-
ness, βj+1,2k+1 will typically be close to what one would expect from the coarse-scale
values. Later we define wavelet coefficients measuring the deviation between βj+1,2k+1

and the “expected” value. First, we define a notion of what to “expect” at midpoints
based on refinement schemes.

2.1.2. Interpolating refinement schemes. The Deslauriers–Dubuc (DD) re-
finement scheme [10, 11, 17] works as follows. Starting from real-valued data f(k)
available at the integers k, it interpolates values at all the dyadic rationals k/2j by
successive refinement through a series of stages. At the first stage, the original data,
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Fig. 1. DD interpolation at a single scale and location. Values at four sites k = −1, 0, 1, 2, a
cubic polynomial π0,0 interpolating the values, and the imputed value at 1/2.

f(k), are used to impute values at the half-integers f̃(k/2) by a two-scale refinement
scheme. Afterwards, values are available at all integers and half-integers. At the sec-
ond stage, the same two-scale refinement scheme is applied to those values, yielding
values at the quarter integers, and so on. In this way, one can fill in values at all
binary rationals.

At the center of the process is the DD two-scale refinement scheme. Let D be an
odd integer.

In discussing two-scale refinement, we speak of the coarser scale, where values are
already known, and a finer scale, where they will be imputed. The coarser scale at
the jth stage consists of integer multiples tj,k = k/2j of a dyadic fraction 2−j , and the
finer scale consists of integer multiples tj+1,k of the next smaller fraction 2−(j+1). To
obtain the imputed values at the fine scale, we recall that the points k/2j belonging to
the coarse-scale grid also belong to the fine-scale grid (2k)/2j+1, so the imputations
are immediate:

f̃((2k)/2j+1) = f(k/2j).

To get values at odd multiples of 2−j−1, say 2k + 1, we apply a simple local rule. We
collect the D + 1 values located at the D + 1 closest coarse-scale sites to the fine grid
location of interest. We fit a polynomial πj,k(t) interpolating those values:

πj,k(k
′/2j) = f̃(k′/2j), |k′ − k| < (D + 1)/2

(the polynomial is unique). We then evaluate the fitted polynomial in the midpoint
of interest, getting the imputed value

f̃((k + 1/2)/2j) ≡ πj,k((k + 1/2)/2j).

The process of fitting a polynomial and imputing a value is illustrated in Figure 1.
Results from applying this rule through several stages appear in Figure 2, in which

a Kronecker sequence is refined, turning a coarsely sampled “spike” into a (visually)
smooth “bump.”
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Fig. 2. Successive applications of two-scale DD refinement, starting from a Kronecker sequence
at the integers (red x’s). Convergence is visually evident.

This full multiscale process results in values defined at all the binary rationals; in
fact, these values are uniformly continuous and have a unique continuous extension
to the reals. This extension is not merely continuous but Hölder regular of order R,
where R grows with D. See section 2.3.1.

2.1.3. Interpolatory wavelet transform. Given an interpolatory refinement
scheme, we can build a wavelet transform [11]. The two-scale refinement scheme just
discussed furnishes us with an operator which, starting from values βj,k = f(k/2j),

k ∈ Z, imputes values at midpoints β̃j+1,2k+1 = f̃((k + 1/2)/2j); defining wavelet
coefficients by midpoint deflection,

αj,k = 2j/2(f(k + 1/2)/2j)) − f̃((k + 1/2)/2j)), k ∈ Z, j ≥ 0

= 2j/2(βj+1,2k+1 − β̃j+1,2k+1), k ∈ Z, j ≥ 0.

We are explicitly measuring the difference between the observed and imputed values
at midpoints (k+1/2)/2j halfway between coarse-scale gridpoints k/2j and (k+1)/2j .
In addition to the fine-scale information at j ≥ 0, we need the coarse-scale information

β0,k = f(k), k ∈ Z.

Taken together, the information in the coarse-scale samples (β0,k)k and in the
wavelet coefficients ((αj,k)k∈Z)j≥0 allows us to reconstruct any continuous f . Indeed,
the information in (β0,k)k already provides the coarse-scale samples f(k). We then use

the samples (f(k))k and apply two-scale refinement, getting imputations f̃(k + 1/2);
then rewriting

f(k + 1/2) = f̃(k + 1/2) + (f(k + 1/2) − f̃(k + 1/2)),

we see that

β1,2k+1 = β̃1,2k+1 + αj,k/2
j/2;
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and, of course,

β1,2k = β0,k, k ∈ Z,

so that the (α0,k)k and (β0,k)k together allow us to reconstruct (β1,k)k. Continuing
in this way, we reconstruct ((βj,k)k)j≥0; i.e., we get f at all dyadic rationals.

2.2. Average-interpolating approach. We now turn to schemes based on
averages rather than point values.

2.2.1. Pyramid of block averages. Define the dyadic intervals Ij,k = [k/2j ,
(k + 1)/2j), j, k ∈ Z; again j is the scale parameter and k is a location index. The
intervals at a single scale partition the line, and there is the two-scale refinement
relation

Ij,k = Ij+1,2k ∪ Ij+1,2k+1.

Consider now, for a given integrable function f , the pyramid of values

βj,k = Ave{f |Ij,k}, j, k ∈ Z.

This gives averages over intervals spanning a range of dyadic scales and locations, and
such information characterizes the function f . Noting that

Ave{f |[0, 1]} = (Ave{f |[0, 1/2)} + Ave{f |[1/2, 1)})/2,
we see that the pyramid is redundant, obeying the two-scale relation

βj,k = (βj+1,2k + βj+1,2k+1)/2.

Moreover, if f has any smoothness, then βj+1,2k+1 is expected to be close to βj,k;
we now develop refinement schemes to predict fine-scale behavior from coarse-scale
coefficients and a wavelet transform to remove the redundancy.

2.2.2. Average-interpolating refinement schemes. Average-interpolating
(AI) refinement works in a fashion paralleling the DD scheme but is based on lo-
cal averaging over dyadic intervals Ij,k, as opposed to point sampling at dyadic points
tj,k [12, 20]. It starts from averages β0,k over intervals of unit length. It then gener-

ates data β̃j,k at finer scales by successive refinement through a series of stages. At

the first stage, averages β̃1,k are imputed for dyadic intervals of length 1/2 by the
following device. We fix D as an even integer. We then, for each interval I0,k, collect
the D + 1 coarse-scale values at integral sites k′ closest to k and fit a polynomial
π0,k(t) average-interpolating those values:

Ave{π0,k(t) : t ∈ I0,k} = β0,k, |k′ − k| < (D + 1)/2.

We then impute by evaluating the averages of this polynomial over finer scale intervals:

b̃1,2k+ℓ ≡ Ave{π0,k(t) : t ∈ I1,2k+ℓ}, ℓ = 0, 1.

See Figure 3.
Given imputed averages over dyadic intervals of length 1/2, we now treat all those

averages as given data at a newly defined coarse scale and repeat the above two-scale
refinement to impute averages at the dyadic intervals of length 1/4; we next impute
averages over intervals of length 1/8, and so on. The process is illustrated in Figure 4.

