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Multiscale simulation of soft matter systems

Christine Peter and Kurt Kremer*

This paper gives a short introduction to multiscale simulation approaches in soft
matter science. This paper is based on and extended from a previous review.'
(1. C. Peter and K. Kremer, Soft Matter, 2009, DOI:10.1039/b912027k.) It also
includes a discussion of aspects of soft matter in general and a short account of
one of the historically underlying concepts, namely renormalization group
theory. Some different concepts and several typical problems are shortly
addressed, including a (more personal) view on challenges and chances.

1 Introduction

Material properties of soft matter systems are determined by processes and interac-
tions on a wide range of length and time scales. While these mutually influence each
other, it is not straight forward to provide quantitative information and under-
standing without taking this properly into account. Although this holds for many
physical systems, it is of special importance for soft matter, where the characteristic
energy scale is the thermal energy kg7. Unlike for electronic properties, where typi-
cally energies are measured in eV (1 eV = 40 kgT at T = 300 K), such low energies
give rise to significant conformational and structural fluctuations. The materials are
“soft” because of a characteristic low (non-bonded) energy density, which to a very
first rough approximation resembles the elastic constants of the material. The locally
relevant length scales of a few A to a few nm, lead to the very low energy densities
allowing for large thermally driven fluctuations. Thus simulating soft matter auto-
matically means dealing with large spatial and/or conformational fluctuations,
making equilibration in many cases particularly difficult. To put the energy scale
in perspective and provide a guide for comparison of different experiments and
simulation approaches, we present in Table 1 the thermal energy in different units,
as they are typically used in different fields.

A typical covalent bond, i.e. carbon—carbon, has an energy of about 80 kg7. If no
chemical reaction comes into play, it can be considered as stable. In contrast, for

Table 1 The thermal energy kg7 at T'= 300 K in a variety of units as they are frequently used
in different fields of physics an chemistry

Research field kT = 4.1 - 1072']
Electronic properties 2.5-102%eV
Quantum chemistry 9.5-10* Ey
Biophysics 4.1 pNnm
Spectroscopy 200 cm™!

(Phys.) chemistry 0.6 kcal/mol
(Phys.) chemistry 2.5 kJ/mol
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typical hydrogen bonds, energies vary between about 6 and 10 kg7, respectively.
Thus they can break and reform on a rather short time scale, yet fairly long for
a molecular simulation. As a consequence one usually deals in soft matter simula-
tions with systems of moderate size, i.e. usually less than about a million atoms,
however for very long time periods. We here give a short introduction related to
the many different approaches and concepts, which have been discussed during
the recent Faraday Discussion. A complementary introduction focusing on biopoly-
mers can be found in the Faraday Discussion 139.2

Molecular simulation approaches to soft matter problems that are determined by
a wide range of scales demand for an equally wide range of simulation methods at
various levels of resolution including a varying amount of degrees of freedom.**
A variety of quantum mechanical methods are used to address electronic/energetic
properties on a high-resolution microscopic level, however they are limited to short
length and time scales. Classical atomistic force field methods as well as particle-
based coarse grained approaches are capable of sampling microscopic to mesoscopic
scales. Especially the latter which is also able to access large conformational fluctu-
ations, yet these approaches still fail to cover many macroscopic phenomena. For
this, one needs to go beyond (purely) particle based approaches and use for example
the Lattice Boltzmann® or DPD®” methods or other mesoscopic methods to include
hydrodynamic effects. Fig. 1 illustrates the characteristic different regimes and the
level of details the models include.

Many questions regarding soft matter systems can be studied with a single numer-
ical approach on a single level of resolution. However, when it comes to a quantita-
tive understanding of complex materials, approaches with a single level of resolution
do not frequently suffice since the different levels of resolution are more intimately
interwoven. “Multiscale simulation” refers to methods where different simulation
hierarchies are combined and linked to obtain an approach that simultaneously
addresses phenomena or properties of a given system at several levels of resolution
and consequently on several time and length scales. Multiscale simulation
approaches may operate in different ways in terms of combining the individual levels
of resolution: (i) in sequential approaches the simulation models on different scales
are treated separately by simply passing information (structures, parameters, ener-
gies etc.) from one level of resolution to the next, (if) in hybrid simulations different
levels of resolution are present simultaneously, thus requiring direct interaction
between them, and (iii) adaptive methods allow for individual molecules to

Characteristic Time and Length Scales

Local Chemical Properties — Scaling Behavior of Nanostructures
Energy Dominance -— Entropy Dominance of Properties

