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Abstract—Convolutional neural networks have garnered in-
creasing interest for the supervised classification of hyperspectral
imagery. However, images with a wide variety of spatial land-
cover sizes can hinder the feature-extraction ability of tradi-
tional convolutional networks. Consequently, many approaches
intended to extract multiscale features have emerged; these
techniques typically extract features in multiple parallel branches
using convolutions of differing kernel sizes, with concatenation or
addition employed to fuse the features resulting from the various
branches. In contrast, the present work explores a multiscale
spatial-spectral feature-extraction network that operates in a
more granular manner. Specifically, in the proposed network, a
multi-branch structure expands the convolutional receptive fields
through the partitioning of input feature maps, applying hierar-
chical connections across the partitions, cross-channel feature fu-
sion via pointwise convolution, and depthwise 3D convolutions for
feature extraction. Experimental results reveal that the proposed
multiscale spatial-spectral feature-fusion network outperforms
other state-of-the-art networks at supervised classification of
hyperspectral imagery while being robust to limited training data.

Index Terms—Convolutional neural networks (CNNs); feature
fusion; multiscale feature extraction; hyperspectral-image (HSI)
classification.

I. INTRODUCTION

THE recent renaissance of neural networks (NNs) for
machine learning has led to increasing interest in NN-

driven supervised classification for hyperspectral imagery
(HSI). Initial focus centered exclusively on spectral features,
often treating hyperspectral pixel vectors as 1D sequence
data fed into a recurrent neural network (RNN) to effectuate
classification (e.g., [1], [2]). However, the realization that the
incorporation of spatial features can improve HSI classification
beyond spectrum-exclusive methods has inspired increasing
interest in spatial-spectral methods for HSI classification (e.g.,
[3], [4]). Recent efforts along these lines have included, for
example, the use of superpixels [5]–[8], graph convolutional
networks [9], transformers [10], and multimodal classifiers
[11]. Alternatively, there is increasing interest in NN-based
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spatial-spectral classifiers that are built upon convolutional
neural networks (CNNs), with two general strategies existing
in the literature. The first strategy combines separate 1D and
2D CNNs, with the 1D network extracting information in the
spectral dimension while the 2D network captures information
in the spatial dimensions (e.g., [12], [13]). The second strategy
deploys 3D CNNs to extract spatial-spectral features jointly
(e.g., [14]–[22]).

The most straightforward paradigm in this second category
comprises simply a cascade of multiple 3D-CNN layers for
spatial-spectral feature extraction followed by a fully con-
nected (FC) layer implementing the classification—this is
essentially the approach taken by [14]–[16], for example,
while [17] follows a similar framework but with the addition
of a variety of skip connections to yield a spectral-spatial
residual network (SSRN). Alternatively, several techniques
combine 2D and 3D CNNs; such methods include the hybrid
spectral network (HybridSN) of [18] which follows a cascade
of 3D-CNN layers with a single 2D-CNN layer intended to
enhance the extraction of spatial features. The mixed-CNN
(MCNN) network of [19] essentially follows the same 3D-
2D approach as HybridSN but follows the 2D CNN with
covariance pooling to extract second-order information from
features before rendering the final classification decision, while
[20] also adopted a similar 3D-2D hybrid strategy, albeit
with multiple 2D layers. Alternatively, [21] employs both 3D
and 2D CNNs simultaneously in multiple parallel branches
followed by fusion of the resulting features from the respective
branches. Finally, [22] reverses the typical order, applying 2D
CNNs first in order to simplify the features before following
with 3D CNNs.

Although these various 3D-CNN-driven classifiers can
achieve quite effective performance in many scenarios, they
are hindered in the common situation in which land-cover
regions vary significantly in size of spatial coverage. That is,
a large diversity of spatial land-cover sizes can impede the
extraction of spatial features. While increasing the number
of 3D-CNN layers—which effectively enlarges the range of
the receptive fields of the CNNs—may alleviate this issue
to a certain extent, a deeper network entails significantly
more computation and memory and, importantly, is often more
difficult to train.

As an alternative to using ever-deeper networks for HSI
classification, there has been increasing recent interest in
multiscale network architectures (e.g., [23]–[35]) which permit
enlarging the range of the receptive fields of a CNN-based
network without incurring the computational and training
issues entailed by simply adding more CNN layers. Typically,
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such a multiscale network consists of, in essence, multiple
parallel branches of feature extraction in conjunction with
some form of feature fusion prior to classification, with the
branches being designed to independently extract features at
differing scales. Commonly, each branch implements a cascade
of one or more convolutional layers with feature summation
or concatenation providing the fusion of features from the
multiple branches. One of the first uses of this multi-branch
paradigm for multiscale feature extraction in HSI classification
was the multiscale 3D deep CNN (M3D-DCNN) of [23]
which features multiple parallel convolutional branches—each
extracting features at a different scale via convolutional ker-
nels of different sizes—coupled with summing of the branch
outputs to provide feature fusion. While multi-branch network
architectures permit multiscale feature extraction without the
difficulties associated with a deeper, single-branch network,
the number of different scales is effectively limited by the
number of branches, with each additional branch contributing
additional network complexity and associated computation and
memory burden.