The full multiscale process results in averages defined at all the dyadic intervals;
in fact, there is a unique continuous function f̃ consistent with those averages. Fur-
thermore, f̃ is not merely continuous but Hölder regular of order R, where R grows
with D [12]. See section 2.3.1.
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Fig. 3. Average interpolation at a single scale and location. Averages at five adjacent intervals
I0,k, k = −1, 0, 1, 2, a quartic polynomial π0,0 interpolating the values, and the imputed averages at
I1,0 and I1,1.
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Fig. 4. Successive applications of two-scale AI refinement, starting from a Kronecker sequence
at the integers. Convergence is visually evident.

2.2.3. AI wavelet transform. The AI refinement scheme also leads to a wavelet
transform; see [12]. The two-scale refinement operator gives a way to pass from coarse-
scale averages (βj,k)k to imputed fine-scale averages (β̃j+1,k)k. We then define wavelet
coefficients

αj,k = 2j/2(βj+1,2k+1 − β̃j+1,2k+1), k ∈ Z, j ≥ 0.

These measure the deviation between the behavior of fine-scale averages and the
anticipated behavior imputed from coarse scales.
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Equipped with (β0,k)k and ((αj,k)k∈Z)j≥0, we can reconstruct f by a pyramid
process. We start with the coarse-scale averages (β0,k) and coarse-scale wavelet coef-
ficients (α0,k) and combine them to produce averages

β1,k = Ave{f |I1,k}, k ∈ Z.

Indeed, we simply apply the two-scale refinement operator to the (β0,k), obtaining

imputed averages (β̃1,k)k, and then set

β1,2k+1 = β̃1,2k+1 + 2−j/2α0,k;

we also set

β1,2k = (2β0,k − β1,2k+1).

This enforces the coarse/fine consistency constraint

β0,k = (β1,2k + β1,2k+1)/2.

Then we have reconstructed all averages at scale j = 1. Repeating this process, we
obtain averages at scale j = 2, then at scale j = 3, etc. The function f is given as the
limit of these averages.

2.3. Properties of wavelet constructions. These multiscale constructions
have three key properties.

2.3.1. Smoothness. The fundamental and surprising fact about both refine-
ment schemes, AI and DD, is the smoothness of refinement limits. Iterative two-scale
refinement, applied to data at a fixed coarse scale, yields a sequence of imputed val-
ues consistent with a smooth function, having R continuous derivatives, where R
depends on the degree D and on the type of scheme (AI/DD). Deslauriers and Dubuc
showed that, for the DD scheme, the four-point neighborhood gave CR solutions with
R = 1.99+. For the AI scheme, R(5) is almost 2 as well [12]. Moreover, with increas-
ing values of D, the regularity increases, growing roughly proportionally to D. See
[7, 38].

It follows from this that, for either the DD or the AI wavelet transform, if the
wavelet coefficients vanish beneath some fixed scale, then the object reconstructed
from those coefficients will have CR smoothness for the same R as the refinement
scheme. So setting fine-scale wavelet coefficients to zero is a kind of “smoothing”
operation.

2.3.2. Coefficient decay. We mention two decay properties of wavelet coeffi-
cients:

• If f(t) follows a polynomial of degree D or less, the wavelet coefficients vanish.
This follows immediately from the fact that the polynomial interpolation will
yield imputed values which are perfectly accurate.

• Suppose that f(t) is an R-times differentiable function. Suppose also that
the order D of the DD or AI scheme is greater than R. Then the wavelet
coefficients obey

|αj,k| ≤ C · 2−j(R+1/2), j ≥ 0.

This gives them a rather rapid decay as one goes to finer scales.
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2.3.3. Coefficients of noise. Let (zk) be a sequence of random “noise” values,
independently and identically distributed N(0, 1), say. Fix a scale J > 0, and consider
a function f which is simply piecewise constant on dyadic intervals IJ,k:

f = zk on IJ,k.

This is a kind of “pure noise” function, at least at scales 0 ≤ j < J . The AI wavelet
coefficients of such a “noise” function are themselves basically noise, weakly dependent
and with variance independent of location and of scale 0 ≤ j < J . In short, the AI
wavelet coefficients of “pure noise” are random but roughly the same size at all scales
and locations and roughly independent. This fact is fundamental to wavelet-based
denoising methods.

Note that the DD wavelet coefficients do not have such constant variances; in fact,
getting noisier at fine scales, this makes them unsuited for noise-removal applications.

3. Multiscale representations for manifold-valued data. We now develop
tools to represent a function p : R �→ M , where M is a smooth manifold. Informally
this is the case p(t), where t runs through the “time domain.” In a later section
we will discuss the p(x, y) “space domain” case. We will see that the interpolating
wavelet transform and AI wavelet transform have natural analogues in this M -valued
setting.

3.1. Manifold notation/concepts. We use standard notation associated with
manifolds; for more details, see [26, 32]. The manifold has at each p0 ∈ M a tangent
space Tp0

(M) consisting of vectors θ corresponding to derivatives of smooth paths
p(t) ∈ M , t ∈ [−1, 1], with p(0) = p0. We let d denote the dimension of the manifold;
the tangent space is d-dimensional as well.

The manifolds we are interested in all are conventionally viewed as Riemannian
manifolds, with a metric on the tangent space. If for tangent vectors θ we adopt a
specific coordinate representation θi, this quadratic form can be written

∑

ij gij(p)θiθj
(in the cases of interest the metric gij is typically the trivial δij , so that the metric
is Euclidean). Now, between any two points p0 and p1 in the manifold, there is (at
least one) shortest path, having arclength ℓ(p0, p1). Such a geodesic has an initial
position, p0, an initial direction, θ/‖θ‖2, and an initial speed, ‖θ‖2. Geodesics are
important because they follow inertial paths on the manifold—the result of smooth
motion without external forces.

The procedure of fixing a vector in θ ∈ Tp(M) as an initial velocity for a (constant-
speed) geodesic establishes an association between Tp0

(M) and a neighborhood of p
in M . This association is one-to-one over a ball of sufficiently small size in Tp0

(M)—
up to the so-called injectivity radius ρ. The association is formally captured by the
exponential map p1 = Expp0

(θ). Within an appropriate neighborhood Np0
of p0,

the inverse map—the so-called logarithm map—is well defined, taking Np0
⊂ M into

Tp0
(M). Formally, this correspondence is written as θ = Logp0

(p1) and is illustrated
in Figure 5.

We are interested only in manifolds for which Log/Exp maps can be explicitly
given; examples will be provided below.

3.2. M-valued interpolatory approach. Clearly, the interpolatory pyramid
βj,k = p(tj,k) makes just as much sense as in the R-valued case, has the same
“hard” redundancies βj+1,2k = βj,k, and has the same “expected” redundancies
βj+1,2k+1 ≈ βj,k for smooth functions. We first discuss how to “predict” coarse-to-
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Fig. 5. A manifold, its tangent plane, and the correspondence between a line in the tangent
plane and a geodesic in the manifold.

fine on manifolds, giving M -valued two-scale refinement schemes, and then describe
a wavelet pyramid (αj,k)j,k removing the redundancy from (βj,k)j,k.

3.2.1. Interpolatory refinement on manifolds. Given a sequence p(k), k ∈
Z, taking values p(k) ∈ M , we can (often) impute data at the half-integers by a
scheme which might be called “DD in the tangent space.”