Fig. 1 Examples for characteristic numerical models for various length and time scales in soft
matter systems.
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adaptively switch between resolution levels on the fly—for example depending on
their spatial coordinates. In either case, the exchange of information, interaction
or particles requires a high level of consistency between the individual models.®*3

Simplified/generic coarse grained models which only account for a minimal set of
properties of the (macro-)molecules of interest such as excluded volume, connec-
tivity and a few basic types of interactions have since long been used and are
perfectly well suited to study generic properties of soft matter systems. Since they
reduce the computational complexity they allow for much longer effective time
and length scales than more detailed models. Good examples are the investigation
of scaling properties of polymeric systems,'* both static and dynamic, as well as
the investigation of biomembranes.’>!¢ For example, for the problem of polymer
melt dynamics such simulations, both molecular dynamics in continuum and Monte
Carlo on lattices have been instrumental for a better understanding of the entangle-
ment problem.'"" In order to link the results of such coarse grained simulations to
real chemical systems one needs to appropriately devise the model parameters and
interaction potentials. In multiscale simulations, where one wants to switch between
resolution levels or use them next to each other, one has to go beyond scaled or fitted
parameters because the levels of resolution need to be linked structurally and ther-
modynamically consistently. This requires a very careful development of CG models
to avoid unphysical effects upon changes between scales. Here, we focus on method-
ologies to develop CG models based on an atomistic (force field) description.

Before we discuss a few ways to link different levels of resolution, let us shortly go
back and mention the physical origin of coarse graining methods.

2 Coarse graining—general aspects

Dealing with the multiscale aspect of soft matter or more generally hierarchically
structured materials can be done in many ways. One strategy, which has been fol-
lowed by many disciplines from engineering to science is to devise independent
models, which deal with typical aspects of a given scale. The link between the scales
is then essentially given by the parameters characterizing each level. These parame-
ters typically are closely linked to experiments. This is quite successful when it just
comes to the description of material properties. A typical example which illustrates
these rather complex structures can be studied by such an approach is the numerical
investigation of the properties of lobster cuticles.?* Here we want to go beyond that,
however at the price that our systems, though already very complex, remain signif-
icantly simpler. In soft matter multiscale modelling the aim is not only to describe
material properties but rather to understand the structural organisation and physical
mechanisms which lead to morphologies, properties and eventually function. For
this the different levels of description have to be much more intimately coupled.

Ideas linked to systematic coarse graining historically were linked to the fact that
even for relatively simple systems it was simply not possible to perform all atom
simulations. In addition, for many questions of concern, the value of this very
detailed information coming from all atom simulations was questionable, since basic
conceptional physical information could easily get lost. While physics is used all the
time to sort out contributions in terms of small parameters a theoretical systematic
link between a more local and a more global view was provided by renormalization
group theory. The idea goes back to Kadanoff,?® who introduced the block spin
renormalization concept, which in variants is the basis for real space renormalization
group treatments, which can directly be applied to polymers.?*** To illustrate this
idea, let us look at a spin system as illustrated in Fig. 2.

Take a system of spins, which have only the two states, namely +1. When the
system is divided into subcells of (s - a), a being the nearest neighbour distance
and d the dimensionality, we can describe the free energy of the system in terms
of cell variables, namely F . (', H') = (as)Fg(e, H), where the prefactor (as)’ comes
from the extensivity of the free energy. H is the Hamiltonian of the original system

11



W == ¥

e

ﬁ

i
SRS

Fig. 2 Illustration of a simple majority rule real space renormalization step of a d = 2 Ising
system, as it was introduced in the early 70s by L. P. Kadanoff based on the mathematical
concepts of K. Wilson.?"” Blocks of 3 x 3 spins are mapped onto a single Ising spin based
on a simple majority rule.
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and H' the corresponding Hamiltonian on the basis of all cell interactions and
e = (T — T.)IT., the normalized distance from the critical point. So far such a trans-
formation is exact. Then however simple Ising spins (+1) and nearest neighbour
interactions transform into much more complicated longer ranged interactions
and spins with many states. In practice usually one has to resort to an approximate
treatment, as indicated in Fig. 2. Iterating such a procedure leads to the well known
renormalization group flow diagrams. As de Gennes pointed out, polymers are
a special case, which naturally suggest a renormalization along the back bone of
the chains in a way that groups of monomers are lumped together into one monomer
and this then is iterated. Fig. 3 shows a typical example of such a renormalization
procedure based on a Monte Carlo simulation?® of polymers made of hard spheres
of diameter d and bonds of fixed length /.