In contrast to this multi-branch paradigm for multiscale
feature extraction, [36] proposes a network architecture that
widens the range of CNN receptive fields in a more granular
manner by splitting the channels of the input feature map
into multiple partitions and applying hierarchical connections
among the partitions. In this fashion, a large number of scales
can be implemented since the partitioning keeps computation
in check while the partition-to-partition connections alleviate
the vanishing gradients that often impede the training of deep
networks. The large number of scales thus achieved effectively
permits a fine-grained multiscale representation, as opposed
to the more coarse-grained structure of the typical multi-
branch architecture. Inspired by [36], [37] proposes a similar
fine-grained multiscale feature extraction for remote-sensing
imagery. We note that, being intended for 2D imagery, both
[36] and [37] employ 2D CNNs within each partition.

In this paper, a multiscale spatial-spectral feature extraction
network—which we call MS2FENet—is proposed to extract
spatial-spectral features for HSI classification. For multiscale
feature extraction, MS2FENet comprises feature reuse within a
multi-branch structure that expands the CNN receptive fields.
In so doing, MS2FENet adapts the fine-grained multiscale
feature extraction of [37] to HSI data in order to provide more
granular multiscale features than those of the coarse-grained
multi-branch architectures (such as [23]–[35]) common in
the literature. Accordingly, since MS2FENet is designed for
HSI volumes, we replace the 2D CNNs in [37] with 3D
CNNs. However, in order to circumvent the excessive com-
putational and memory burdens associated with conventional
3D convolution, we adopt depthwise 3D convolutions for the
multiscale feature-extraction 3D CNNs. Additionally, rather
than simply concatenating features between the multiscale
branches as in [37], MS2FENet employs a convolution-driven
feature fusion to combine information across channels more
effectively than simple feature addition or concatenation. The
primary contributions of this manuscript are as follows:

1) Multiscale spatial-spectral features are extracted from
HSI via a multi-branch structure capitalizing on feature

reuse and depthwise 3D convolution. The multiscale
nature of the feature extraction is finely grained due
to channel-wise partitioning coupled with multi-branch
connections that alleviate computational and training
difficulties of the more common coarse-grained multi-
branch approaches in existing literature. Our approach
is, to the best of our knowledge, the first to apply such
fine-grained multiscale feature extraction to the HSI-
classification problem.

2) Within the fine-grained multiscale feature extraction,
features are combined by a feature-fusion process driven
by pointwise convolutions in order to effectuate multi-
branch connections in a manner more sophisticated than
simple feature addition or concatenation.

3) The proposed MS2FENet is evaluated via a battery
of experimental results in which it is compared to
existing state-of-the-art CNN-based approaches for HSI
classification. These experimental results reveal that, not
only does MS2FENet outperform competing approaches,
it also provides highly stable performance as the size of
the training set becomes very small.

The remainder of this paper is organized as follows. Sec. II
describes the proposed MS2FENet and its constituent compo-
nents in detail. An overview of the datasets and experimental
setup is presented in Sec. III, while Sec. IV discusses experi-
mental results as well as the influence of various parameters in
the MS2FENet design. Finally, we make concluding remarks
in Sec. V.

II. THE PROPOSED MS2FENET ARCHITECTURE

In this section, we describe the structure of MS2FENet,
an overview of which is shown in Fig. 1. The network
is composed of several multiscale spatial-spectral feature-
extraction (MS2FE) modules, in which multiscale-fusion-
convolution (MFC) layers extract multiscale spatial-spectral
features. In the MFC layers, feature reuse and feature fusion
are conducted via a multi-branch structure in order to expand
convolutional receptive fields, while the feature-fusion block
combines information from different channels by fusing mul-
tiscale features. Moreover, in the multi-branch structure of
each MFC layer, depthwise 3D convolution extracts spatial-
spectral features while reducing the number of parameters in
the convolution. Below, we describe each of the MS2FENet
components in detail, starting with an overview of the overall
MS2FENet architecture in Sec. II-A and a detailed description
of the MFC layer in Sec. II-B. Additionally, we compare
and contrast depthwise 3D convolution to conventional 3D
convolution in Sec. II-C while describing the feature-fusion
block in Sec. II-D.

A. The Overall Network Structure

The overall structure of the proposed MS2FENet is shown
in Fig. 1. First, X ∈ RS×M×N is a hyperspectral data
cube, where S, M , and N are the number of spectral bands,
spatial height, and spatial width, respectively of the cube.
Principal component analysis (PCA) [38] is used to reduce
the spectral dimension of the original image to B principal
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Fig. 1. The overall structure of MS2FENet including MS2FE modules, MFC layers, and feature-fusion blocks.

components (PCs) such that X ′ ∈ RB×M×N . Since a single
pixel cannot be sent into the CNN for feature extraction, we
sample a small cube Z ∈ RB×H×W spatially surrounding
the current pixel to be classified from X ′ such that the class
label determined for Z is the label assigned to the central
pixel. The Z cube then proceeds through a conventional
3D convolution, followed by batch-normalization (BN) [39]
and rectified-linear-unit (ReLU) [40] layers, to expand the
number of channels of the sampled data and to realize the
extraction of preliminary spatial-spectral features. The size of
the conventional 3D convolution kernel is 7×3×3, where 7 is
the spectral dimension, and 3×3 is the spatial dimension.