Fix an odd integer D, for example 3. To get an imputation p̃(1/2), we use the
data p(ℓ) at the D + 1 integer sites ℓ nearest to 1/2. Letting p0 = p(0), we then map
these points to the tangent plane Tp0

(M) via

θ(ℓ) = Logp0
(p(ℓ)), ℓ = −(D − 1)/2, . . . , (D + 1)/2.

The resulting θ(ℓ) belong to a vector space, and it makes sense to add, scale, sub-
tract, and so on. We take a basis (ej) for this vector space, getting a d-dimensional
coordinate representation with coordinates (τ1, . . . , τd):

θ(ℓ) =

d
∑

i=1

τi(ℓ)ei.

We now apply the DD idea to each of the real-valued sequences (τi(ℓ))
(D+1)/2
ℓ=−(D−1)/2,

fitting an interpolating polynomial π to each, thus obtaining a midpoint value τ̃i(1/2)
for each coordinate. These imputed coordinates specify an imputed vector

θ̃(1/2) =
d

∑

i=1

τ̃i(1/2)ei.
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Fig. 6. Interpolatory refinement scheme for M-valued data at a single scale and location.
(a) Points at four consecutive times, k = −1, 0, 1, 2, are mapped to the tangent plane by the loga-
rithm. (b) Fitted polynomial curve and imputed midpoint.
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Fig. 7. Interpolatory refinement scheme. (a) One step of DD refinement scheme on the sphere.
(b) Successive iterations of DD refinement for SO(3)-valued data.

From this, we obtain an imputed point on the manifold by exponentiating:

p̃(1/2) = Expp0
(θ̃(1/2)).

The process is illustrated in Figure 6, which considers the case where M is the
sphere S2 in R3.

The points p(−1), p(0), p(1), p(2) on the manifold M are shown in Figure 6(a),
as well as the tangent plane Tp0

(M) and the points lifted to it at θ(−1), θ(0), θ(1),
θ(2). Finally, the polynomial curve π in the tangent plane and the imputed points at
θ̃(1/2) and p̃(1/2) are shown in Figure 6(b).

This process can be repeated at other sites k, obtaining p̃(k + 1/2) from p(k −
(D − 1)/2), . . . , p(k + (D + 1)/2) for all k, thus filling in imputed data at all the
half-integers. It can be applied to the resulting samples/imputations at integers and
half-integers to obtain imputations at the quarter-integers, and so on. An example is
given in Figure 7, again where M is the sphere S2 in R3. We have implemented this
scheme on numerous manifolds (see below), always with satisfactory results.

There is one conceivable obstacle to this approach: the data p(k) associated with
a local neighborhood may not all be capable of being mapped onto one single tangent
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plane. This can happen if some of the D + 1 points are farther from p(0) than the
injectivity radius of the Exp map. Associated with a given base point p0, there will
be a specific neighborhood Np0

in M on which Log and Exp are one-to-one. If the
data p(ℓ), ℓ = −(D− 1)/2, . . . , (D+1)/2, do not all lie inside that neighborhood, one
can imagine that certain problems will occur. At the same time, it is conceivable that
the data all lie inside such a neighborhood, but the imputed point lies outside that
neighborhood, in which case additional problems might be anticipated.

There is also an untidy aspect, in that we must apparently make a choice of coor-
dinates in Tp0

(M), and it is conceivable that this affects the results of our procedure
in some way. This turns out not to be a problem; the approach is invariant to linear
changes of coordinates on the tangent space.

3.2.2. An interpolatory pyramid transform for M-valued data. Given
an interpolatory refinement scheme for M -valued data, we can construct a pyramid
transform for function p : R �→ M very analogous to the classical interpolatory wavelet
transform.

We start from data sampled at the coarsest scale β0,k = p(k); then we apply one
scale of refinement, obtaining imputed midpoints p̃(k + 1/2). We then compare the
imputed midpoints to the actual ones:

α0,k = Logp̃(k+1/2)(p(k + 1/2)), k ∈ Z.

We can repeat this process at finer scales, starting from point samples at scale j,

βj,k ≡ p(k/2j), k ∈ Z,

using these to impute samples halfway in between,

p̃((k + 1/2)/2j), k ∈ Z,

and defining the wavelet coefficients

αj,k = Logp̃((k+1/2)/2j)(p((k + 1/2)/2j)), k ∈ Z.

From the coarse-scale samples (β0,k) and the wavelet coefficients ((αj,k)k∈Z)j≥0,
one can recover p at all dyadic rationals. Indeed, one takes the coarse-scale samples
(β0,k), imputes data at the half-integers, getting (β̃1,2k+1)k, and then sets

β1,2k+1 = Expβ̃1,2k+1
(α0,k), k ∈ Z.

Equipped then with values of p at the half-integers, one again applies two-scale refine-
ment to get imputed values (β̃2,k)k. The values at the fourth-integers are available
via β2,2k = β1,k at even sites, and

β2,2k+1 = Expβ̃2,2k+1
(α1,k),

and so on.
In Figure 8 we give a simple example, with M the sphere S2. A motion on the

sphere consists of two segments, each one part of a great circle. The wavelet coefficients
are vectors. The figure displays the Euclidean norm of the wavelet coefficients as a
function of scale and location. At each scale, there are only a few nonzero coefficients,
and these all occur in the vicinity of the “kink” in the motion.
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Fig. 8. (a) Motion on sphere consisting of two segments, each one part of a great circle.
(b) Frobenius norm of S2-wavelet coefficients as a function of scale and location.

3.3. Midpoint-interpolating approach. We now develop the analogue of AI
wavelet transform for manifolds. Since “averages” are not immediately defined for
manifolds, we define a convenient notion, the midpoint, and the pyramid of midpoints.
We then give the analogues of refinement and wavelet transform.

3.3.1. Midpoint pyramid. We now define a pyramid of values mj,k ∈ M mea-
suring (in some vague sense) “midpoints” of an M -valued function over intervals Ij,k.
This is based on a coarsening operator which generates midpoints of point-pairs.

Given a pair of points m0,m1 ∈ M , suppose that there is a unique geodesic
connecting them. Then there is a unique midpoint on that geodesic, m1/2, say. If M is
Euclidean space, of course, then m1/2 is just the arithmetic mean. More generally, we
can regard this as a replacement for the arithmetic mean of two points in a manifold
and label it Mid{m0,m1}; but it is well defined only when m0 and m1 are closer
together than the injectivity radius of the manifold.

A midpoint pyramid in M , ((mj,k)k)j≥j0) is a set of points in M obeying the
coarsening relation

mj,k = Mid{mj+1,2k,mj+1,2k+1}, k ∈ Z, j ≥ j0.

It is assumed that Mid is always well defined here, i.e., that every pair has a unique
midpoint. In practice this means that the coarsest scale j0 is constrained to not be too
large, so that the midpoints stay close to the data in the associated dyadic intervals.

3.3.2. Midpoint-interpolating refinement. The midpoint-interpolating
(MI) refinement scheme for M -valued data starts from values m0,k at the integers k,
which will be called “midpoints” for the reasons given below. It then generates im-
puted midpoints m̃j,k at all finer scales through a series of stages, repeatedly applying
a two-stage refinement scheme which might be called “average interpolation in tangent
space.”