In this context systematic coarse graining can be viewed as just one or two steps in
such a renormalization group framework. Since this mapping step in almost all cases
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Fig. 3 [Illustration of a Monte Carlo Renormalization Group Study of a hard sphere polymer
model in spacial dimension d = 2 to 5. The relevant parameter is the ratio 6 = A/l of sphere
diameter and bond length. By matching the chain extensions (i.e. average squared end to
end distance or radius of gyration) a renormalization flux diagram is generated, which leads
to a stable fixed point 6° = 0 for d = 4,5 indicating random walk behavior (irrelevance of
excluded volume) and non trivial stable fixed points of 6" = 0.55 and 0.7 respectively for
d = 3 and 2, indicating the self avoiding walk structure. 6° also indicates the optimal ratio of
sphere diameter and bond length to minimize finite size corrections.*
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requires significant approximations, it is also obvious that the free energy of a coarse
grained system usually cannot be identical to that of the original system. For poly-
mers, universality provides the criteria for which interactions are relevant and have
to be properly transformed. This is because a polymer chain can be understood in
very close relation to the problem of phase transitions. De Gennes showed that,
within the so called n-vector model, a polymer chain of N steps can be seen as
a path connecting lattice spins of the so called n-vector model. Since close to a critical
point correlation lengths diverge, longer and longer paths, meaning walks of
increasing length contribute. Thus there is the correspondence (7 — T,)/T. « 1/N
and the conformations of these walks follow for N — oo universal scaling laws
leading, for example, to the nontrivial exponents v = 3/(2 + d) for the end to end
distance (R*(N)) o« N*. For d = 3 the best field theoretic renormalization group
studies and simulations give v = 0.59 instead of » = 3/5. While such general consid-
erations give clear guidelines for coarse graining, they also illustrate limitations.
Since only a few steps are performed and approximations are unavoidable in almost
all cases, coarse grained systems also have to be studied carefully by themselves i.e.
phase transitions pose special difficulties and there is a priori no reason that a coarse
grained model, derived on the basis of a given scheme and some approximations,
displays phase transitions at the very same temperature, pressure ezc. as the under-
lying atomistic model. Second, the power of generic properties based on scaling laws
relies on the proximity to asymptotics. While this often is reasonably fulfilled for
long chain polymer melts or chains in solution, many of the current systems of
interest certainly are not close to the asymptotic scaling regimes. Thus finite size
corrections play a crucial role.

Alternatively one can view coarse graining procedures also as a special application
of projector operator formalisms. Again the challenge is to define the optimal
subspace of parameters, which on the one hand allow for a most efficient treatment
of the systems and on the other hand do not exclude any aspect which is crucial for
the question under study.

3 Linking levels of resolution: energies, forces and structures

Scale bridging requires systematic development of the individual models which are
thermodynamically and/or structurally consistent. Many different approaches
have been followed, both from the quantum mechanical to the classical level and
from the classical all-atom level to a coarse grained description. For the latter we
discuss here a few examples.

The derivation of interaction potentials between the coarse grained particles may
be targeted at reproducing thermodynamic properties such as energies or free ener-
gies, for example partitioning data.?*** This approach has been particularly useful
for simulating processes such as lipid membrane association where said properties
play a decisive role.*® On the other hand the energy based coarse graining approach
does not per se guarantee reproduction of the structure of the system (for example of
the underlying atomistic structure).?” This may potentially cause problems and
disruptions if one wishes to reinsert atomistic details into the CG structure. A recent
alternative for (so far) rather simple model systems has been developed by Rutledge
and Allen,?*3° where the excess chemical potential of the degrees of freedom, which
are averaged out by the coarse graining is properly accounted for.

In simple terms coarse graining methods are characterized by the physical quan-
tities, which the models of different levels are supposed to reproduce as accurate as
possible. Generally one can distinguish

e Structure based

e Force based

e Potential energy based

approaches, where the first ansatz most directly allows for a forward and back-
ward mapping of the investigated systems. All three schemes face the problem of
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determining the coarse grained interactions based on the underlying more micro-
scopic model. Again there are three methods, which are frequently employed. Based
on detailed simulations of the high resolution system, interaction potentials are
derived from

e (Iterative) Boltzmann inversion of distribution functions

e Inverse Monte Carlo sampling

e Force matching.