Next, the proposed MS2FE module is applied three times
to extract multiscale spatial-spectral features. Each MS2FE
module includes MFC, BN, and ReLU layers, along with a
3D average-pooling layer. In the MFC layers, feature reuse and
feature fusion are implemented via a multi-branch structure to
expand the receptive fields of depthwise 3D convolution, while
the feature-fusion block combines information from the vari-
ous channels by fusing multiscale features. Consequently, the
MFC layer extracts discriminative multiscale spatial-spectral
features. The MFC layer does not downsample in order to
facilitate the concatenation of the multiscale feature maps;
rather, 3D average pooling realizes downsampling at the end
of the MS2FE module. We note that the BN and ReLU layers
within the MS2FE module are intended to help to suppress
gradient disappearance and to expedite training.

After the MS2FE modules, a flattening operation is used to
convert the feature map into a vector, which is sent to an FC
layer and ultimately to a softmax classifier to obtain the final
class predicted label. Table I gives a detailed summary of the
proposed network in terms of layer type as well as input and
output feature-map sizes for the Houston dataset as an example
(see Sec. III-A for a description of this dataset). It can be seen
that the output size of the last FC layer is 15, which matches
the number of land-cover classes of the Houston dataset.

TABLE I
NETWORK LAYER SIZES FOR THE HOUSTON DATASET

Layer Input size Output size

1 Input - 144×349×1905
2 PCA 144×349×1905 30×349×1905
3 Sample 30×349×1905 30×15×15
4 Conventional 3D Conv 30×15×15 8×24×13×13
5 MFC layer 8×24×13×13 20×24×13×13
6 3D Pooling 20×24×13×13 20×12×6×6
7 MFC layer 20×12×6×6 50×12×6×6
8 3D Pooling 50×12×6×6 50×6×2×2
9 MFC layer 50×6×2×2 128×6×2×2
10 3D Pooling 128×6×2×2 128×3×2×2
11 Flatten 128×3×2×2 1536
12 FC 1536 15

B. The MFC Layer

Each MS2FE module comprises MFC, BN, and ReLU
layers followed by a 3D average-pooling layer. Among these,
the MFC layer serves as the heart of the MS2FE module in
that it is designed specifically to extract multiscale spatial-
spectral features of HSIs in a manner that is more finely
grained than that of other multi-branch architectures common
in the literature. Specifically, the MFC layer we propose here
adapts the multiscale network of [37], originally proposed for
three-band remote-sensing images, to HSI. In doing so, we
adapt the 2D CNNs used in [37] to 3D. While conventional
3D convolutions can extract spatial-spectral features, such
conventional 3D convolutions entail an enormous number of
network parameters when applied to HSI data. Accordingly,
we use depthwise 3D convolution within each branch to
extract spatial-spectral features, which reduces the number of
convolution parameters as well as the resulting complexity
of the network while still expanding the receptive fields of
convolution. We discuss depthwise 3D convolution in more
detail below in Sec. II-C.

Each MFC layer splits the input feature map into 4 partitions
along the channel dimension. As an example, Fig. 2 illustrates
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Fig. 2. The architecture of the proposed MFC layer for an 8-channel input
feature map.

the operation of an MFC layer for an input feature map with
8 channels (i.e., the first MFC layer in Table I). That is, in
Fig. 2, the input feature map Z is partitioned by the split
function S(·); i.e.,

{Z1, Z2, Z3, Z4} = S(Z), (1)

such that the C channels of Z are partitioned into Z1, Z2, Z3,
and Z4 with C/4 channels each1. Then, first input partition
Z1 is subjected to depthwise 3D convolution to extract spatial-
spectral features, yielding the output feature map Y1,

Y1 = D(Z1), (2)

where D(·) denotes depthwise 3D convolution.
Next, we concatenate Y1 to the second input partition

Z2; this channelwise concatenation effectively realizes feature
reuse. The resulting concatenated feature map Z ′2 is then sent
to the feature-fusion block to fuse multiscale information,
yielding feature map Z ′′2 which is, in turn, sent to depthwise
3D convolution to extract multiscale spatial-spectral features.
That is,

Z ′i = C(Yi−1, Zi) (3)
Z ′′i = F(Z ′i) (4)
Yi = D(Z ′′i ), (5)

1If C is not evenly divisible by 4, then Z2, Z3, and Z4 each receive bC/4c
channels while Z1 receives the remaining C − 3bC/4c channels.

where C(·) is channelwise concatenation, and F(·) is feature
fusion (discussed below in Sec. II-D). This process is repeated
for i ∈ {2, 3, 4} to process the input feature maps of all
partitions. Finally, all the output feature maps are concatenated
as

Y = C(Y1, Y2, Y3, Y4) (6)

to yield the final MFC feature map, Y .
In this process, we employ feature reuse to increase the

information interaction between different partitions. That is,
consider the output Y1 of the first partition—on the one hand,
the output Y1 of the first partition is initially concatenated to
the input Z2 of the second partition, while, on the other hand,
Y1 is also concatenated to the output of the other partitions to
obtain the final output Y ; thus, the network uses feature Y1
multiple times. The MFC layer employs similar feature reuse
for Y2 and Y3 as well.

