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ABSTRACT 
This paper deals with texture analysis based on multiscale 

stochastic modeling. In contrast to common approaches 

using symmetric marginal probability density functions of 

subband coefficients, experimental manipulations show that 

the symmetric shape assumption is violated for several 

texture classes. From this fact, we propose in this paper to 

exploit this shape property to improve texture 

characterization. We present Asymmetric Generalized 

Gaussian density as a model to represent detail subbands 

resulting from multiscale decomposition. A fast estimation 

method is presented and closed-form of Kullback-Leibler 

divergence is provided in order to validate the model into a 

retrieval scheme. The experimental results indicate that this 

model achieves higher recognition rates than the 

conventional approach of using the Generalized Gaussian 

model where asymmetry was not considered. 

 

Index Terms— Image texture analysis, Asymmetric 

Generalized Gaussian density, Kullback-Leibler Divergence, 

Dual-Tree Complex Wavelet Transform, Texture Retrieval 

 

1. INTRODUCTION 
 

The accurate characterization of texture is fundamental 

in various image processing applications, ranging from 

retrieval in large image databases to segmentation and 

texture synthesis. 

Over the last decade, numerous works have been 

proposed for texture modeling using multiscale image 

representations [1] [2] [3]. The conventional scheme of 

multiscale texture analysis consists of extracting features 

from subband coefficients and uses these features as a 

signature for a specific texture class. Portilla and Simoncelli 

presented a statistical model based on joint statistics of 

steerable pyramid coefficients [2]. In their work, efficient 

algorithm of texture synthesis was developed giving 

increased synthesis quality. However this model is not 

tractable for classification applications due to the largeness 

of the signature. Some others conventional approaches 

consist in representing detail subband coefficients by their 

probability density functions (PDFs). In [1] [3] Generalized 

Gaussian (GG) density was used as a parametric model for 

subband marginal PDFs where orthogonal wavelets are 

employed as a multiscale decomposition. In a related recent 

work [4], Weibull distribution was proposed to model the 

detail subbands magnitudes employing Dual-Tree Complex 

Wavelet Transform (DT-CWT). 

The GG distribution was introduced to model the detail 

subband coefficients because of the almost heavy tailed 

aspect of the empirical PDFs of these coefficients. It is 

adequate for Super Gaussian (leptokurtic), Gaussian 

(mesokurtic) and sub Gaussian (platykurtic) behavior of the 

marginal distribution of subband coefficients. This tail 

aspect is directly linked to the Kurtosis which shouldn’t be 

the only statistic taking into account. However, Skewness is 

also important for modeling textures [2] and GG density 

presents limitations for fitting asymmetric subband 

distribution because its Skewness is null by definition. In 

order to take into account simultaneously the two statistics 

(Kurtosis and Skewness) we present a new model using a 

skewed heavy tailed distribution in the framework of texture 

analysis: the Asymmetric Generalized Gaussian density 

(AGG) [5], [6], [7]. 

In this paper, we work with the Dual-Tree Complex 

Wavelet Transform (DT-CWT) proposed by Kingsbury [8]. 

However others multiscale decompositions can be used (e.g. 

steerable pyramid [2], orthogonal wavelets [1] [3]). 

The organization of this paper is as follows: we review 

in section 2 the AGG density model and introduce a new fast 

deterministic method to estimate the marginal distribution 

parameters. In section 3 the Kullback-Leibler divergence 

between AGG densities is derived. Finally, experimental 

results indicate the significant improvement in retrieval rates 

using the new model. 

 

2. ASSYMETRY MODELING 
 

PDFs proposed in previous works rely on symmetric 

assumption for the wavelet coefficient histogram [1] [3]. In 

our knowledge, no parametric models explicitly incorporate 

possible non null texture Skewness. Nevertheless, Van de 

Wouwer et al [9] defined a multiscale asymmetry signature 

consisting in an extra texture descriptor defined by: 
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ni

h is the histogram of a subband coefficients in scale 

Nscn �2,1= and orientation Nori ...2,1= . 