In principle all three methods of calculating interactions can be used for the
different mapping schemes. A test comparing them for liquid SPC/E water, liquid
methanol, liquid propane, and a single chain of hexane has been recently under-
taken.?!

Generally, structure-based methods provide CG interactions that reproduce a pre-
defined target structure, often described by a set of radial distribution functions
obtained from all-atom molecular simulations,**>* are well suited to reinsert atom-
istic coordinates. It is not clear whether they are equally well suited to reproduce
thermodynamic properties of the system. Note that there is currently intensive
research being carried out to investigate, whether—and if yes how—it is possible
to derive coarse grained potentials that are both thermodynamically as well as struc-
turally consistent with the underlying higher resolution description.?®3>

An at first sight principally different methodology is the force matching method
which has been applied to a multitude of soft matter, in particular biomolecular
systems.'®*¢ Here, the CG force field is determined such that the difference between
the (instantaneous) CG forces and the forces in the underlying atomistic system are
minimized. It can be shown that this method (in principle) determines a many-body
multidimensional potential of mean force describing the CG representation of the
system, thus being related to other structure-based CG methods, which usually
rely on pair potentials of mean force.*’” The rather global (multibody) structural
representation however bears the problem that the link to the underlying structure
and the reproduction of local structural properties such as pair distributions may
be rather weak. An exact reproduction of the underlying atomistic problem by force
matching potentially requires the introduction of higher order interactions and
forces.’!

4 An example: structure-based coarse graining—from polymers to
biomolecules

The general aim in structure-based coarse graining is to reproduce structural
properties, either determined experimentally or from a higher resolution (atomistic)
simulation. Below we will, in addition to references to the literature, give a few exam-
ples from work of the Mainz group, which range from classical amorphous polymers
to relatively small biomolecules, as shown in Fig. 4. Though the latter are signifi-
cantly smaller, the complexity compared to a isotropic homopolymer melt is
significantly increased.?®3*3%#4

Often the set of CG interaction functions is separated into bonded/covalent and
nonbonded potentials. This approach relies on the assumption that the total poten-
tial energy U“C can be separated into the respective contributions

VSO = Y URS + ¥ USh (1)

Following this separation ansatz we will first discuss the derivation of bonded
(covalent, intramolecular) interaction potentials and possible implications of inter-
dependet/correlated degrees of freedom. This separation ansatz is also important
in the context of transferability of CG models. Assuming such a strict separation
means that the intramolecular bonded/covalent CG interactions should be indepen-
dent of the special scientific problem, i.e. of the surroundings of the molecules.
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Fig. 4 Chemical structure and mapping schemes of some discussed CG examples: BPA-PC,
Polystyrene (PS), the liquid crystalline compound 8 AB8, and a small dipeptide (diphenylalanine).

4.1 Bonded/covalent interaction potentials

Bonded interactions are derived such that the local conformational statistics of the
molecules is represented correctly in the CG model. These conformational distributions
PCC are usually characterized by specific bond lengths r, angles 6, and torsions ¢
between any pair, triple and quadruple of CG beads respectively, i.e. P<S(r, 0, ¢, T).
The assumption that the different CG internal degrees of freedom are uncorrelated,
leads to the factorization of P<“(r, 6, ¢, T) and reads P<°(r, 0, ¢, T) = P<©
(r, TYPS(6, T)P<S(¢, T). This assumption has to be carefully checked (i.e. often certain
combinations of CG bonds, angles and torsions are “forbidden” on the atomistic level).
For a detailed discussion of how this can be achieved for the rather complex problem of
different stereoregular subunits of polystyrene we refer to a recent study by Fritz et al.**
The individual probability distributions P<(r, T), P<(6, T), and P<“(¢, T) are then
Boltzmann inverted to obtain the corresponding potentials:

USS(r, T) = —kgT In (PS(r, TYi?) + C, )
USS(9, T) = —kgT In (PS8, T)lsin(9)) + C, 3)
US(¢p, T) = —kpT In PS(¢p, T) + C, 4)

with C,, Cy, and C, being irrelevant constants used to set the minima of the respective
potentials to zero. These potentials are in fact potentials of mean force, ergo free ener-
gies and consequently temperature dependent (not only due to the prefactor kg 7) and
are either given in a tabulated form or determined by a fitting procedure.3#3%-4%-43
Experience shows that a given parametrization is usually valid over typical tempera-
ture range of the order of £10-20% (if no phase transition is within that range).