Furthermore, the architecture enlarges the receptive field
in a multiscale manner. For example, consider the second
partition—the concatenated feature map Z ′2 is fed into feature
fusion and depthwise 3D convolution within the second par-
tition. Consequently, in the depthwise 3D convolution within
the second partition, the receptive field of the feature map of
half the channels (i.e., those from Y1) is larger than that of
the other half. Accordingly, the MFC layer achieves multiscale
spatial-spectral feature extraction in a fine-grained manner by
expanding the receptive field of convolution.

More specifically, a traditional multiscale feature extraction
(such as the M3D-DCNN of [23]) employs multiple parallel
branches, each with a CNN of a fixed kernel size, such that, by
using different kernel sizes in the different branches, extraction
of features with multiple scales is accomplished. In contrast,
in the MFC layer as proposed here, each partition uses the
same CNN kernel size. The multiscale nature of MFC arises
instead from the fact that the output of each CNN is fed into
the subsequent partition (i.e., feature reuse) which expands
the effective receptive field of the subsequent CNN, thereby
providing multiscale feature extraction. Take a cascade of
two consecutive 3 × 3 × 3 convolutions as an example: the
receptive field of the first convolution is 3 × 3 × 3 (each
output value addresses 27 values in the input feature map),
while the receptive field of the second convolution kernel is
effectively 9 × 9 × 9 (each output value addresses 93 = 729
values in the original input feature map). The receptive field
of the second convolution is larger than that of the preceding
convolution even though the kernel itself is the same size; thus,
the receptive field is enlarged without the cost of actually using
a larger kernel in the CNN. Additionally, the partitioning along
the channel dimension in MFC further keeps computation in
check. In the traditional “coarse-grained” approach of using
parallel branches with different kernel sizes, computational
issues limit the number of branches to typically no more
than three. MFC faces no such limitation, as MFC could,
in theory, have as many partitions as channels—this is what
makes MFC much more fine-grained in its multiscale nature
than the traditional approach.

As can be seen in Fig. 1, in the overall MS2FENet, there
are three MFC layers (one in each MS2FE module). In the
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Fig. 3. (a) Conventional 3D convolution, (b) depthwise 3D convolution.

TABLE II
COMPARISON OF MFC-LAYER COMPLEXITY FOR CONVENTIONAL AND

DEPTHWISE 3D CONVOLUTION

Parameters FLOPs

Conventional 15
8

C2bhw + 29
16

C2B2 15
8

C2bhwBHW + 29
16

C2B2HW

Depthwise 5
2

Cbhw + 29
16

C2B2 5
2

CbhwBHW + 29
16

C2B2HW

first MFC layer, a kernel size of 5 × 3 × 3 is used for each
depthwise 3D convolution; the second and third MFC layers
both use 3× 3× 3 kernels. We note that, although the size of
the convolution kernel is the same spatially within an MFC
layer, multiscale feature extraction is nonetheless realized by
the changing receptive field of the convolution kernel that
occurs due to feature reuse as described above.

Finally, we observe that, since each MFC layer concatenates
feature maps along the channel dimension, all tensor dimen-
sions (except the channel dimension) must be the identical.
Consequently, the stride of depthwise 3D convolution is set
to 1 such that there is no downsampling of the feature maps
within the depthwise 3D convolutions of the MFC layer. To
compensate, at the end of each MS2FE module, we apply 3D
average pooling to downsample the output feature maps.

C. Depthwise 3D Convolution

In the spatial domain of HSIs, there is local correlation
between neighboring pixels. Accordingly, a convolution kernel
of spatial size of k × k is better able to extract spatial
features and represent spatial correlation as k becomes larger.
However, in conventional 3D convolution, each kernel must be
convolved over each channel of the input feature map, as is
illustrated in Fig. 3(a). Thus, although conventional 3D convo-
lution can extract rich spatial-spectral features, the number of
network parameters entailed is very large. In order to reduce
network complexity, depthwise convolution is widely used for
2D CNNs. Likewise, we adopt depthwise 3D convolution for
the MFC layer proposed here. That is, while conventional
3D convolution is used in MS2FENet for preliminary feature
extraction (i.e., layer 4 in Table I), we deploy depthwise 3D
convolution for the remaining convolutions within the MFC
layers.
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Fig. 4. The structure of feature-fusion block. The 4D feature map of size
C ×B ×H ×W is reshaped into a 3D feature map of size M ×H ×W ,
where M = CB.

Depthwise 3D convolution is illustrated in Fig. 3(b) wherein
it can be seen that depthwise 3D convolution applies one filter
per input channel; accordingly, the number of channels in the
input and output feature maps is the same. If the size of the
MFC-layer input feature map is C×B×H×W , and the kernel
size is b × h × w, then Table II compares the complexity,
in terms of numbers of parameters as well as floating-point
operations per second (FLOPs), of the MFC layer using both
depthwise and conventional 3D convolution. It can be seen
that depthwise 3D convolution results in significantly reduced
MFC-layer complexity. For example, for a 5 × 3 × 3 kernel
and an 8 × 24 × 13 × 13 input feature map, depthwise 3D
convolution results in an MFC layer with 67, 716 parameters
and 1.5×107 flops, while conventional 3D convolution entails
72, 216 parameters and 3.3× 107 flops; note in particular that
conventional convolution requires over twice as many flops in
this example.

