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Figure 1: The Multi-Light Image Collection for this chard leaf contains 3 images taken under varying lighting conditions. The shading in each input image

reveals different aspects of its shape and surface details. We combine the shading at multiple scales across the input images to generate the enhanced results.

The result on the left exaggerates surface details by eliminating shadows, but yields a flat look. The result on the right is less extreme and includes some

shadows to increase the perception of depth, at the cost of reducing some visible detail in the shadow regions.

Abstract

We present a new image-based technique for enhancing the shape
and surface details of an object. The input to our system is a small
set of photographs taken from a fixed viewpoint, but under varying
lighting conditions. For each image we compute a multiscale de-
composition based on the bilateral filter and then reconstruct an en-
hanced image that combines detail information at each scale across
all the input images. Our approach does not require any informa-
tion about light source positions, or camera calibration, and can
produce good results with 3 to 5 input images. In addition our sys-
tem provides a few high-level parameters for controlling the amount
of enhancement and does not require pixel-level user input. We
show that the bilateral filter is a good choice for our multiscale al-
gorithm because it avoids the halo artifacts commonly associated
with the traditional Laplacian image pyramid. We also develop a
new scheme for computing our multiscale bilateral decomposition
that is simple to implement, fast O(N2 logN) and accurate.

Keywords: image enhancement, NPR, relighting, shape depiction,
bilateral filter, multiscale image processing

1 Introduction

Shading is one of the strongest cues for depicting the shape of an
object. As a result, artists, illustrators, and photographers com-
monly manipulate shading to emphasize both the shape and the
fine-scale surface details of an object. For example, illustrators will
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emphasize surface bends by exaggerating the darkening as the sur-
face turns away from the light source. Similarly, photographers
will carefully position rim lights to highlight the object’s silhouette
and place grazing lights to increase self-shadowing due to surface
mesostructure. Often the manipulations produce physically incon-
sistent or impossible shading effects, but nevertheless serve to in-
crease the amount of shape information presented in a single view
of the object.

Our key insight is that most of these shading manipulation tech-
niques are based on the same underlying principle;

Local shading adaptation: Artists increase local contrast
and thereby bring out fine-scale shape details, while simul-
taneously reducing large-scale jumps in intensity to ensure
that the resulting image maps to the full dynamic range of
the display device.

While this principle of local adaptation is well known in the context
of tonemapping high dynamic range images [Pattanaik et al. 1998;
Durand and Dorsey 2002; Fattal et al. 2002; Reinhard et al. 2002;
Li et al. 2005], we believe that it applies equally to the problem of
manipulating shading to emphasize shape and surface details. The
primary difference between tonemapping and non-photorealistic
shape depiction is that the latter allows greater flexibility in ma-
nipulating image gradients due to shading.

We present a new, image-based technique for enhancing the shape
and surface details that is directly based on this principle. The in-
put to our system is a Multi-Light Image Collection (MLIC), which
consists of a set of photographs of an object taken from a fixed
viewpoint, but under varying lighting conditions. For each input
image we compute a multiscale decomposition based on the bilat-
eral filter [Tomasi and Manduchi 1998; Durand and Dorsey 2002].
We construct the enhanced output image by combining detail in-
formation from all of the input images at each scale of the decom-
position. Unlike earlier image-based relighting techniques, our ap-
proach does not require information about light positions or camera
calibration. While our approach is similar in spirit to the multiscale
exaggerated shading approach of Rusinkiewicz et al. [2006] we do
not require any geometric information about the scene. Instead, our
approach is purely image-based and acquiring the input MLIC is



relatively fast and easy. We show that we can produce good results
with as few as 3 to 5 input images (see Figure 1).

Our technique provides a small set of parameters that allow users to
interactively control the level of emphasis in the final image. We
also provide default settings for these parameters so that an un-
trained user such as a botanist could take a small set of images in
the field and produce an initial, enhanced result simply by pressing
a button. We believe that this makes our approach suitable for quick
creation of detailed yet understandable photographic illustrations in
medical, technical, and archaeological domains.

The primary contribution of our work is a system for creating
such photographic illustrations. In addition, we present two tech-
nical contributions. First, we use the bilateral filter to create a
multiscale edge-preserving image decomposition and we demon-
strate how this decomposition can be used to amplify shading detail
while avoiding halo artifacts associated with the traditional Lapla-
cian image pyramid [Burt and Adelson 1983]. Second, we de-
velop a simple, fast O(N2 logN), yet accurate approximation of
the multiscale bilateral decomposition, using a technique based on
Burt [1981] and the dyadic wavelet transform known as the algo-
rithme à trous [Holschneider et al. 1989; Mallat 1998].