At the first stage, a midpoint m̃1,k is imputed for each dyadic interval Ij,k of
length 1/2 by the following device. We fix D as an even integer, for example 4.
We then, for each k at the coarse scale, collect the D + 1 coarse-scale values m0,k′

corresponding to dyadic intervals closest to Ij,k. We convert those values to tangent
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Fig. 9. MI refinement. (a) One step of refinement on a sphere. (b) Several iterations on SO(3)
data.

vectors in Tp0
(M), where p0 = mj,k, via

θ(ℓ) = Logp0
(m0,k+ℓ), −D/2 ≤ ℓ ≤ D/2.

We again adopt coordinates (τ i) on Tp0
(M) and fit a polynomial πi

0,k(t) to each
coordinate separately by average-interpolation:

Ave{πi
0,k(t) : t ∈ I0,k′} = τ i(ℓ), |k′ − k| < (D + 1)/2.

We then impute averages to the coordinates at the finer scale:

τ̃ i1,2k+ℓ = Ave{πi
0,k(t) : t ∈ I1,2k+ℓ}, ℓ = 0, 1.

Using the coordinates, we impute vectors by

θ̃1,2k+ℓ =

d
∑

i=1

τ̃ i1,2k+ℓei, ℓ = 0, 1.

Finally, we jump back to the manifold

m̃1,2k+ℓ = Expp0
(θ̃1,2k+ℓ), ℓ = 0, 1.

We now have available midpoints over dyadic intervals of length 1 and 1/2; by
treating those as givens and repeating the above steps we can impute midpoints at the
intervals of length 1/4. Continuing in this way we get values at intervals of length 1/8,
and so on. The process is illustrated in Figure 9.

This process results in midpoints defined at all the dyadic intervals; it seems there
is a unique continuous function p̃(t) consistent with those averages.

In fact, more seems to be true: the refinement of a sequence of coarse-scale points
on the manifold β0,k produces an imputed result β̃j,k which has CR regularity, where
R grows with D is the regularity of the underlying DD refinement scheme.
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3.3.3. MI wavelet transform. The MI refinement scheme also leads to a
wavelet transform, based on a midpoint pyramid rather than an average pyramid.
The two-scale refinement operator gives a way to pass from coarse-scale midpoints
(mj,k)k to imputed fine-scale midpoints (m̃j+1,k)k. We then define wavelet coeffi-
cients

αj,k = 2j/2Logm̃j+1,2k+1
(mj+1,2k+1), k ∈ Z, j ≥ 0.

These measure the deviation between the behavior of fine-scale midpoints and the an-
ticipated behavior imputed from coarse scales. We also define coarse-scale coefficients

β0,k = m0,k.

Equipped with (β0,k)k and ((αj,k)k)j≥0, we can reconstruct p by the now-familiar
pyramid algorithm. We take the coarse-scale midpoints (β0,k) and coarse-scale wavelet
coefficients (α0,k) and combine them to produce midpoints (β1,k)k.

To carry this out, we simply apply the two-scale refinement operator to the (β0,k),
obtaining imputed midpoints (m̃1,k)k and then setting

β1,2k+1 = Expm̃1,2k+1
(2−j/2α0,k)

and defining each m1,2k+1 by the pyramid consistency relation

β0,k = Mid(β1,2k, β1,2k+1).

This reconstructs the midpoints at scale j = 1. Repeating this process, we obtain
midpoints at scale j = 2, then at scale j = 3, etc.

3.4. Properties of wavelet coefficients.

3.4.1. Structural properties. This approach makes vivid an important struc-
tural distinction between coarse-scale information β0,k and the fine-scale information
αj,k. The βj,k always belong to the manifold M , while the αj,k always belong to
a tangent space Tj,k ≡ Tβ̃j+1,2k+1

(M). This generalizes the real-valued case, where

the manifold and tangent space are both copies of R, and so this distinction is not
evident.

Since the wavelet coefficients belong to a vector space, it makes perfect sense to
scale them, to operate on them with linear algebra, to quantize them, and even to set
them to zero. After such operations, applying the reconstruction algorithms discussed
above will yield an object which is slightly different; this can be put to use.

3.4.2. Inertial motion. If p(t) describes a constant speed path along a geodesic,
then all the interpolatory/midpoint interpolatory wavelet coefficients vanish. Indeed,
each consecutive sequence of D + 1 values in the pyramid will correspond to equi-
spaced points on the geodesic. Each sequence of equispaced points on a geodesic
will transform, under the logarithm map, into a straight line in the tangent space.
The DD/AI schemes both preserve straight lines (linear functions of t) [11, 12]. Ac-
cordingly, the imputed point in tangent space will lie along that same line, midway
between its neighbors; applying the exponential map, the imputed point on the man-
ifold will lie on the geodesic, midway between its neighbors at the coarser scale. The
wavelet coefficients obey the formula

αj,k = 2j/2Logβ̃j+1,2k+1
(βj+1,2k+1),

which vanishes if βj+1,2k+1 is the geodesic midpoint of βj,k and βj,k+1, as just shown.
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Fig. 10. S2-wavelet coefficients of noise, of a smooth curve, and of a noisy curve.

Alternately, we can say that inertial motions have vanishing wavelet coefficients.
Indeed, inertial motions evolve within a manifold without external applied forces, and
thus pursue geodesic trajectories. Hence their wavelet coefficients vanish. Ultimately,
this means that very simple motions, with no active forces, are highly compressible
and require only coarse-scale data to represent them.

3.4.3. Coefficient decay. We measure the size of vectors αj,k in the tangent
space Tj,k according to the Euclidean norm ‖αj,k‖2. Importantly, this measure of size
is invariant to the choice of (orthogonal) basis for Tj,k; it is also an intrinsic measure,
agreeing with the geodesic distance between the coarse-scale-derived imputation of
fine scale behavior, β̃j+1,2k+1, and the actual value, βj+1,k.

Suppose that M is a CR smooth manifold, with smoothness index R > 2, and
that p(t) describes an R-times differentiable path through M . Suppose also that the
order D of the DD or AI scheme is greater than R. Then the wavelet coefficients obey

‖αj,k‖2 ≤ C · 2−j(R+1/2), j ≥ 0, k ∈ Z.

These are in some sense exact analogues of comparable properties in the classical
wavelet case and show that, for objects which are smooth, the wavelet coefficients
decay geometrically with scale.

3.4.4. Coefficients of noise. The reader may remark that the coefficient nor-
malization we have chosen, with 2j/2 factors, in section 3.3.3 is designed to make the
wavelet coefficients similar to classical wavelet coefficients in another way: so that,
in the presence of “white noise,” they will be roughly stable as a function of scale
and position. To illustrate the scaling behavior of coefficients, we give an example
of what happens in the case of the sphere M = S2. Figure 10 illustrates behavior
in three instances cutting across smooth and noisy cases. First, it considers the MI
wavelet coefficients of a “noise sequence” consisting of data defined by piecewise con-
stant behavior on dyadic intervals IJ,k with random values on those intervals. As can
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be seen, the size of typical wavelet coefficients in that case is independent of scale.
Second, it considers the MI wavelet coefficients for a smooth function of time. As
can be seen, the size of typical wavelet coefficients decays linearly on a log-log scale,
consistent with the previous subsection. Third, it considers a smooth function with a
certain degree of noise. As can be seen, the size of typical wavelet coefficients behaves
at coarse scales like those of a smooth function and at fine scales like those of a pure
noise.