Experimental results [9] confirmed that adding 

asymmetry signatures resulted in an improved texture 

characterization. However, this non-parametric model has 

some limitations; it is bins-dependant and signature 

estimation uses histogram computing and integral 

approximation which need more computation. 

Overall, Skewness is a universal measure of the 

asymmetry of probability distribution. We present a model 

that explicitly incorporates possible texture asymmetry. The 

AGG model is a generalization of the GG one and can track 

not only the forth high order statistic (HOS) but also the 

third HOS: the Skewenss. 
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Fig.1. Scatterplot of subbands’ (Skewness,Kurtosis) couple 

 

Figure 1 shows how AGG density is more suitable than GG 

density to respect joint (Skewness,Kurtosis) information. We 

represent a scatterplot of the two statistics calculated from 1-

level DT-CWT coefficients of a textured images set. The 

GG domain is represented by the vertical dashed straight 

line. When GG can only fit zero-Skewness subbands, AGG 

have by definition a huger domain including the GG one and 

can de facto better model the skewed subbands. 

 

2.1 Skewed GG density: the AGG 
The PDF of the AGG density with zero mode is given 

by [5] [6]: 

( ) ( ) ( )

( ) ( )











≥







−

Γ+








 −−
Γ+

=
0exp

1

0exp
1

,,;

x
x

x
x

xf

rrl

lrl

rl α

α

βαββ
α

βαββ
α

ββα
�

 (2) 

where ( ) ∫
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tx  is gamma function; 0�α is the 

shape parameter and 0,0 ��
rl

ββ are left-scale and right-

scale parameters respectively. AGG density extends GG 

when βββ ==
rl

. 

The Skewness of this distribution can take any real value 

(negative, null or positive): 
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The AGG distribution was introduced by Tesei and 

Regazzoni [5] in order to optimize signal detection in non-

Gaussian environments. It is able to describe many kinds of 

wavelet coefficients; symmetric, asymmetric, with variable 

sharpness of marginal PDFs (Figure 2). 

-20 -10 0 10 20 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 

βr = 2 , β l = 1 , α = 0.7

βr = 1.5 , β l = 1 , α = 0.7

βr = 1 , β l = 1 , α = 0.7

 
Fig.2. PDFs differentiated by Skewness and with same shape 

parameter 

 

2.2 Second Order Statistics (SOS) estimation 
To estimate AGG density parameters Maximum 

Likelihood (ML) method was proposed [7]. It uses several 

steps to find the best value of the shape parameter α . This 

method provides a better convergence rate for reaching 

parameter value but does not guarantee convergence for bad 

initial value. So, ML estimation is inherently complex and 

needs a lot of computations. We now develop a simple 

method that allows us to find model parameters given the 

one-order absolute moment and the second-order moment: 

SOS estimation. We note that the proposed estimate can be 

used to initialize the ML approach. 
We first calculate the k-order moments

k
µ and k-order 

absolute moments
k

m  in the case of AGG density with 
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By using the integral calculation [10]: 
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We use the second order statistic 
2

µ with absolute moment 

1
m  to calculate the ratio
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The value of γ can be estimated by [6][7]: 
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where
l

N (
r

N ) is the number of 
k

x samples 0� ( 0≥ ). 

An unbiased estimate of r is: 
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A very good approximation of ( )αρ  and its inverse was 

proposed in [11], that leads to a fast and deterministic shape 

parameter estimation. So, we propose to estimate AGG 

parameters using the following algorithms: 

1-we calculate R̂ using γ̂ and r̂ estimation above, (6) and (7): 
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2-According to R̂  value we estimate α  using the 

approximation of the inverse generalized Gaussian ratio[11]: 

( )R̂ˆˆ 1−= ρα  (9) 

3-finally we estimate left and right scale parameters: 
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3. SIMILARITY MEASURMENTS BETWEEN AGG 
DISTRIBUTIONS 

 
The conventional scheme of multiscale texture analysis 

consist in extracting features from subband coefficients and 

use them as a signature associated with an appropriate 

distance to distinguish several texture classes. Even that 

several probabilistic distances can be used, Do and Vetterli 

justified the use of Kullback-Leibler divergence (KLD) to 

have relevant results in retrieval application [3]. 