2 Previous Work
Inspired by artists and photographers, graphics researchers have de-
veloped a variety of image-based techniques for emphasizing shape
and surface details.

Image-based relighting techniques take an MLIC as input and gen-
erate a realistically relit image that enhances the appearance of the
scene as output. A common approach is to treat the input image col-
lection as a basis and fit a local lighting model per image pixel. The
scene can then be realistically relit under novel illumination condi-
tions [Debevec et al. 2000; Malzbender et al. 2001]. However, these
methods rely on knowing the position of the light source in each in-
put image and therefore require specialized acquisition equipment
that can be expensive and time-consuming to operate. Another ap-
proach is to estimate light positions by either instrumenting the
scene with fiducials [Masselus et al. 2002] or using dimensional-
ity reduction techniques [Winnemöller et al. 2005]. Our approach
directly recombines the input images to form the output and does
not need access to the light positions.

Raskar et al. [2004b] go a step further and use the known incident
lighting in a set of multiflash images to extract silhouette edges and
produce non-photorealistic images. Malzbender et al. [2001] simi-
larly develop image-based non-photorealistic relighting methods to
exaggerate surface shape and details. Given known light positions
they reconstruct per-pixel surface normals using shape from shad-
ing techniques [Woodham 1980] and then apply reflectance trans-
formations that enhance deviations in the normals. They demon-
strate how such transformations can enhance images of archaeolog-
ical artifacts and paintings [Mudge et al. 2005; Mudge et al. 2006].
Yet, such shape from shading techniques put strict requirements on
the input images and objects (i.e. known light positions, Lamber-
tian surfaces, etc.) and the resulting reconstructions are often noisy,
contain holes, and are underconstrained at depth discontinuities.

Digital image painting interfaces such as Photoshop allow users to
locally control contrast, brightness and exposure in the final image.
Akers et al. [2003] extend the painting metaphor to the problem of
relighting. In their system users manually paint spatially varying
mattes to combine images taken under known lighting conditions.
Photomontage [Agarwala et al. 2004] and Mohan et al. [2005] use
more sophisticated paint-guided optimization procedures for such
image-based relighting. An advantage of the two latter systems is
that the input images do not need to be taken under known light-
ing conditions. However, all three of these systems force users to
design the output image via painting. While such control may be

desirable for trained designers, our goal is to develop a technique
with a few simple parameters that is suitable for untrained users.

Our work falls into the general category of image fusion tech-
niques [Ogden et al. 1985; Burt and Kolczynski 1993; Raskar et al.
2004a]. These methods combine multiple images taken under a va-
riety of settings, such as multi-sensor, multi-exposure, multi-focus,
etc. Many of these methods are based on the Laplacian image pyra-
mid [Burt and Adelson 1983] or wavelets [Li et al. 1994]. For the
purpose of shape and detail enhancement, where frequency bands
are heavily modified, these linear band decompositions usually in-
troduce haloing artifacts near edges (see Figure 11). This prob-
lem has been recognized in the tonemapping community [Tum-
blin and Turk 1999] and led to the use of edge-preserving filters
to prevent such artifacts in tonemapping [Durand and Dorsey 2002;
Choudhury and Tumblin 2003]. Li et al. [2005] work with a linear
wavelet-based subband decomposition and avoid halos by limiting
the manipulations that are performed at each scale to be spatially
smooth (proportionally to the band). In contrast we use a nonlinear
multiscale edge-preserving image decomposition which allows us
to significantly amplify details at multiple scales without introduc-
ing halos.

3 Overview
Our shape and detail enhancement system is composed of two
stages; analysis and synthesis (see Figure 2). In the analysis stage
we compute a multiscale decomposition for each input image and
in the synthesis stage we combine information within each scale of
the decomposition, but across all of the input images to generate the
enhanced output image. Here we consider the requirements of our
input multi-light images and then describe the details of the analysis
and synthesis procedures in sections 4 and 5 respectively.

Data Acquisition: The input to our system is a Multi-Light Im-
age Collection in which the viewpoint remains fixed and the scene
is static, but the lighting varies from image to image. Ideally we ex-
pect each surface in the scene to appear unshadowed in one or more
of the input images so that we have samples of each surface under
different shading conditions and can extract optimal local contrasts
(i.e. surface details). Our approach does not use any information
about the position of incident lighting. Thus, we acquire an MLIC
by placing the camera on a tripod and taking several images while
manually moving a hand-held flash to a new location between each
shot. We minimize ambient light to preserve strong contrasts due to
illumination from the flash. Although we leave the number of input
images and the positioning of the light sources up to the photog-
rapher, we have achieved good results with 3 to 5 images; roughly
positioning the flash near the camera viewpoint, and then at several
points distributed along the upper semicircle around the camera.
Our algorithms operate on single channel images I = log(Y ), where
Y is the luminance channel of the image in the YUV color space.
The logarithmic conversion allows us to use spatial differencing to
measure local contrast. Once we have applied our algorithms and
constructed the enhanced single channel image, we invert these op-
erations to produce a color image.