4. Manifolds with tractable Exp/Log maps. An important special case of
the above “general manifold” viewpoint comes when M is a Riemannian symmetric
space. This special case gives a class of manifolds rich enough to model all the data
types we mentioned in the introduction and small enough to be very tractable. A
Riemannian symmetric space [21, 24] is a Riemannian manifold with a globally defined
notion of reflection symmetry. In such manifolds, each pair of points (p0, p1) with a
well-defined midpoint p1/2 defines a natural isometry about the midpoint, exchanging
the roles of p0 and p1 and leaving p1/2 fixed. We specialize to this case here, which
has certain advantages when considering midpoint interpolation. We also specialize
to the case where M is the subspace or quotient space of the manifold GL(n) of n×n
matrices. Our choices have the advantage that it is straightforward to compute Log
and Exp, typically involving just the matrix logarithm and matrix exponential.

In this section we review our manifolds of interest, first discussing the calculation
of Log and Exp maps and then reviewing the connections of our work to Lie algebras.

4.1. Simple examples. M = R; the reals. Here Tp(M) is just R, and Expp0
(θ)

= p0 + θ, while Logp0
(p1) = (p1 − p0). Hence both Exp and Log are linear. Our

formulations for M -valued data will, in this case, of course reduce to the DD and AI
schemes.

M = R+; the positive reals. Here Tp(M) = R, and Expp0
(θ) = exp(θ) · p0,

while Logp0
(p1) = log(p1/p0). Hence both Exp and Log involve the classical expo-

nential and logarithm functions. Our M -valued framework thus provides a notion of
refinement and decomposition of strictly positive data.

M = S1; the circle. We have two options. On the one hand, regard S1 as the unit
circle in the complex plane. Then Tp(M) = R, and Expp0

(θ) = exp(
√
−1θ) ·p0, while

Logp0
(p1) = arg(p1/p0), with all formulas interpreted as involving complex arithmetic

and analytic functions. On the other hand, fitting better with our general approach,
instead regard S1 as the collection of real-valued matrices

p =

[

c s
−s c

]

, c2 + s2 = 1.

Then Tp(M) is viewed as the collection of skew-Hermitian matrices

θ =

[

0 a
−a 0

]

,

and we equip the tangent space with the Euclidean metric |a|, inducing a Riemannian
metric. Now Expp0

(θ) = exp(θ)p0 and Logp0
(p1) = log(p1p

−1
0 ), where products

mean matrix products, p−1
0 denotes matrix inverse, and exp and log denote matrix

exponential and logarithm. Both approaches give equivalent results.

4.2. GL(n) and subgroups. A simple but general class of cases comes from
the general linear group GL(n) of n× n real matrices and its subgroups.
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M = GL(n). Here Tp(M) is again GL(n), and the Riemannian metric is in-
duced by the Frobenius norm on the tangent space. Then Expp0

(θ) = exp(θ)p0 and
Logp0

(p1) = log(p1p
−1
0 ), where here products mean matrix products, p−1 denotes

matrix inverse, and exp and log denote matrix exponential and logarithm.

M = SO(n); the special orthogonal group. These are matrices in GL(n) with
pT p = I and Det(p) = 1. The tangent space Tp(M) is identified with the collection
of skew-Hermitian matrices; for example, in the n = 3 case, these take the form

θ =

⎡

⎣

0 a b
−a 0 c
−b −c 0

⎤

⎦.

The Riemannian metric is again induced from the Frobenius norm on the tangent
space. Again Expp0

(θ) = exp(θ)p0 and Logp0
(p1) = log(p1p

−1
0 ), where again standard

matrix interpretations are applied.

M = SE(n); the special Euclidean group. Elements are matrices in GL(n + 1)
with the form

p =

[

U v
0 1

]

, U ∈ SO(n), v ∈ Rn.

These act on x ∈ Rn by p[x] = Ux + v. The tangent space Tp(M) is identified with
the collection of matrices

θ =

[

θ0 v
0 0

]

, θ0 skew Hermitian, v ∈ Rn.

Again let the Riemannian metric be induced from the Frobenius norm on the tangent
space. Then Expp0

(θ) = exp(θ)p0 and Logp0
(p1) = log(p1p

−1
0 ), where again standard

matrix interpretations are applied.

4.3. Quotients of GL(n). M = Sn−1; the sphere in Rn. Now M is the
collection of vectors p ∈ Rn with unit length ‖p‖ = 1. This may be viewed as a
quotient of SO(n), taking an orthogonal matrix U and retaining only the first column;
hence M ≈ SO(n)/SO(n− 1). The tangent space Tp(M) is the collection of vectors
orthogonal to p, and so it is isomorphic to Rn−1. The Riemannian metric is again
induced from the Euclidean norm on the tangent space. Then

Expp0
(θ) = cos(‖θ‖)p0 + sin(‖θ‖)θ/‖θ‖.

If p1, p0 in M are not antipodal, then v = p1 − 〈p1, p0〉p0 �= 0 and we can define

Logp0
(p1) = arccos(〈p1, p0〉) · v/‖v‖2.

M = G(n, k); the Grassmannian manifold of k-planes in Rn [9, 21, 34]. For sim-
plicity, let 2k ≤ n. The k-planes are in a one-to-one relation with the orthoprojectors
of rank k, and we choose the orthoprojector representation. The tangent space can
be identified with the collection of matrices formed by differentiating a one-parameter
family of such projectors pt. Such a derivative has the representation

d

dt
pt |t=0 = UΘV T + V ΘUT ,
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where U and V are n× k, Θ is positive diagonal, and UTV = 0. We regard the triple
(U,Θ, V ) as a polar-coordinate representation of θ. The exponential is then

Expp0
(θ) = UC2UT + UCSV T + V CSUT + V S2V T ,

where C = cos(Θ), S = sin(Θ). For the logarithm, θ = Logp0
(p1), decompose the

operator p0p1 by singular value decomposition, getting

p0p1 = USWT ,

where S is k×k diagonal, and U and W are n×k partial orthogonal. Suppose without
loss of generality that diagonal entries in S obey 0 < Sii < 1, set C = diag((1−S2

ii)
1/2),

and Θ = arcsin(S). The matrix V = (W − UC)S−1 is orthogonal, and UTV = 0.
Then (U,Θ, V ) is the polar-coordinate representation of θ.

4.4. Symmetric matrices. M = SPD(n). This is the class of symmetric
positive definite matrices p, with tangent space Tp(M) the collection of symmet-
ric matrices. The Riemannian metric is induced by the locally weighted Frobe-

nius norm‖p−1/2
0 θ‖F . The local weighting gives this a different character from the

GL(n) matrix case; the composition rule for positive definite matrices (p0, p1) �→
p
1/2
0 p1p

1/2
0 also deviates from the GL(n) pattern. Here Expp0

(θ) = p
1/2
0 exp(θ)p

1/2
0

and Logp0
(p1) = log(p

−1/2
0 p1p

−1/2
0 ), where again standard matrix interpretations are

applied.