D. Feature Fusion

In traditional multi-branch multiscale feature extraction in
existing literature (e.g., [23], [27], [34]), features extracted
from different branches are simply added or concatenated. In
contrast, however, the feature-fusion block in our proposed
MFC layer fuses information from different convolution chan-
nels to achieve a more fine-grained interaction among the
channels. To achieve this inter-channel information interaction,
we use 2D pointwise convolution across a 3D feature map as
illustrated in Fig. 4.

In more detail, there are three steps shown in Fig. 4,
including two reshape operation and a 2D pointwise convo-
lution. First, the feature maps from two MFC partitions are
concatenated along the channel dimension prior to the feature-
fusion block. Then, the resulting 4D feature map is reshaped
into a 3D feature map in order to accommodate 2D pointwise
convolution. Specifically, before entering the feature-fusion
block, we fuse the channel dimension C and spectral dimen-
sion B of the input feature map into one dimension M , with
M = CB. After reshaping, the size of the resulting 3D feature
map is M ×H×W which is suitable to 2D convolution. This
2D pointwise convolution (i.e., 2D convolution with M kernels
of size 1×1) serves to fuse information across the M channels.
Finally, the fused feature map is reshaped again into 4D in
preparation for the subsequent depthwise 3D convolution to
come in the MFC layer. The feature-fusion block is used in
the last three partitions of MFC layer. For the three partitions,
the size of the feature map before entering the feature-fusion
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block is the same as that after the output of the feature-fusion
block.

III. DATASETS AND EXPERIMENTAL SETUP

A. Data Description

We have selected three widely-used datasets: Houston, Pavia
University, and Botswana, which were acquired by different
sensors. The Houston dataset2 was collected by the Compact
Airborne Spectrographic Imager (CASI) over the campus of
the University of Houston and the neighboring urban area in
June 2012. The dataset has a high spatial resolution of 349×
1905 pixels. There are 15 classes, and the dataset is composed
of 144 spectral bands. A false-color image and ground-truth
map are shown in Fig. 5.

The Pavia University dataset [41] consists of a portion of
data collected by the Reflective Optics Spectrometer Imaging
System (ROSIS) sensor in Pavia, Italy. The Pavia University
dataset contains 9 classes. The dataset contains 103 usable
spectral bands after removing 12 noise bands; the spatial size
of the dataset is 610×340, while the spatial resolution is 1.3 m.
Fig. 6 shows the false-color image and ground-truth for Pavia
University.

The NASA EO-1 Hyperion sensor obtained the Botswana
dataset3 above the Okavango Delta. There are 145 spectral

2https://hyperspectral.ee.uh.edu/?page id=459
3http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote
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Fig. 7. False-color image (left) and ground-truth map (right) of the Botswana
dataset.

bands after uncalibrated and noisy bands are removed. The
spatial size of the Botswana dataset is 1, 476×256 with 30-m
spatial resolution, and it has 14 identified classes. Its false-
color image and ground-truth map are shown in Fig. 7.

B. Parameter Settings

A parameter of paramount importance to network perfor-
mance is the training ratio, which we set to 5% unless other-
wise stated. For a training ratio of 5%, we randomly select 5%
of each dataset as a training/validation set with the remaining
95% of the dataset designated as the test set. During training
of the proposed network, we divide the training/validation set
randomly into two equal-size parts—one part is used to train
the network, while the other part is a validation set used to
tune the network hyperparameters, which are set as follows.

As illustrated in Fig. 1, the original S-band HSI dataset is
reduced in dimension to B PCs via PCA before being spatially
sampled to an H × W window size and being fed into 3D
convolution, BN, ReLU, and a cascade of MS2FE modules.
Setting H =W , in Fig. 8, we investigate performance in terms
of overall accuracy (OA) of classification on the three datasets
over wide ranges of B and W values to determine the best
settings of these two parameters.

As can be seen in Fig. 8, for Houston, the network reaches
peak OA performance for B = 30 PCs and a window size of
15×15. For Pavia University and Botswana, peak performance
is achieved for B = 15 and B = 20, respectively, with window
sizes of 23×23 and 15×15, respectively. Note that B and W
impact the computational complexity of the proposed MS2FE
module, with larger B and W rendering the network more
complex.

C. Experimental Setup

All experiments are conducted on a system with two
NVIDIA Geforce RTX 2080Ti GPUs. Implementation is in
Pytorch on Ubuntu 19.04. The network uses the Adam opti-
mizer with cross-entropy loss, and the learning rate is 0.001
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(a) (b) (c)

Fig. 8. OA performance for varying number of PCs B and window size W for (a) Houston, (b) Pavia University, (c) Botswana.

over 100 epochs. Importantly, no data augmentation is used.
We note that the MS2FENet source code is available at
https://github.com/licuiling-chd/MS2FENet.

To gauge performance, we calculate OA, average accuracy
(AA), and κ coefficient. OA is the ratio of the number of
correct predictions made by the network to the overall number
of pixels in all test sets, while AA is the average value of the
ratio of the correct classifications to the total size of each class.
The calculation of the κ coefficient is based on the confusion
matrix, which is an indication of consistency. To avoid any
bias induced by random sampling, we conduct ten trials and
report average results along with standard deviation.