4 Analysis
The analysis stage of our system computes a multiscale edge-
preserving decomposition for each image in the MLIC based on
the bilateral filter [Tomasi and Manduchi 1998; Durand and Dorsey
2002]. The bilateral filter is often used to decompose an image
into a base layer that smoothes small changes in intensity while
preserving strong edges, and a detail layer that is the difference
of the original image and the base layer. Applications of this
two-layer decomposition include separating illumination from tex-
ture [Oh et al. 2001; Khan et al. 2006], tonemapping [Durand and
Dorsey 2002; Choudhury and Tumblin 2003], flash-no-flash image
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Figure 2: Analysis and synthesis procedures. (a) We build a multiscale decomposition for each MLIC image. First we recursively apply the bilateral filter

to form the filtered images I(i, j), where i indexes the image and j indexes the scale. The difference images D(i, j) are then computed as differences between

I(i, j) and I(i, j−1). (b) We generate an enhanced image IResult = IDetail + IBase. The detail image is constructed scale by scale as a weighted sum of the input

difference images D(i, j). The color visualizations inset at each scale show the D(i, j) that was given the maximum weight for each pixel (though only 2 of 5 input

images - orange and green - are shown in part (a)). The base image is constructed to provide coarse scale shading in the enhanced image.

enhancement [Petschnigg et al. 2004; Eisemann and Durand 2004],
video abstraction [Winnemöller et al. 2006] and photographic tone
management [Bae et al. 2006]. We extend this two-scale decom-
position into a multiscale decomposition in a manner similar to the
construction of the Laplacian pyramid [Burt and Adelson 1983].

4.1 Basic Multiscale Bilateral Decomposition

For input image I the goal of the multiscale bilateral decomposi-
tion is to first build a series of filtered images I j that preserve the
strongest edges in I while smoothing small changes in intensity. At
the finest scale j = 0 we set I0 = I and then iteratively apply the
bilateral filter to compute

I
j+1
p =

1

k
∑

q∈Ω

gσs, j
(‖q‖) ·gσr, j

(I
j
p+q − I

j
p) · I j

p+q, (1)

with k = ∑
q∈Ω

gσs, j
(‖q‖)·gσr, j

(I
j
p+q−I

j
p), (2)

where p is a pixel coordinate, gσ (x) = exp(−x2/σ2), σs, j and σr, j

are the widths of the spatial and range Gaussians respectively and
q is an offset relative to p that runs across the support of the spatial
Gaussian. The repeated convolution by gσs, j

increases the spatial
smoothing at each scale j and we choose the σs, j so that the cumu-
lative width of the spatial Gaussian doubles at each scale. Suppose
that at finest scale we set the spatial kernel σs,0 = σs. Then set-

ting σs,1 =
√

3σs,0 and σs, j = 2 j−1σs, j−1 for all j > 1 we obtain a

width of 2 jσs for the cumulative spatial Gaussian1. Note however
that because the bilateral filter is non-linear, the filtered image I j is
not identical to bilaterally filtering the original input image I with a
spatial kernel of width 2 jσs.

The range Gaussian gσr, j
is an edge-stopping function. Ideally if

an edge is strong enough to survive one iteration of the bilateral
decomposition we would like it to survive all subsequent iterations.
To ensure this property we set σr, j = σr/2 j . Reducing the width of
the range Gaussian by a factor of 2 at every scale reduces the chance
that an edge that barely survives one iteration will be smoothed
away in later iterations. We typically set the initial width σr to
R/10, where R is the intensity range of the image.

1Convolving two Gaussians of widths σa and σb respectively yields a

new Gaussian of width (σ2
a + σ2

b )0.5. For j = 1 we want the cumulative

Gaussian to have width 2σs. Thus (σ2
s,0 +σ2

s,1)
0.5 = 2σs giving σs,1 =

√
3σs.

For j > 1 we solve (σ2
s,0 +∑σ2

s, j)
0.5 = 2 jσs and find that σs, j = 2 j−1σs, j−1.