4.5. Fine point: Identification of tangent spaces. The “literal” tangent
space Tp0

for a submanifold M embedded in RN is, of course, the space of path
derivatives

d

dt
pt |t=0

of smooth paths passing through p0. We have used this crude identification above
only for the case M = Sn−1, in which case it gives each Tp0

(Sn−1) as a particular
(n − 1)-dimensional hyperplane in Rn. In other cases, we found it useful to pick a
coordinate system in the “literal” tangent space.

The Lie group examples GL(n), SO(n), and SE(n) all have the structure that
the tangent space literally has the form

Tp0
(G) = Ap0,

where G denotes the Lie group, A denotes the corresponding Lie algebra, and Ap0 de-
notes right multiplication of matrices in A by p0. With this structure understood, we
have identified the tangent space with the Lie algebra A. Thus, for SO(3), we iden-
tify the tangent space at each point with the algebra so(3) of 3 × 3 skew-Hermitian
matrices, and we write

Tp(SO(3)) ≃ so(3),

where it is now understood that we are speaking about so(3) as a coordinate system for
the literal tangent space. From this viewpoint, each literal tangent vector v = d

dtpt |t=0

is linked to its coordinate vector θ by

v = θ · p0.

This identification gives every tangent space a common algebraic structure and shows
us that the manifold G “looks the same,” in a very strong algebraic sense, at every
point.
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5. Implementation with digital data. So far, we have written as if our goal
were to represent an M -valued function p of a univariate continuum argument p :
R �→ M . In reality, data will be discretely sampled over an interval and might have
a two-dimensional or higher-dimensional domain. We briefly review the issues raised
in adapting the above ideas to those settings.

5.1. Data on the interval. It is well understood how to adapt the interpolating
and AI transforms to “life on the interval” [10, 12].

In the interpolating case suppose we have equispaced data p(tJ,k), k = 0, . . . , 2J .
We work fine-to-coarse computing the wavelet coefficients (αJ−1,k)k, then (αJ−2,k)k,
etc., stopping at some sufficiently coarse scale j0 where we have both wavelet coeffi-
cients (αj0,k)k and point values βj0,k = p(tj0,k). There are 2j wavelet coefficients at
scale j and 2j0 + 1 (βj0,k)k’s.

The wavelet coefficients are computed as in the earlier interpolating case. We take
the D + 1 sites k′ nearest to k, map the βj,k to the tangent space, fit interpolating
polynomials to the coordinates, impute at the midpoint tJ,2k+1, and define αJ−1,k as
2(J−1)/2Logp̃(tJ,2k+1)(p(tJ,2k+1)). An important dissimilarity in the approach comes
at the boundaries, t = 0 and t = 1, for which there was no analogue when the domain
was R. The phrase “sites k′ nearest k” picks different configurations for k near zero
and 2j than at the interior of the interval. Near the middle of the interval, the
collection of sites k′ involved in the interpolation is symmetrically disposed about the
midpoint k. However, if k is 0, then all the sites k′ participating in the interpolatory
fit will lie to the right of k; while if k is 2j , all the sites k′ will lie to the left of k.
Given these remarks, interpolatory reconstruction works as one would expect, after
making the obvious adaptations.

In the MI case, we have fine-scale midpoint data mJ,k, k = 0, . . . , 2J −1. We then
compute the midpoint pyramid by working fine-to-coarse, setting

mj−1,k = Mid(mj,2k,mj,2k+1), j ≥ j0, 0 ≤ k ≤ 2j−1.

We calculate the wavelet coefficients αj,k by a straightforward adaptation of earlier
ideas. We take the D + 1 intervals Ij,k′ nearest to k, map the mj,k′ to the tangent
space at mj,k, fit AI polynomials to the coordinates, impute averages to the subin-
terval IJ,2k+1, and define αJ−1,k as 2(J−1)/2Logm̃J,2k+1

(mJ,2k+1). Again the approach
self-modifies at the boundaries, t = 0 and t = 1, for which there was no analogue
when the domain was R. The phrase “intervals Ij,k′ nearest Ij,k” picks different con-
figurations for k near zero and 2j than at the interior of the interval. Near the middle
of the interval, the collection of intervals Ij,k′ involved in the average interpolation
is symmetrically disposed about the interval Ij,k. However, if k is 0, then all other
intervals Ij,k′ participating in the interpolatory fit will lie to the right of Ij,k; while
if k is 2j , all other intervals Ij,k′ will lie to the left of Ij,k. Given these remarks,
midpoint-interpolatory reconstruction works as one would expect.

5.2. Two-dimensional data. Suppose now that we have data p(x, y), where
(x, y) runs through an equispaced Cartesian grid. The preceding ideas adapt to this
setting in the following way.

In the interpolatory case, we think of the operation that takes the array βj ≡
(βj,k)

2j

k=0 into the two arrays βj−1 ≡ (βj−1,k)
2j−1

k=0 , αj−1 ≡ (αj,k)
2j−1

k=0 as a rewriting
rule (βj−1, αj−1) = Rj(β

j).
First, we define the two-dimensional point evaluation pyramid βj,k1,k2

=
p(tj,k1

, tj,k2
), where 0 ≤ ki ≤ 2j . We view this array, for one fixed scale j, as a
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Fig. 11. Results of partial reconstruction using only 8 coarse-scale coefficients (left); reconstruc-
tion using only 28 intermediate wavelet coefficients (center); and the original, perfect reconstruction
from all 1024 coefficients (right).

matrix. Second, we apply rewriting twice, once in each direction. We apply rewrit-
ing to each column of the matrix, creating a new matrix; we then apply rewriting
to each row of the matrix. After a single decomposition step, our result is a matrix
with four rectangular subpanels. The top-left subpanel corresponds to coarse-scale
coefficients, β, and the remaining three subpanels correspond to wavelet coefficients,
α, in the vertical, the horizontal, and the vertical-horizontal directions. The output
involving β in each direction is used as input to the next coarser scale, while the
output involving α in at least one of the two stages is considered a wavelet coefficient
αv
j,k1,k2

, where v ∈ {0, 1}2, the label v indicating the directionality of the wavelet
coefficient. Reconstruction is accomplished by undoing the rewriting operations in a
coarse-to-fine fashion. AI analysis works in a very similar fashion.

6. Examples of multiscale representation. We now give some simple exam-
ples of multiscale representations based on the above ideas.

6.1. A trajectory on the sphere. We continue with the earlier artificial ex-
ample of the case M = S2. A “V”-shaped path on the sphere is shown in Figure 8(a);
it is actually a concatenation of two segments of great circles. The wavelet coeffi-
cients are vectors αj,k ∈ R2, and we depict the Euclidean norm of those vectors in
Figure 8(b), as a function of scale and location. It is evident that, at fine scales,
the nonzero coefficients occur only near the location of the “jerk,” where there is a
transition from one great circle to the other.

To underscore the fact that partial reconstructions based on only a few wavelet
coefficients can achieve substantial accuracy, we display in Figure 11 the results of
reconstruction using from 8 up to 1024 coefficients. It is evident that 20 coefficients
already provide a good visual representation.