IV. RESULTS AND ANALYSIS

A. Comparison to State-of-the-Art Methods

We now compare the performance of the proposed
MS2FENet to several state-of-the-art CNN-based classifiers
for HSI from recent literature. Namely, we compare to the
techniques of [16] and [15] which both employ a single-
branch cascade of conventional 3D convolutions and which we
refer to as “3DCNN [16]” and “3DCNN [15],” respectively.
We also compare to the SSRN of [17], which is likewise a
single-branch cascade of conventional 3D convolutions but
with added skip connections to form a residual network; to
the HybridSN of [18], which follows a single-branch cascade
of 3D-CNN layers with a single 2D-CNN layer; to the MCNN
of [19] which is similar to HybridSN but follows the 2D CNN
with covariance pooling to extract second-order information
from features; and to the SPRN of [42], which deploys
parallel 2D residual CNNs on multiple partitions of spectral
bands followed by feature fusion via pointwise convolution.
Finally, we compare to a competing multiscale method—
namely, the M3D-DCNN of [23]—which features multiple
parallel convolutional branches for feature extraction coupled
with summing of the branch outputs to effectuate feature
fusion. We choose M3D-DCNN as representative of coarse-
grained multiscale feature-extraction approaches (e.g., [23]–
[35]) in contrast to the fine-grained multiscale nature of the
MS2FENet proposed here.

1) Quantitative Analysis: Tables III–V present the OA, AA,
and κ performance of the classification methods under com-
parison, while Fig. 9 shows confusion matrices of MS2FENet
for the three datasets. It can be observed in Tables III–V that

the proposed MS2FENet produces the best OA, AA, and κ
compared to the other competing methods. Additionally, it
can be seen from the confusion matrices in Fig. 9 that the
probability of misclassification for MS2FENet is very small.
In fact, for Pavia University, the OA of MS2FENet achieves
100% for the Asphalt, Meadows, and Bare Soil classes.

2) Visual Comparisons: Figs. 10–12 visualize the clas-
sification results of the best trained networks. As can be
seen, 3DCNN [16] generates a classification map with a
great deal of noise. On the other hand, SPRN generates
smoother results, albeit with evident misclassifications for
some classes. Compared to the other methods, MS2FENet
provides the most accurate and smoothest classification maps
for all three datasets. Taking the Houston dataset as an
example, class Parking lot 1 includes parking lots in ground
and elevated areas, while Parking lot 2 corresponds to parked
vehicles. The distribution of these two classes is complex, and
their corresponding spatial regions vary significantly in size.
These aspects hinder the performance of many classification
networks for these two classes. In contrast, the proposed
MS2FENet clearly outperforms the other networks by a wide
margin for these classes. Likewise, the Highway and Railway
classes share a similar complex spatial structure, yet these two
classes incur fewer misclassifications from MS2FENet than the
other techniques.

3) Stability Analysis: Fig. 13 depicts classification per-
formance as the training ratio varies. It can be seen that
classification performance for all methods under comparison
degrades with decreasing number of training samples, which
is as expected. However, compared to the other techniques,
MS2FENet always achieves higher classification accuracy and
better stability, even with an exceedingly small training ratio
(e.g., 1%).

4) Noise Robustness: Performance in noisy environments
is often used as a criterion for gauging remote-sensing image
classification, and additive white Gaussian noise is commonly
used to model distortions occurring in multiple stages within
the HSI-acquisition process. Therefore, we consider verifying
stability and generalization ability under the condition of
additive white Gaussian noise. In the experiment, noise is
added to the original HSIs at different signal-to-noise ratios
(SNRs). As shown in Fig. 14, MS2FENet has better noise
robustness and generalization ability in the noisy case as
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TABLE III
CLASSIFICATION ACCURACY (AVERAGE AND STANDARD DEVIATION) FOR HOUSTON FOR 5% TRAINING RATIO

Class Methods

No. Name 3DCNN [16] M3D-DCNN 3DCNN [15] SSRN HybridSN MCNN SPRN MS2FENet

1 Healthy grass 86.24±4.465 96.23±1.838 96.15±1.543 97.89±1.650 97.01±1.949 97.40±1.023 96.31±3.070 98.30±0.780
2 Stressed grass 85.47±3.976 96.51±2.293 96.97±2.390 95.68±4.941 97.43±1.625 96.24±1.574 95.46±5.290 99.61±0.490
3 Synthetic grass 92.93±5.376 97.62±1.486 98.29±0.971 99.43±1.140 99.68±0.458 99.74±1.802 99.77±0.240 100.00±0
4 Trees 85.29±4.490 97.47±1.200 96.50±1.076 96.53±2.712 95.80±2.521 96.02±3.014 94.65±3.011 97.11±1.813
5 Soil 90.49±8.344 97.02±1.530 97.52±1.562 99.57±0.650 98.39±1.020 98.81±1.802 98.54±2.511 100.00±0
6 Water 84.75±3.672 85.86±4.649 89.51±2.247 88.74±5.640 97.80±1.990 97.15±2.302 96.88±2.341 98.21±2.088
7 Residential 78.09±2.236 85.79±2.219 83.36±2.183 91.57±2.020 89.66±3.667 89.72±3.020 93.82±3.851 93.54±1.803
8 Commercial 57.55±4.646 84.84±1.705 80.67±3.723 84.43±5.471 96.39±2.579 96.15±2.130 96.97±2.672 98.34±0.267
9 Road 51.26±5.048 83.60±3.017 80.99±2.895 86.40±3.211 92.83±2.891 91.87±3.114 93.64±4.291 96.16±0.700