We compute a set of detail images as differences between suc-
cessive levels of these bilateral filtered images D j = I j − I j−1 for
j = 1...m. Thus, the I j retain the strongest edges in the image as
preserved by the bilateral filter and the detail layers D j contain the
smaller changes in intensity. We can reconstruct the image I from
this decomposition as

I =
m

∑
j=1

D j + Im. (3)

Unlike the more common Laplacian image pyramid [Burt and Adel-
son 1983], we do not subsample the I j because such downsampling
would blur the edges in I j . In addition downsampling would pre-
vent the decomposition from being translation invariant and could
introduce grid artifacts when the coarser scales are manipulated. In
our case, as shown in Figure 2(a), strong edges appear only in the
I j with minimal response in the D j .

Computational Cost: Because the bilateral filter is non-linear, a
brute-force implementation of the 2D convolution costs O(k2N2)
operations where k is the width of the spatial filter kernel and N is
the width of the image. When computing the multiscale decompo-
sition, the cost is dominated by the largest filter kernel, so k ≈N and
the total cost becomes O(N4). Fast approximations to the bilateral
filter such as [Weiss 2006; Pham and van Vliet 2005] can signifi-
cantly reduce this cost but introduce inaccuracies in the computa-
tion. An in-depth discussion of these variants can be found in [Paris
and Durand 2006]. Recently, Barash [2004] has shown that the bi-
lateral filter can be expressed exactly as a linear convolution in 3D.
Based on this idea, Paris and Durand [2006] accelerate the filter by
first downsampling the spatial dimension by σ2

s and the intensity
dimension by σr and then convolving with a 3D Gaussian kernel
of small fixed size. This method is fairly accurate and because it is
independent of the kernel size k, it requires O(N2 logN) operations
to compute the full multiscale decomposition. While this approach
is much faster than the brute-force algorithm, in the next section
we introduce a new scheme for computing the multiscale bilateral
decomposition that is simpler, requires less memory and is faster in
practice than this approach.

4.2 Fast Multiscale Bilateral Decomposition

Burt [1981] has shown that wide Gaussian filters can be well ap-
proximated by repeated convolution with so-called generating ker-
nels of much smaller support. In fact, these generating kernels have
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Figure 3: Three scales of generating kernels w j , cumulative filters h j and

their Fourier transforms ŵ j and ĥ j . Red dotted lines in column 2 indicate

smoothing condition boundaries π/2 j−1 > |ω|> π/2 j . In column 3 the blue

curves representing h j are within 2% of true Gaussians which are barely

visible as red curves.

a constant number of non-zero entries, and the number of convo-
lutions involved depends logarithmically on the support size of the
original Gaussian. More recently this construction has been ana-
lyzed in the context of the fast dyadic wavelet transform where it is
known as the algorithme à trous [Holschneider et al. 1989; Mallat
1998]. We briefly derive and analyze this construction for Gaussian
filters and then use it to build a fast multiscale bilateral decomposi-
tion. Consider the sequence of convolutions

h j+1(p) = h j(p)∗w j(q), (4)

where w j are the generating kernels, defined by

w j(q) =

{

gσs, j
( q

2 j ) if
q

2 j ∈ Z and | q

2 j | < k

0 otherwise
(5)

As shown in Figure 3, these generating kernels w j have a fixed
number 2k +1, of non-zero coefficients, yet expand in space by the
introduction of 2 j − 1 zeros between these coefficients. By setting
h0(p) = δ (p) the h j correspond to the cumulative filters that are
obtained by applying the generating kernels repeatedly. Expanding
equation 4 with the expression for w j in equation 5 we obtain

h j+1(p) = h j(p)∗gσs, j
(

q

2 j
) = h j(p)∗g2 jσs, j

(q). (6)

As in the construction of the basic multiscale bilateral decomposi-
tion we choose the σs, j so that the cumulative filter approximates

a Gaussian that doubles in width at each scale i.e., h j+1 ≈ g2 jσs
.

Solving for σs, j we find that σs,0 = σs and σs, j = σs

√
3/2 for j > 0.

There is one complication in this construction. The generating ker-
nels are essentially sampling Gaussians very sparsely and this intro-
duces aliasing. In Fourier space, the repeated convolutions become

ĥ j+1(ω) = ĥ j(ω) ŵ j(ω) = ĥ j(ω)ĝσs, j
(2 jω) =

j

∏
k=0

ĝσs,k (2
kω), (7)

where the ·̂ notation represents the Fourier transform of the func-
tion. As shown in Figure 3, the expansion of the w j by inserting
zeros leads to the introduction of 2 j aliases in ŵ j(ω). Thus, the
generating kernels themselves do not operate as low-pass filters.
However, as long as the following smoothing condition, ŵ j(ω) < ε

for π/2 j−1 > |ω| > π/2 j holds, it follows from equation 7 that

ĥ j(ω) < ε for |ω| > π/2 j and h j is essentially a low-pass filter.