6.2. Aircraft headings, I. We now consider a dataset of aircraft orientations
as a function of time. The data come from the flight data recorder (“black box”)
of USAir Flight 427, a Boeing 737 which crashed in September, 1994. The data
themselves were converted from pitch/roll/yaw form (Euler angles [25]) to time series
of orientations in SO(3). The raw data are illustrated in Figure 12(a) and display
mostly orderly behavior, with two “bumps” and then a catastrophic “swerve” at the
very end. The wavelet coefficients are 3 × 3 matrices in so(3), and their Frobenius
norms are displayed in Figure 12(b), as a function of scale and location. It is evident
that the coefficients are small except at the end of the time interval in question, when
the crash occurred.
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Fig. 12. (a) Orientations versus time for USAir Flight 427 and (b) Frobenius norm of its
so(3)-wavelet coefficients.

6.3. Aircraft headings, II. We consider another dataset of aircraft orienta-
tions as a function of time, this time with a happier connotation. The data were
supplied by Boeing Research Laboratories and give a time series of orientations from
a normal flight of a Boeing 737. Some of the raw data are illustrated in Figure 13(a),
at 5 samples per second, and display only orderly behavior. A stretch of wavelet
coefficients (more properly, their Frobenius norms) is displayed in Figure 13(b), as a
function of scale and location. It is clear from the near-constancy of wavelet coeffi-
cients at fine scales that the minor changes in orientation happening at those scales
are akin to white noise. However, the coefficients are larger in the middle of the series,
indicating perhaps turbulence.

6.4. Exchange rate data. We now consider a dataset p(t) of 2 × 2 symmetric
nonnegative definite matrices. The matrices are covariances between exchange rates
for the U.S. dollar versus the Euro and the U.S. dollar versus the British pound, within
a 10 day sliding window. Figure 16(a) shows the time series in which the symmetric
matrices are depicted as ellipses. The Frobenius norms of the wavelet coefficients are
depicted in Figure 16(b).

6.5. Diffusion tensor imaging data. We now consider a dataset p(x, y) with
x and y equispaced spatial coordinates and p being 3 × 3 symmetric nonnegative
definite matrices, obtained by diffusion tensor imaging. The data were obtained from
the laboratory of Brian Wandell at Stanford University. Figure 17(a) shows a segment
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Fig. 13. (a) Orientations versus time for a Boeing 737 and (b) norms of its so(3)-wavelet
coefficients. Note the rapid decrease at finer scales.

of such data in which the symmetric matrices are depicted as concentration ellipsoids
E(p) = {v : vT pv ≤ 1}. The two-dimensional version of our MI transform was chosen
with wavelet coefficients as symmetric matrices. The Frobenius norm of the wavelet
coefficients is given in Figure 17(b). The characteristic behavior of wavelet coefficients
of ordinary images is clearly seen: fine scales have only a few big coefficients, “around
the edges.”

6.6. Interferometric synthetic aperture radar data. We now consider a
dataset p(x, y) with x and y equispaced spatial coordinates and p ∈ S1, obtained by
interferometric synthetic aperture radar (SAR) [4]. Figure 18(a) shows the deforma-
tion signature of Hector Mine, CA during the earthquake of Oct. 16, 1999. Each color
cycle represents 2.8cm relative surface displacement. Figure 18(b) shows the norms
of the S1-wavelet coefficients.
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Fig. 14. Boeing 737 orientations, raw (a) and compressed 20:1 (b). Values of SO(3) compo-
nents (1, 2), (1, 3), (2, 3) (top to bottom).
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Fig. 15. Nonlinear approximation curve for Boeing 737 data. Number of coefficients versus
sum of error norms on a log-log scale.

7. Applications. We now sketch some of the basic applications which can be
developed using multiscale representations of M -valued data.

7.1. Data compression. A standard application of wavelet analysis for R-
valued signals is to data compression [16]. One applies a quantization and encoding
scheme to the wavelet coefficients, generating a bit stream which is later used to ap-
proximately reconstruct the wavelet coefficients and ultimately an approximation to
the original signal. Because the wavelet coefficients for M -valued data are organized
in a fashion similar to the ordinary wavelet coefficients, it is possible to use existing
ideas, such as tree-coding, immediately in this context. To illustrate this, we consider
the Boeing 737 data. These consist of 4096 observations of uneventful flight history
over 819 seconds, and so they are highly compressible. Figure 14(a) shows the val-
ues of SO(3) components, and Figure 14(b) shows the values after 20:1 compression.
Figure 15 shows the nonlinear approximation curve on a log-log scale.
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Fig. 16. (a) Time series of PSD(2)-valued data. (b) Frobenius norm of PSD(2)-wavelet
coefficients.

(a) (b)

Fig. 17. (a) A fragment of PSD(3)-valued image data. (b) Frobenius norms of PSD(3)-wavelet
coefficients of full image.

7.2. Noise removal. Another standard application of wavelet analysis for R-
valued signals is to noise removal [13]. One applies a thresholding to wavelet coef-
ficients, setting to zero those coefficients below a certain threshold. The resulting
coefficients are used to reconstruct an object from which much of the noise has been
removed. Because the wavelet coefficients for M -valued data are organized in a fashion
similar to the ordinary wavelet coefficients, it is possible to use existing ideas. One
has simply to set a threshold, this time for the Frobenius norm of the matrix-valued
wavelet coefficients.

To illustrate this, we consider Figures 19(a)–(b), which show noisy SPD(3) data
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(a) (b)

Fig. 18. (a) SAR interferogram (S1-valued data). (b) Norms of S1-wavelet coefficients.

(a) (b) (c) (d)

Fig. 19. Largest and smallest eigencomponents of noisy SPD(3) data derived from diffusion
tensor imaging ((a) and (c)) and after SPD(3)-wavelet denoising ((b) and (d)).

derived from diffusion tensor imaging, more specifically the largest and smallest eigen-
component. Figures 19(c)–(d) show the result of wavelet denoising. Note the improved
visual appearance.

7.3. Stochastic process generation. Our approach easily allows us to gener-
ate stochastic processes on manifolds which are analogous to Brownian motion and
other “fractal” models. To make such processes, we generate wavelet coefficients
which have (say) Gaussian-distributed coordinates and which are mutually indepen-
dent. We scale these coefficients according to level j, by a factor 2−jα, and take the
coarsest scale data either as zeros or generated according to some heuristic princi-
ple. An example is given in Figure 20, which shows a quasi-Brownian motion in S2.
Specifically, the case α = 1/2 behaves as a Brownian motion at fine scales but not at
the largest scales.

In this construction, the index α ≥ 0 controls the fractal dimension. If α = 0, we
have a sort of white noise; if α = 1/2, we have a pseudo-Brownian motion.

7.4. Contrast enhancement. Another standard application of wavelet analy-
sis for R-valued images is contrast enhancement [33]. One applies a scalar nonlinearity
to the wavelet coefficients at finer scales, increasing the sizes of moderately large coeffi-
cients between certain thresholds. The resulting coefficients are used to reconstruct an
object with stronger edge information. Because the wavelet coefficients for M -valued
data are organized in a fashion similar to the ordinary wavelet coefficients, it is easy
to transfer this idea to the case of M -valued imagery. One has simply to apply a
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Fig. 20. A quasi-Brownian motion on S2 generated from Gaussian random S2-wavelet coeffi-
cients.
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Fig. 21. Largest and smallest eigencomponents of noisy SPD(3) data derived from diffusion
tensor imaging ((a) and (c)) and after SPD(3)-wavelet contrast enhancement ((b) and (d)).

nonlinearity, this time to the Euclidean norm of the vector wavelet coefficient.