It is however also possible to determine the CG internal degrees of freedom based
on distributions obtained from an atomistic simulation of the polymer melt.?* In the
latter case one obtains potentials for bonded and nonbonded interactions simulta-
neously based on the same melt (through iteration as described below).
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Consequently all interaction functions are interdependent, i.e. there is no clear sepa-
ration between covalent and nonbonded interaction potentials.

While the above clear separation of bonded and nonbonded interactions is desir-
able from a statistical mechanical point of view, the derivation of meaningful
bonded potentials from an isolated single molecule requires that the conformational
sampling of the isolated molecule and in the bulk (or solution) phase do not differ
substantially. In biomolecular systems due to the peculiar nature of aqueous solu-
tions (i.e. the presence of hydrogen bonds) this assumption can get problematic,
as is illustrated by the dipeptide diphenylalanine.*® For this dipeptide, bonded CG
potentials were determined by Boltzmann inversion of the respective distributions
obtained from conformational sampling of a single peptide in aqueous solution.
Though bonded and nonbonded interactions are not as rigorously separated, cova-
lent and nonbonded interactions were nevertheless separately and sequentially deter-
mined. The resulting CG model of the dipeptide (after adding also nonbonded
potentials) turned out to very well reproduce the conformational equilibrium of
the atomistic peptide.****

4.2 Nonbonded interaction potentials

Nonbonded interactions can be introduced in a variety of ways, depending of the
system and the question one is studying. For amorphous polymers, where the
density is known from experimental or atomistic simulations in many cases it is suffi-
cient just to introduce an appropriate excluded volume for the CG beads.?*** This
approach has been successful for studies of polycarbonate and polystyrene. In other
cases nonbonded interaction potentials between coarse grained beads are derived
based on the structure of isotropic liquids of small molecules (in the case of more
complex molecules such as the liquid crystalline compound 8ABS, fragments of
the target molecule are used). In the second scheme, the inverse Monte Carlo or
the iterative Boltzmann inversion method***¢ can be used to numerically generate
a tabulated potential that precisely reproduces a given radial distribution function
g(r). It should be mentioned that the solution to the problem of finding a pair poten-
tial which exactly reproduces a given radial distribution function is unique.*’
However there usually exist different pair potentials which reproduce a given struc-
ture function within a hardly noticeable error. This can be used to impose additional
constraints, Le. to better reproduce thermodynamic quantities*®**>° without
disrupting the local structure.

For molecules with many different CG beads (for example biological macromol-
ecules) or in the case of liquid crystalline molecules with anisotropic structures the
procedure to determine nonbonded interaction functions is slightly more involved.
In these cases it is advantageous to split the target molecule into small fragments.
Such fragment-based approaches have been successfully applied to the liquid crystal-
line compound 8AB8** (see also Fig. 4) or for the interaction of BPA-PC with metal
surfaces.’®>32 However, there the problem of transferability of the fragment based
potentials to the interactions of the large molecules has to be tested with great
care.’®> Nevertheless, the procedure to derive CG potentials from chain fragments
and low molecular weight liquids does open up the possibility to reuse certain CG
potentials for reoccurring building blocks (such as alkyl or phenyl groups).

5 Backmapping

Various approaches have been employed to reinsert atomistic details into a CG
structure or simulation trajectory. It should be noted that this “backmapping” or
inverse mapping problem has in general no unique solution since every CG structure
corresponds to an ensemble of atomistic microstates. For coarse grained polymeric
melts it is possible to obtain backmapped atomistic structures by taking rigid all-
atom chain fragments obtained from a correctly sampled distribution of all-atom
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Fig. 5 Coarse grained superimposed with backmapped atomistic structures of a BPA-PC
chain and a polystyrene oligomer, of liquid crystalline 8ABS8 (upper left corner), of the aggre-
gates formed by diphenylalanine (lower right corner) and a single diphenylalanine molecule
with its water shell.

chain structures.®3*5+5¢ This works, if the structural relaxation and diffusion of
molecules is slow compared to the local equilibration of the newly introduced atom-
istic coordinates. The case of more flexible low-molecular weight molecules requires
the introduction of constraints in order to avoid the atomistic structure from drift-
ing/diffusing too far from the CG.3*****%7 Fig. 5 shows the result of the backmap-
ping procedure for a few systems: a BPA-PC and a polystyrene chain, a snapshot
of liquid crystalline 8ABS, a snapshot of the aggregates formed by diphenylalanine
and a single diphenylalanine molecule with its water shell.