In our case, setting w j as in equation 5 with σs = 1 we avoid the
aliasing and obtain a relative error of less than 2% from the corre-
sponding Gaussian of width 2 jσs.

Another source of inaccuracy in this construction is the truncation
of the Gaussian kernel to 2k + 1 non-zero coefficients. When the
truncation keeps too few coefficients the cumulative filter h j be-
comes box-like rather than Gaussian. Moreover, if k is very small,
the smoothing condition may not be satisfied and the h j would no

j=0

j=1

j=2

j=3

Figure 4: Four scales of the multiscale bilateral decomposition on a 1D

row of pixel intensities. Black lines indicate pixels at scale j − 1 that are

used by the fast algorithm to compute the value of the pixel in column 3 at

scale j. In contrast, the basic algorithm also considers all the pixels marked

with green lines. At j = 3 the basic algorithm averages in the gray pixel in

column 6, but the fast algorithm never sees a contribution from that pixel.

longer act as low-pass filters. In practice we use 5× 5 non-zero
coefficients in order to approximate a Gaussian with σs = 1.

Finally, to compute the fast multiscale bilateral decomposition we
replace the gσs, j

in equations 1 and 2 with w j so that

I
j+1
p =

1

k
∑

q∈Ω

w j(q) ·gσr, j
(I

j
p+q − I

j
p) · I j

p+q, (8)

and k is modified similarly. Most importantly, we also modify Ω

so that the offset q addresses only the points where w j is non-zero,
which is independent of j.

In comparison to the basic multiscale bilateral filter this scheme
reduces the number of paths along which pixels from the finest level
are averaged into the coarser levels of the decomposition. In most
cases this reduction only changes the weights at which pixels are
averaged and therefore it does not have a significant visual impact
on the decomposition. However, as shown in Figure 4, there are
scenarios in which this reduction excludes a pixel that should have
been included in the coarse scale average.

Computational Cost: Our fast multiscale bilateral decomposi-
tion performs a brute-force convolution at each scale. However,
because the size of the kernel remains fixed and very small the
cost to compute the entire decomposition is O(N2 logN). While
our technique is asymptotically equivalent to that of Paris and Du-
rand [2006], it provides two practical advantages. First, our method
slightly modifies the brute force convolution algorithm and is there-
fore extremely easy to implement.

The second advantage is that our approach does not require trans-
forming the images into and out of 3D. Therefore, for practical
image resolutions our technique is faster and requires less mem-
ory. As shown in Table 1 for a 3MP image our approach main-
tains a constant time of 1.4s for each level. At fine scales j = 1,2,
Paris and Durand cannot substantially subsample the 3D space, and
their running times are very long. We can pick the fastest method
(brute-force or Paris and Durand) at each scale to build a combined
strategy. However, the average running time for each scale of this
combined approach is 8.2s which is 5.8 times longer than the 1.4s
required by our scheme. We ran the same test for 1MP(and 6MP)
images and found that the combined approach took an average of
3.5s(16.5s) while our approach took 0.5s(2.8s). All three methods
are implemented as unoptimized C code (for Paris and Durand we
use the code from their website) running on a 2.1GHz laptop.

In addition, for the 3MP image the peak memory requirement of
the combined strategy occurs at j = 4 where the Paris and Durand
approach requires more than 350 MB. In contrast our approach re-

Method Time (in sec) to compute scales j = 1...7

Brute-Force 1.4 3.6 11.5 39.6 * * *

Paris and Durand [2006] * * 27.5 15.7 10.5 8.0 6.7

Our Scheme 1.4 1.4 1.4 1.4 1.4 1.4 1.4

Table 1: Timing comparison of three methods for computing the mul-

tiscale bilateral decomposition for a 3MP image with σs, j = 2 j−1 and

σr, j = 0.1/2 j−1. The *’s represent long computation times > 60s.



Figure 5: The β parameter controls the relative contribution of the base

and detail images. (a) At β = 3.0 the flower is very smooth. (b) Reducing β
to 0.8 (the default value) and then (c) to 0.2 brings in more detail.

quires about 50 MB. In terms of accuracy our approach is very sim-
ilar to that of Paris and Durand. For a 1MP image Paris and Du-
rand obtain peak-signal-to-noise ratios or PSNRs of (53.57, 47.87,
45.98, 45.31, 45.05, 44.91, 44.82) at the seven successive scales
of the decomposition while we obtain PSNRs of (321.14, 56.72,
53.63, 50.38, 48.52, 47.67, 47.26). Finally, applying our method
on color images (all 3 channels simultaneously) would triple our
computation time and memory. Paris and Durand would have to
deal with a 5D space and costs would increase substantially.