To illustrate this, we consider Figures 21(a)–(b), which show SPD(3) data derived
from diffusion tensor imaging, more specifically the largest and smallest eigencompo-
nent. Figures 21(c)–(d) show results from SPD(3)-wavelet-based contrast enhance-
ment. Note the improved visual appearance.

8. Discussion.

8.1. SymmLab software. SymmLab is a collection of MATLAB functions which
performs the computations described in this article. In the spirit of reproducible
research [3, 5], we are making it available to the research community at http://
www-stat.stanford.edu/∼symmlab/. SymmLab has been used by the authors to create
the figures used in this article, and the toolbox contains scripts which will reproduce
all the calculations of this paper. It includes about 200 MATLAB files, datasets, and
demonstration scripts. The current version (SymmLab 090) is our initial release and
accommodates data taking values in the following manifolds:

• SO(3)—rotation matrices.
• S1, S2—spheres in 2-space, 3-space.
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Fig. 22. Successive generations of interpolatory (DD) refinement on SO(3), as seen through
the behavior of the (1, 2) matrix entry. Note the similarity to Figure 2.
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Fig. 23. Successive generations of MI refinement on SO(3), as seen through the behavior of
the (1, 2) matrix entry. Note the similarity to Figure 4.

• G(n, k)—k-planes in Rn.
• PSD(n)—n× n positive definite matrices.

For this release, the data must be observed either at a sequence of equispaced
“times” or on an n× n grid of “pixels.” The current version contains demonstration
scripts which illustrate the following concepts: multiscale representation, “wavelet
coefficients,” noise removal, and data compression.

8.2. Smoothness equivalence conjecture. It appears to be the case that the
refinement schemes for M -valued data have the same regularity as their R-valued
counterparts. We say this based on numerous experiments with a range of manifolds.
A typical case was provided by M = SO(3). We considered a 32-long sequence
p(k) = I for −16 ≤ k < 16, k �= 0, and p(0) = exp(θ(0)), where

θ(0) =

⎡

⎣

0 0.1 0.1
−0.1 0 0.1
−0.1 −0.1 0

⎤

⎦.

In words, a slight pitch, roll, and yaw are experienced at time zero, but at other times
the orientation is static. We refined this sequence using the M -interpolatory scheme
based on DD in the tangent space with D = 3. The results are shown in Figure 22,
giving the 1, 2 coordinate of the 3 × 3 matrix LogI(p(tj,k)). The various iterations
are displayed in separate panels. Notice the striking similarity between the apparent
refinement limit and the ordinary DD refinement limit seen earlier in Figure 2.

We also refined using the MI scheme based on average interpolation with D = 6
in the tangent space. The results are shown in Figure 23; again note the striking
similarity between the apparent refinement limit and the ordinary AI refinement limit
seen earlier in Figure 4. Other entries, i.e., (1, 3) and (2, 3), behave similarly, as do
the entries seen for other data types, e.g., S1, S2.

It seems likely that one could prove that these manifold-based refinement schemes
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have limits with the same smoothness as their classical counterparts for M = R.
Roughly speaking, all that is needed is that each coarse-scale neighborhood |k−k′| <
(D + 1)/2 be entirely contained in a ball of sufficiently small geodesic radius. (If
pairs of points in one coarse-scale neighborhood are allowed to exceed the injectivity
radius, the refinement scheme might be poorly defined.) In fact, one can easily prove
the smoothness equivalence for M = R+ and M = S1. It is also empirically verified
for all the other cases. A thorough theoretical investigation seems called for, perhaps
using the methods of [35].

This work defines nonlinear refinement schemes; therefore it should be noted
that there are, outside the M -valued data context, numerous researchers developing
methods for analyzing nonlinear refinement. Some of this can be traced to median-
interpolating refinement schemes [18, 19, 28, 29] and others to nonlinear schemes
for ENO interpolation [6], surface subdivision [8], and other applications [27]. We
anticipate that the ideas and tools developed in those papers should be highly relevant
to resolving the smoothness equivalence conjecture.

8.3. The repeated midpoint operator. An apparently novel feature of our
approach is the use of the midpoint pyramid as a method of summarizing manifold-
valued data. At the center of this suggestion is, implicitly, the idea that the repeated
midpoint is a good summary of noisy manifold-valued data, comparable in quality to
the average for real-valued data. Let us make this more explicit. Suppose we have
data p(1), . . . , p(n), taking values in M . We desire a measure of central tendency
μn(p(1), . . . , p(n)) taking values in M and being well calibrated:

μn(p0, p0, . . . , p0) = p0;(8.1)

if the p(i) are random perturbations of a single p0, p(i) = Expp0
(θ(i)), with θ(i)

independently and identically distributed with mean 0, then a law of large numbers

μn(p(1), . . . , p(n)) →P p0P , n → ∞.(8.2)

We might even desire more,

E(dist2(μn, p0)) = O(n−1), n → ∞,(8.3)

where dist denotes geodesic distance. If M is acted on by a group G of transforma-
tions g, we also desire G-equivariance:

μn(gp(1), . . . , gp(n)) = gμn(p(1), . . . , p(n)).(8.4)

Note that for M = R and μn, the simple arithmetic average, we get all these properties
(with G the ax+b group of affine coordinate changes). The simple average has another
property: the average of a linear function is just the midpoint of the function. In the
M -valued case we could put this as follows: if π(t) is a geodesic in M ,

μn(p(1), . . . , p(n)) = p((n− 1)/2).(8.5)

In effect, the midpoint pyramid we have proposed defines a functional μn for
n dyadic, n = 2j , for some j ∈ Z, by recursive application of midpoints. That is,

μn(p(1), . . . , p(n)) ≡ Mid[μn/2(p(1), . . . , p(n/2)), μn/2(p(n/2 + 1), . . . , p(n))].
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Let us call this the repeated midpoint functional. Given data p(i/n), i = 0, . . . , n− 1,
the midpoint pyramid values are

mj,k = μn/2j{p(i/n) : (i/n) ∈ Ij,k}.

Now, clearly, the repeated midpoint functional has properties (8.1) and (8.5). For
the spaces SO(n), SE(n), and GL(n), which are also groups and hence act on them-
selves, we also have (8.4). Extensive experiments reveal behavior entirely consistent
with (8.2), in fact with (8.3).

There has recently been considerable interest in defining “means” on manifolds;
unfortunately in most cases the ideas proposed are not very computationally efficient,
for example an expensive iterative process. In comparison, the repeated midpoint is
highly efficient computationally and has good properties. Further research into its
properties seems called for.

The notion of repeated application of nonlinear measures of central tendency has
previously been useful in the guise of median-interpolating wavelet transforms, where
repeated medians of 3 have proved useful [18], and in generalizations [19, 28, 29]. In
this connection we note that repeated medians have been shown to have interesting
statistical properties [31], showing that some nonlinear pyramid summaries can be
successfully analyzed.
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