The combination of CG simulations with an efficient backmapping method-
ology is a powerful tool to efficiently simulate long time scale and large length
scale soft matter processes and in the end to obtain well-equilibrated atomistic
structures and trajectories. For example, the relevant time scale of many NMR
experiments requires simulations beyond what is possible with atomistic models.
Nevertheless, atomistic coordinates are often necessary to compare with experi-
mental results, an important example for the use of backmapped CG trajecto-
ries.>**® In a slightly different manner one can also utilize inverse mapped
structures in further computation. For example in order to obtain data for solu-
bilities or permeabilities of small molecules in polymeric systems one can combine
coarse grained simulations to obtain well equilibrated structures of the polymeric
melt with atomistic free energy calculations based on the inverse mapped trajecto-
ries.>®! In a rather early study of phenol in BPA-PC phenol was introduced into
remapped polycarbonate melts at a variety of temperatures. There it could be
shown how the diffusion of the phenols coupled to the local fluctuations of the
polymeric matrix.*

Another promising application of the combination of coarse grained simulations
with a backmapping procedure is the possibility to validate the underlying atomistic
force field—on time and length scales not accessible to atomistic simulations alone
due to sampling problems.
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6 Dynamics: coarse grained versus atomistic

The construction of a coarse grained model automatically determines the length
scaling between the linked models. However, for dynamics this is not the case at
all. We want to illustrate this here for the example of polymers. For both simple
continuum as well as lattice polymer models it is known that such simulations repro-
duce the essential generic features of polymer dynamics; that is, the crossover from
the Rouse to the entangled reptation regime, qualitatively and to a certain extent
quantitatively.' Such simple polymer models are, in view of the present discussion,
just another set of different polymers. Properly scaled they all follow the same rules.
For short chains the longest relaxation time g o« N and for long chains in a polymer
melt we observe a N** power law. However, a proper link between the atomistic
representation of a system and the corresponding structurally coarse grained system
can provide absolute dynamical information without the need to resort to generic
scaling laws. Actually, eventually one should recover them as well. Thus one aims
at a predictive quantitative modeling of diffusion, viscosity, rates, and correlation
times, etc. of dynamic events.

This automatically generates the additional question of the minimal time and
length scales CG simulations apply to. First it is important to realize that the coarse
grained models are, from a simulation point of view, independent models with their
own intrinsic dynamics. In the case of the previously discussed polystyrene and
BPA-PC simulations one can deduce a typical simulation time scale, as it is tradition-
ally done in MD simulations. Taking the strength of the interaction parameter in the
nonbonded excluded volume interaction ecg (measured in units of the temperature),
the average mass mcg of the CG beads and the known length scales oG one can deter-
mine the intrinsic time scale of the CG simulation” from 1t = 1(mcgocge)"™.
This results for instance in 1t = 1.7 ps for BPA-PC at 570 K and 17 = 1 ps at
T =463 K for atactic polystyrene, respectively.*"%* While these are the natural time
scales of the CG model, this does not have to be the time scale of the underlying atom-
istic model at all. The CG interaction potentials are much smoother, barriers are lower
etc., resulting in significantly accelerated dynamics. Beyond the reduction of the
number of degrees of freedom this is the main reason for the speed up due to coarse
graining.

On the other hand, on length scales above the specific scale of the coarse graining
we expect qualitatively the same behavior for the CG chains as for the atomistic
chains, certainly on scales where generic properties dominate. This offers a direct
way of deducing the time scaling between the CG model and the underlying atom-
istic model by matching the curves of the mean square displacements of the beads or
the center of mass of the whole chain. Since the lengths are fixed by the mapping
procedure itself the mean square displacements can be matched just by shifting
the time scales. It is however important that the curves of the atomistic and CG
mean square displacements not only meet in a point, but rather coincide from a char-
acteristic point onwards, as will be discussed below. Fig. 6 shows a typical result for
polystyrene.®* This procedure leads for the two examples mentioned above to the
time scaling of 1t = 400 ps for PS at 7" = 463 K and 30 ps for BPA-PC at
T =570 K, respectively. Of course, as this example already illustrates different levels
of coarse graining and different CG models lead to different time scales. Also it
should be noted that the time scaling factor can be chain-length dependent, since
the melt density varies as a function of chain length for polymers below the entan-
glement molecular weight (see Fig. 6).