5 Synthesis
Our synthesis algorithm is designed to enhance shape and surface
detail by combining shading information across all of the input
MLIC images. We generate the enhanced output image as

IResult = IDetail +β · IBase, 0 < β ≤ 1 (9)

where IDetail maximizes the detail at each scale j, across the differ-

ence images D(i, j) of all of the input images i. Similarly IBase com-
bines shading information at the coarsest scale j = m, across all of

the input base images I(i,m). The parameter β is used to trade-off
emphasis of the detail image versus the base images (see Figure 5).
While we have found that β = 0.8 is a good default setting, our
experience is that the tradeoff between detail and base is easy for
novice users to appreciate and manipulate.

5.1 Constructing IDetail

Our goal in building IDetail is to maximize the smaller changes in
intensity associated with smooth shading and surface details while
minimizing large jumps in intensity. As shown in equation 3, the
multiscale bilateral decomposition is designed so that the filtered

images I(i, j) contain strong intensity edges while the difference lay-

ers D(i, j) primarily contain the smaller changes in intensity. Thus,

we compute IDetail as a weighted sum of the difference images,

IDetail =
∑

n
i=1 ∑

m
j=1 U (i, j)D(i, j)

∑
n
i=1 ∑

m
j=1 U (i, j)

, (10)

where the weight is computed as

U (i, j) = gσd
∗ e(|D(i, j)|−C(i, j)). (11)

Since we wish to maximize small changes in intensity, the weight

U (i, j) rewards pixels with large |D(i, j)|. However, because the bilat-
eral filter is not a perfect edge preserving filter, remnants of strong
edges can also appear in the difference images. To reduce the effect

of such remnants the second term in the exponent C(i, j), penalizes
pixels containing such edges. This term is given by

C
(i, j)
p =

‖∇I
(i, j)
p ‖

min
q

I
(i, j)
p+q + ε

(12)

Figure 6: The parameters λlo,λmid and λhi control the detail amplification

at different scales. In clockwise order starting at the top left, detail is ampli-

fied at all scales equally (λlo = 1.0,λmid = 1.0,λhi = 1.0). Next we amplify

coarse detail only (λlo = 0.7,λmid = 1.0,λhi = 1.0), mid-level detail (λlo =
1.0,λmid = 0.7,λhi = 1.0) and fine detail (λlo = 1.0,λmid = 1.0,λhi = 0.7).

where q is a pixel offset that runs over a 3×3 neighborhood and ε
is small constant which ensures that the denominator is non-zero.
The gradient magnitude in the numerator finds strong edges at each
scale, while the denominator further strengthens the term wherever
the image is dark. Our assumption is that images are taken un-
der relatively low ambient light so that the darkest pixels are likely
to correspond to shadow regions. Finally the spatial convolution
with a Gaussian gσd

serves to locally smooth the weight and reduce
noise. We typically set σd = 8.

To further reduce the ratio between the largest and smallest values

in IDetail we follow the approach of [Fattal et al. 2002; Li et al.
2005] and perform a scale-dependent dynamic range compression

on the difference layers. We replace D(i, j) in equation 10 with

sign
(

D(i, j)
)

· |D(i, j)|λ j 0 < λ j ≤ 1 (13)

The exponents λ j control amplification of weak details at each
scale. In practice we evenly divide the scales into 3 ranges (lo,
mid, hi) and set one exponent for each range λlo,λmid and λhi (see
Figure 6). The default values are λlo = 0.95, λmid = 0.80, and
λhi = 0.75. This interface is similar to the visual graphic equalizer
of Bae et al. [2006].

5.2 Constructing IBase

The base image IBase sets the coarsest level shading information
and can have a strong effect on the overall look of the resulting
image. Here we propose two alternative options for constructing
the base image. The first allows users to directly combine shading

from the input base images I(i,m). While this technique offers the
most direct control, the resulting base image will often contain dark
shadow regions that reveal very little shape or surface detail. Thus,
we present a second technique that avoids this problem by removing
shadows from the base image.

User Combined: The simplest approach is to set the base image

as a weighted sum of the input base images I(i,m) so that

IBase =
∑

N
i=1 αiI

(i,m)

∑
N
i=1 αi

, (14)

where the user specifies the set of weights αi,(i = 1...N) This op-
tion mimics the effect of superpositioning the light sources in the
input images. Shadows often provide a strong sense of depth in
an image, at the cost of introducing a large intensity difference be-
tween the shadowed and lit regions. This approach gives users some
control over the strength and location of shadows in the final image.