10 Highway 39.66±6.334 82.31±3.145 76.24±8.860 90.13±5.532 95.70±2.532 94.95±2.015 95.73±2.586 99.91±0.300
11 Railway 48.86±7.220 81.09±3.667 74.52±4.455 88.97±2.971 95.49±1.025 95.02±1.303 94.18±1.996 98.24±0.600
12 Parking lot1 40.19±3.878 82.62±4.444 77.55±6.357 89.81±6.821 95.03±7.362 95.19±4.036 95.32±6.435 99.01±0.004
13 Parking lot2 32.16±9.035 83.57±5.443 71.13±5.958 87.83±6.091 94.76±3.842 95.13±2.303 93.72±2.851 97.13±1.513
14 Tennis Court 91.47±3.239 95.42±2.602 96.06±1.511 99.31±0.953 97.00±2.366 96.95±1.025 96.75±0.236 100.00±0
15 Running Track 96.87±1.976 98.21±1.036 98.06±0.830 99.87±0.380 99.11±1.375 99.56±0.998 99.86±0.293 100.00±0

OA 70.87±6.756 89.52±1.770 87.09±1.589 92.78±0.833 95.08±1.232 95.32±1.110 95.72±1.364 98.31±0.200
AA 71.43±2.347 89.96±1.864 88.04±1.568 93.08±0.880 95.72±1.236 95.96±1.116 95.39±1.213 98.32±0.203
κ 68.48±7.265 88.68±1.909 86.01±1.710 92.20±0.900 95.33±1.329 95.68±1.362 95.01±1.322 98.17±0.220

TABLE IV
CLASSIFICATION ACCURACY (AVERAGE AND STANDARD DEVIATION) FOR PAVIA UNIVERSITY FOR 5% TRAINING RATIO

Class Methods

No. Name 3DCNN [16] M3D-DCNN 3DCNN [15] SSRN HybridSN MCNN SPRN MS2FENet

1 Asphalt 93.12±0.163 93.23±0.126 95.31±0.801 97.66±0.392 94.02±0.601 98.36±0.969 99.04±0.935 100.00±0
2 Meadows 88.10±0.847 92.91±0.357 95.91±0.652 98.96±0.051 100.00±0 99.71±0.068 99.79±0.160 100.00±0
3 Gravel 68.30±0.691 85.30±0.954 89.20±1.021 96.77±1.852 98.90±0.045 96.63±0.051 95.12±1.681 99.47±0.008
4 Trees 93.26±0.230 97.13±0.210 96.12±0.320 98.44±0.863 99.00±0.032 97.10±0.039 98.12±1.115 98.90±0.012
5 Painted Metal Sheets 95.12±0.156 98.78±0.102 98.70±0.091 97.63±0.201 99.64±0.007 99.68±0.012 99.73±0.340 99.54±0.007
6 Bare Soil 70.66±0.650 91.88±0.210 96.60±0.224 98.85±0.215 99.32±0.009 99.56±0.302 99.25±0.672 100.00±0
7 Bitumen 81.06±0.621 88.52±0.336 90.87±0.784 98.63±0.261 99.00±0.016 97.80±0.112 98.89±2.430 98.97±0.014
8 Self-Blocking Bricks 81.25±0.341 92.16±0.475 94.35±0.320 97.02±0.931 98.28±0.078 96.20±0.330 98.18±1.076 99.12±0.011
9 Shadows 94.30±0.106 97.64±0.080 98.90±0.087 98.75±0.251 96.79±0.302 95.80±0.124 99.34±0.683 99.89±0.009

OA 83.82±0.945 90.47±1.024 93.79±1.120 97.67±0.161 98.31±0.360 98.55±0.331 98.60±0.175 99.66±0.045
AA 85.36±1.012 91.12±0.824 94.01±0.965 97.64±0.269 97.96±0.225 97.76±0.212 98.67±0.352 99.39±0.103
κ 84.89±0.897 92.56±0.970 93.66±0.811 98.41±0.352 99.01±0.410 97.57±0.301 98.92±0.220 99.71±0.098

(a) (b) (c)

Fig. 9. Confusion matrices for MS2FENet for a training ratio of 5%. (a) Houston, (b) Pavia University, (c) Botswana.
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TABLE V
CLASSIFICATION ACCURACY (AVERAGE AND STANDARD DEVIATION) FOR BOTSWANA FOR 5% TRAINING RATIO