The data, on which Fig. 6 is based on, however, reveals more important informa-
tion. Looking at the displacements of the individual beads, rather than the center of

1 Note that the resulting time scale T depends on the choice of masses, if the CG model contains
different beads. Thus there is some arbitrariness in the value of 7 if one wants to use physical
units.
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Fig. 6 Mean square displacements of centers of mass of coarse grained and atomistic (united-
atom) polystyrene (PS) simulations as a function of time for two different chain lengths. By
shifting the CG data along the time axis the time scaling can be obtained. To obtain the real
time scaling in another step the united atom (UA; here hydrogens are lumped into carbon
superatoms) and the atomistic (AA) simulations have to be compared in the same way. This
is necessary since atomistic simulations for PS are extremely time consuming. Because of
that two different atom based methods, AA and UA respectively, are needed to obtain a first
scale factor from distances, which are too small for CG simulations. The inset shows the diffu-
sion constants for PS obtained from CG simulations based on the resulting AA-CG time
scaling in comparison to experiments for a molecular weight of up to M = 50 kDa (after
ref. 41,64). Note that there is no adjustable parameter in the simulation data.

mass of the chains, one finds that the motion characteristics down to the character-
istic scale of our coarse graining qualitatively and quantitatively, after the appro-
priate time scaling, agrees to the atomistic simulations. Thus the CG runs can be
used to obtain realistic atomistic trajectories. In ref. 54 it was shown for BPA-PC
that atomistic dynamic structure factors can be obtained from remapped CG runs
in perfect match with short time atomistic data and by this, extend the dynamic
information significantly. Recently, we have shown for polystyrene that this also
quantitatively predicts correct bond orientation correlation times as obtained
from NMR.%

Methods like this not only can be used to study the dynamics of homopolymer
melts, but also the dynamics of additives in such melts®>*¢ and allows quantitative
predictions into experimentally extremely difficult to access regions. It should
however be kept in mind that the time scaling factor for the additive might differ
from that of the host polymer.

7 Variable/adaptive resolution methods

So far we have only mentioned methodologies, where the whole system is studied on
a single level of resolution. In many cases, however, this is not desirable or even does
not allow the investigation of important problems. To overcome this, methods have
been developed over the last years which allow various levels of resolution within
one simulation.

A classical problem in this context is crack propagation in solids. There the
breaking of a chemical bond is treated by quantum mechanical methods. Beyond
the immediate tip of the crack classical force field simulations suffice and beyond
that the particles are coupled to continuum finite element like models, which prop-
erly can take care of more global stress and strain fields. The hierarchy of modelling
is well defined and a given atom might at the beginning be treated quantum
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Fig. 7 lllustration of adaptive resolution simulations using the AdResS method. On the left is
a small polymer chain in a good solvent of tetrahedral molecules.®' They adjust their resolution
depending on the region they are in, when they cross through the transition regime. The sphere
with the “all atom” solvent, which also contains the polymer, diffuses with the chain. On the
right the method is illustrated for the simulation of water.®> The scheme on top indicates the

change from an all atom (TIP3P) water to a single sphere model. The water molecules are
free to move around and adjust their resolution to the region they are in.

mechanically, then classically and then eventually merges into the continuous
description.®”-%®

For soft matter, especially biopolymers, a somewhat different approach has been
very successful. Since there is no crystal structure and the systems are more strongly
fluctuating it is decided from the very beginning which atoms are treated quantum
chemically and which are treated by a classical force field. This so called QM/MM
method turned out to very well describe local, quantum-effect dominated
phenomena, while the surrounding can be treated classically.®®

While such methods mark significant progress for a multiscale, or better dual or
triple scale, description of materials, they all suffer from the problem that from
the very beginning one has to determine, which atom/particle is going to be described
on what level. There is no dynamic forward and backward exchange of resolution.
Thus it is not possible to study liquids or strongly fluctuating systems by the above
methods. One would like to be able to zoom in on demand and treat a dynamic equi-
librium between different levels of resolution. Thus atoms/molecules should be
allowed to change the level of resolution on the fly. By such a method one can focus
on local phenomena, while keeping equilibrium with a greater surrounding, ie.
aggregation or adsorption/desorption phenomena. The idea is illustrated in Fig. 7.
The condition of equilibrium and free exchange between regions of different levels
of resolution poses special difficulties. Recently, an adaptive resolution simulation
method (AdRess) has been developed, which allows for adaptive coupling of such
different levels.**’®"! In a recent extension this method has also been coupled to
an outer continuum, devising a way towards open system molecular dynamics.”