Figure 7: The user selected the input image (a) as the only base image to generate the result in (b). While the overall lighting of (a) is preserved, the image is

enhanced by detail from all the other MLIC images. In (c) the robust maximum is used to construct the base image. Shadows are minimal making the image

appear a bit flatter, but detail is revealed everywhere. In (d) the robust maximum attenuates the specular highlights on the upper leg of this metallic object,

while the true maximum accentuates these highlights.

Robust Maximum: Shadows regions are often much darker than
the rest of the image and can make it difficult to see the smaller
intensity gradients due to shading and surface detail. One simple
way to reduce shadows is to construct IBase by selecting the bright-
est pixel across the input base images. However, this approach
will include oversaturated specular pixels in the resulting base im-
age, which is undesirable because such pixels do not contain use-
ful shading information. Instead, for each pixel p we identify the
brightest pixel b1(p) and the second brightest pixel b2(p) across all
of the the input base images. Rather than always taking the bright-
est pixel we favor the brightest pixel b1(p) as long as it is not too
much brighter than b2(p). That is

IBase
p =

(b1(p)+b2(p)r(p))

(1+ r(p))
, and r(p) = η

b1(p)

b2(p)
, (15)

where η is between 0 and 1 and is used to switch between using
brightest pixel (i.e. the true maximum) and the robust maximum.
In practice we set η = 1.0.

In Figure 7 we compare the user-combined approach for setting
the base image to the robust maximum. The robust maximum is
designed to reveal detail everywhere in the image by eliminating
strong shadows. Thus we use it as the default method for construct-
ing the base image. In Figure 7(d) we compare the robust maximum
to using the true maximum. The robust maximum avoids the spec-
ular highlights on the upper part of the leg.

6 Results and Discussion
Figures 1, and 5-13 show examples of images generated using our
system. In all of these cases we used a 5 level decomposition and
applied the the default parameters unless otherwise stated. For all
of the matted results we created the mattes by hand.

Our approach is designed to fuse information from all of the source
MLIC images into a single enhanced result. For example, in Fig-
ure 8 the rough surface texture and crack patterns on the rock face
become visible. Similarly in Figure 9 the fur is sharper in our re-
sult than in any of the input images. The parameters of our system
allow users to control the photorealism of the results. As shown in
Figures 1, 5 and 10 details can be exaggerated to give the images
an illustrative appearance that resembles the look of botanical illus-
trations, with emphasis on the venation and surface texture in the
petals and leaves.

Although our approach enhances shape and surface details, images
that are rich in local contrast may appear somewhat flat compared
to the input images. This flatness is due to the reduction of global
contrast. However, our system does provide several parameters (the
λ ’s and β ) to control the balance between local and global contrast.

(a) 1 of 5 MLIC Inputs (b) Our Result

Figure 8: Our shape and detail enhancement technique reveals the rough

surface texture and crack patterns on this rock surface that are difficult to

see in the input images.

In the results shown in this paper we have opted to strengthen the
local contrast to bring out the shape and surface details. We encour-
age readers to zoom into the images provided in the supplemental
materials to evaluate the differences between our results and the
input images.

In Figure 11 we show the importance of using the multiscale bilat-
eral decomposition. We create an image using the Laplacian image
pyramid instead of our decomposition and see that haloing artifacts
are prevalent (white arrows point to halos). Because our decompo-
sition excludes strong edges from the detail layers we can signifi-
cantly enhance the shading and surface details without introducing
such artifacts. In Figure 11(d) we apply Photoshop’s unsharp mask
filter to the input MLIC image in Figure 11(a). While this approach
strengthens global contrast it also introduces halos at strong edges.
In Figure 11(e) we apply our method to the same input image and
although we cannot fuse detail from other images in this case, our
approach is still able to increase detail while preventing halos.

In Figure 12 we compare our results to the gradient based approach
suggested by Rasker et al. [2004a]. The max gradient image is
computed by selecting the maximum gradient at each pixel across
the input images and then reconstructing the image by solving the
Poisson equation. An issue with this approach is that selecting the
maximum gradient at each pixel individually cannot guarantee any
global consistency. For example, the max gradient result contains
a light to dark intensity ramp from the bottom to the top of the im-
age (see also the green line in the graph which shows the average
intensity across each row of the image). Our results reveal much



Input: 5 MLIC Images Our Result

Figure 9: None of the 5 images in the input MLIC individually capture the fine detail of the lion fur. By combining information from all of the input images our

approach reveals this fine detail in the fur. Note that we show crops for all five inputs, with a full image for only input image.