Considering two AGG PDFs, );,;(
1111

rl
xagg ββα  and 

);,;(
2222

rlxagg ββα , KLD is defined by: 
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We calculate a closed-form expression of KLD using 

the integral expression (4), we find: 
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4. EXPERIMENTAL RESULTS 
 

The experiments give an evaluation of the proposed 

model in the framework of texture retrieval. We use almost 

the same experimental setup presented in [3] [4]. We work 

with 40 texture classes from Brodatz album [12] (Figure 3). 

From each of these texture images of size 640x640 pixels, 

16 subimages of 160x160 are created. A test database of 640 

texture images is thus obtained. A query image is any one of 

these images in the database. The relevant images for each 

query are the other 15 images obtained from the same 

original 640x640 image. We must note that this dataset was 

not selected in any way to contain textures that showed 

specific asymmetry. Statistical analysis of all computed 

asymmetry parameter mentioned above (1) showed that the 

90
th

 quantile is equal to 9.68 10
-5

. 

 
Fig.3. Selection of images from Bordatz album: from top to bottom 

and left to right: D6, D8, D11, D16, D17, D18, D20, D21, D24, D26, 

D28, D32, D33, D34, D47, D49, D51, D53, D55, D56, D57, D64, D65, 

D66, D75, D76, D77, D78, D82, D83, D84, D85, D87, D92, D95, D101, 

D102, D103, D104, D110.  

The Kingsbury’s DT-CWT is employed to have a 

multiscale image representation with six complex detail 

subbands at each level. Advantages of the DT-CWT can be 

resumed in its nearly shift invariance and directional 

selectivity. We use Kingsbury’s Q-Shift (14,14)tap filters in 

combination with (13,19)-tap near-orthogonal filters [13]. 
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(b) 

Fig.4. Recall-Precision curves showing the impact improvement of 

skewed model, with DT-CWT and 1 scale 



First, we tested the impact of using a skewed model by 

comparing the performance of retrieving. The conventional 

criterion on recall/precision shows the improvement 

obtained with the skewed model AGG (Figure 4 (a)). 

Second, we compare the performances of the proposed 

skewed model with those obtained using Weibull 

distribution to model DT-CWT coefficients magnitude [4]. 

As we can see in Figure 4 (b), AGG model outperforms 

Weibull model. But we must note that Weibull model has 

three times less parameters to be estimated. 
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Fig.5. models convergence comparison 

 

It can be seen from the Figure 5 that, compared to the 

two others models, the AGG converge faster. For example, 

we retrieve 94% of the relevant images with 20 retrieved 

images when we require 24 ones to have the same 

percentage if we employ the two others models (GG and 

Weibull). 

 

 Retrieval Rate 

Number of 

scales 
AGG GG Weibull 

1 87.9980 87.2656 87.4023 

2 93.7988 91.8945 92.4316 

3 98.3301 94.9805 94.5898 

Table 1: Average retrieval rate (%) comparison 

 

A second series of experiments was conducted using 

orthogonal wavelets with Daubechies’ D4 filters. The results 

of average retrieval rates are summarized in Table 1. As 

expected, the use of AGG model improves the performance 

of retrieval and in consequence texture characterization. 

 

5. CONCLUSION 
 

In this work we have addressed the issue of modeling 

textures in multiscale scheme. The probability density 

functions (PDFs) of detail subband coefficients are skewed 

and heavy tailed. So, Asymmetric Generalized Gaussian 

model is proposed in order to take into account third and 

fourth Higher Order Statistics. The model is validated in the 

retrieval system and achieves better recognition rates 

compared to GG-based approach. Future work includes the 

AGG parameter estimation by Negentropy Matching and the 

model extension to multivariate joint PDFs. 
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