8 Conclusions and outlook

The general challenge that lies in coarse graining and generally in reducing the
number of degrees of freedom of a computational model is to incorporate the
(average) effect of the eliminated degrees of freedom into the lower resolution model.
We have summarized different developments which are currently pursued with the
aim to design coarse grained models that are both thermodynamically and structur-
ally consistent with an underlying atomistic simulation model. This consistency is of
particular importance for coarse grained models that are to be used in a multiscale
simulation framework where different simulation hierarchies are combined and
linked to obtain an approach that simultaneously addresses phenomena or proper-
ties of a given system at several levels of resolution and consequently on several time
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and length scales. Such multiscale approaches are of great importance in the inves-
tigation of complex soft matter systems such as biological and synthetic materials
where phenomena on a wide range of scales “team up” to determine the overall
(material) properties.

The development of these methods is one of the major methodological efforts in
computational chemistry and physics. Scale-bridging approaches can operate on
varying levels of “interaction” between the individual scales: the examples shown
in the present article mainly combine models on different scales via treating them
separately and sequentially, i.e. they pass information (in the present cases struc-
tures) between the levels of resolution. Other resolution exchange methods use the
exchange (of the whole system) between simulations at different levels of resolution
during the course of the simulation as a means to enhance sampling.”*”5 In the case
of hybrid simulations, different levels of resolution are present simultaneously in one
system. This is more complex than the sequential approach since interactions
between entities at different levels of resolutions have to be devised. Hybrid
approaches are widely used in the field of mixed quantum mechanical/classical simu-
lations. The statistically mechanically consistent treatment of such problems has
been addressed in methods that allow for individual molecules to adaptively switch
between resolution levels on the fly.**7%72

Even though we can now look back at more than a decade of intensive research
along the lines discussed above, there are still a number of challenges which require
a continued and even stronger effort. Specific problems/challenges are

e Non bonded interactions

e Time mapping

e Efficient and appropriate mapping schemes

e True multiscale simulations of disordered/fluctuating systems.

How delicate the problem of nonbonded interactions is can already be seen for the
question of phase segregation in polymer mixtures. In order to hit the transition
temperature an accuracy of the interactions of O(kg7/N) is needed (N being the chain
length). This is beyond any predictive theoretical possibilities. Additional problems
occur for solvent mediated or directional interactions, which are of special relevance
for biomolecules and/or aggregation phenomena. One of the various reasons for these
problems lies in the huge abundance of hydrogen atoms for which a classical descrip-
tion even at room temperature often is questionable. Actually, summing up typical
uncertainties in the interactions along, i.e. a heteropolymer or a protein, one easily
arrives at error bars of the size or even larger than the basin of attraction of the folded
state.”® Thus we expect in the future that appropriate coarse grained simulations
might even be employed to improve underlying force fields.

The problem of time mapping is a key to understanding dynamical processes.
Here however we encounter significant technical and principal problems. As shown
for polymers, time scaling between different levels of resolution can be derived and
leads to very good results. However such a single scaling factor does of course not
work for very short times and is also chain length dependent. Thus the motion of
a single additive molecule in a polymer matrix can follow a different time scaling
than the matrix itself. This can for instance mean that, mapped back to an atomistic
picture, the “different clocks” can lead to diverging time differences. To cure these
problems significant further work is needed.

Both previous points are linked to the question of what is the most appropriate
mapping scheme. So far groups of atoms are typically lumped together into one
coarse grained particle and the appropriate bonded and nonbonded interactions
are determined. The grouping is guided by the chemical structure and the question
of investigation. For instance for many problems in polymer physics the crossing of
chains cannot be allowed, while for some problems that is not crucial at all. So far
this very much relies on the intuition and knowledge of the investigator and there are
no systematic formal procedures. Here physics based formal concepts could be of
tremendous help.
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Taking all these aspects together we can expect very significant progress, when it
comes to true multiscale simulations of strongly fluctuating and disordered systems.
Here we do not only think of biological systems but also of other complex aggregates
as they are studied, for example, in the context of organic electronics or of a molec-
ularly based study of non equilibrium phenomena. With the coming new hardware,
plain CPU time will probably, for the most part, not be the central issue in the
future. However then we are, in a positive sense, back at the beginning, where ideas
of coarse graining were more directly linked to the understanding of basic physical
phenomena in soft matter physics.
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