(a) 1 of 5 MLIC Inputs (b) Our Results: Increasing Detail Enhancement (c) Hand-drawn illustration

Figure 10: We use a 5 image MLIC (a) to exaggerate the details of this pink rose. The default parameters with a user-combined base image generates

the result image in (b, left). In (b, right) we amplify weak details by lowering λmid and λhi, and we reduce β to increase the influence of the detail im-

age. Both results were created using the base image shading of the input image shown in (a). The exaggerated result emphasizes venation and surface

texture on the petals much like a botanical illustration. The comparison illustration in (c) is by Catharina Lintheimer (1714-1741) – for more details see

http://library.wur.nl/desktop/tulp/konstboeck/

(a) 1 of 5 MLIC Inputs (b) Laplacian Pyramid (c) Our Result (d) Unsharp Masking (e) Result: One Input Image(b) Laplacian Pyramid (c) Our Result (d) Unsharp Masking

Figure 11: Comparison of our technique to linear filtering. In (b) we replace our multiscale bilateral decomposition with the Laplacian image pyramid. The

resulting image suffers from haloing artifacts (see white arrows). In (c) we use our decomposition with the same synthesis parameters as in (b). (d) Photoshop’s

unsharp masking filter applied twice to the image in (a), first to enhance large scale detail (amount=50%, radius=50) and then to enhance fine scale detail

(amount=200%, radius=4). (e) Our multiscale enhancement algorithm on a single input image.

more detail than the max gradient approach and because our mul-
tiresolution approach is not a global method it does not introduce
global inconsistencies such as the intensity ramp. In addition our
approach provides control over the detail at each scale and also over
the shadows introduced in the base image. However our results are
also a bit noisier than the max gradient result.

In Figure 13 we compare our technique to the image-based relight-
ing approach of Akers et al. [2003] and the exaggerated shading
technique of Rusinkiewicz et al. [2006]. Akers et al. provide a di-
rect painting interface for relighting and therefore rely on the artis-

tic abilities of the user. While the overall shape of this baboon skull
is enhanced, the resulting image lacks fine surface detail. To ap-
ply the technique of Rusinkiewicz et al. we first reconstructed sur-
face normals for the skull using 576 MLIC images and their known
lighting. The resulting image reveals the surface details but appears
very flat and loses its photorealism. In contrast our result maintains
a realistic appearance, but enhances the overall shape and surface
details. Moreover our approach uses just 6 MLIC input images and
does not require known lighting.

One of the limitations of our approach is that it can amplify noise
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Figure 12: Comparison of our technique to a gradient-based method [Raskar et al. 2004]. The max gradient result retains all of the shadows from the input

images and it introduces a light to dark intensity ramp from bottom to top in the reconstructed image. While our results provide greater detail enhancement

and do not introduce the intensity ramp they are also a bit noisier than the max gradient result.

(a) MLIC Input Image (b) Akers et al. [2003] (d) Our Result(c) Rusinkiewicz et al. [2006]

Figure 13: Comparison to previous techniques. Both Akers et al. [2003] and Rusinkiewicz et al. [2006] use hundreds of source MLIC images with known

lighting. Our result required just 6 MLIC images. It was created using the default parameters and the robust maximum base image.

in addition to the true details in an image. The problem is that both
noise and true detail can appear as small changes in image inten-
sity. One way to reduce noise is to significantly reduce the weight
of the finest detail layer in our synthesis algorithm. However, this
approach would also reduce the true detail at those scales. In the
long term, we believe the problem will be solved with more sen-
sitive cameras that can capture the smallest variations in intensity
without introducing noise.

A shortcoming of our robust maximum technique for constructing
a shadow-free base image is that it assumes every pixel is lit in at
least one of the input MLIC images. When a pixel lies in shadow in
all the MLIC images it will remain in shadow in the resulting im-
age. We believe that it may be possible to adapt more sophisticated
gradient-based shadow removal techniques [Weiss 2001; Finalyson
et al. 2006] to produce better shadow-free base images. We leave
exploration of these techniques to future work.

7 Conclusions

We have demonstrated a new image-based approach for using a
Multi-Light Image Collection to enhance shape and surface details.
Our approach is designed so that untrained users can easily gener-
ate enhanced images after taking just a few input photographs. The

resulting images are detail rich and range in appearance from pho-
torealistic to illustrative. Our approach uses a new multiscale de-
composition based on the bilateral filter. Our decomposition makes
it possible to combine detail at multiple scales without introducing
haloing artifacts. Finally, we have introduced an efficient scheme
for incrementally computing this decomposition and shown that it
produces very accurate results.
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