Class Methods

No. Name 3DCNN [16] M3D-DCNN 3DCNN [15] SSRN HybridSN MCNN SPRN MS2FENet

1 Water 95.26±0.084 96.94±0.089 97.56±0.633 98.96±0.121 90.00±1.023 94.80±0.997 97.62±0.980 100.00±0
2 Hippo grass 88.40±0.158 89.30±0.021 79.20±2.120 90.10±2.390 94.45±0.902 97.80±1.021 95.20±0.762 97.80±0.120
3 Floodplain grasses1 79.10±0.987 90.22±0.817 94.12±0.990 97.52±1.830 100.00±0 98.80±0.655 100.00±0 100.00±0
4 Floodplain grasses2 77.78±2.661 90.93±0.941 98.35±0.454 98.58±1.283 89.62±1.650 95.70±0.901 99.69±0.076 100.00±0
5 Reeds1 61.56±1.021 82.70±1.654 84.65±1.903 88.67±2.451 94.98±0.840 89.97±0.400 94.00±0.962 97.16±0.231
6 Riparian 68.61±0.998 80.98±1.243 82.06±2.014 85.90±1.833 93.64±0.896 93.91±1.023 88.06±1.023 92.85±0.905
7 Firescar2 94.65±0.067 95.48±0.523 98.42±0.095 99.07±0.965 99.00±0.004 98.30±0.098 100.00±0 99.95±0.002
8 Island interior 88.10±1.099 92.93±0.210 91.60±0.945 92.44±1.304 98.67±0.087 95.82±0.901 98.97±0.705 98.85±0.305
9 Acacia woodlands 82.24±4.021 76.71±3.601 90.03±0.912 89.83±1.023 89.62±1.341 96.41±0.909 94.05±0.887 97.23±0.986

10 Acacia shrublands 63.93±1.025 79.70±2.014 89.90±1.026 85.68±1.452 90.26±1.262 93.40±1.768 95.95±0.775 96.87±0.620
11 Acacia grasslands 61.81±2.386 80.65±1.978 92.40±0.983 93.67±0.987 96.54±0.640 96.40±1.402 95.27±1.360 96.36±0.863
12 Short mopane 58.97±3.002 91.00±0.909 93.46±0.504 97.15±0.390 96.50±0.872 96.20±1.036 96.53±1.856 96.90±0.703
13 Mixed mopane 69.78±1.578 89.90±1.110 88.81±1.847 93.57±0.858 93.14±1.760 94.10±0.998 92.57±0.763 94.65±1.023
14 Exposed soils 80.14±2.641 85.51±1.257 89.70±1.069 89.44±1.382 96.98±0.362 96.30±0.698 90.65±1.740 100.00±0

OA 67.16±2.652 83.74±1.875 90.96±1.890 92.20±1.193 93.05±0.874 94.82±0.906 95.19±0.890 96.42±0.320
AA 70.26±1.360 84.98±2.044 91.02±1.231 91.93±1.570 93.06±0.962 94.93±1.030 93.99±1.023 96.39±0.544
κ 65.30±3.601 83.46±1.399 90.10±1.022 91.27±1.378 93.33±0.680 94.79±0.989 95.28±0.990 96.28±0.630

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10. Classification maps for Houston. (a) 3DCNN [16], (b) M3D-DCNN, (c) 3DCNN [15], (d) SSRN, (e) HybridSN, (f) MCNN, (g) SPRN, (h)
MS2FENet.

compared to the other methods.
5) Training and Test Time: The execution time of training

and testing for the various networks under consideration is
shown in Table VI. We see that MS2FENet falls roughly in
the middle—not as fast as HybridSN, yet not as slow as SSRN.

B. MFC Partitioing

As described in Sec. II-B and illustrated in Fig. 2, the first
step in the MFC layer is the partitioning of the input feature
map along the channel dimension. While Fig. 2 depicts four

partitions (and all experimental results up to now use that
number of partitions), a different number of partitions could
feasibly be used, and, indeed, the choice of partitioning affects
the classification performance of the proposed MS2FENet.
Fig. 15 examines MS2FENet performance as the number of
MFC partitions varies between one (i.e., no partitioning) and
five.

From Fig. 15, we see that, when the number of partitions
is increased beyond a single partition, the classification ac-
curacies improve significantly. This suggests that the multi-
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(a) (b) (d)(c) (e) (f) (g) (h)

Fig. 11. Classification maps for Pavia University. (a) 3DCNN [16], (b) M3D-DCNN, (c) 3DCNN [15], (d) SSRN, (e) HybridSN, (f) MCNN, (g) SPRN, (h)
MS2FENet.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 12. Classification maps for Botswana. (a) 3DCNN [16], (b) M3D-DCNN, (c) 3DCNN [15], (d) SSRN, (e) HybridSN, (f) MCNN, (g) SPRN, (h)
MS2FENet.

(a) (c)(b)

Fig. 13. Classification accuracy for varying training ratio. (a) Houston, (b) Pavia University, (c) Botswana.
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(a) (c)(b)

Fig. 14. Classification performance for varying SNRs. (a) Houston, (b) Pavia University, (c) Botswana.

TABLE VI
EXECUTION TIME

Dataset Method Train (s) Test (s)

Houston

3DCNN [16] 16.74 11.40
M3D-DCNN 33.53 34.47
3DCNN [15] 31.91 10.48

SSRN 82.65 93.47
HybridSN 8.99 0.70

MCNN 57.39 4.67
SPRN 39.10 39.72

MS2FENet 23.53 1.64

Pavia University

3DCNN [16] 49.18 3.36
M3D-DCNN 91.72 9.21
3DCNN [15] 92.00 2.77

SSRN 156.97 21.71
HybridSN 37.29 3.53

MCNN 74.64 8.57
SPRN 95.37 11.14

MS2FENet 83.19 6.45

Botswana

3DCNN [16] 3.62 6.42
M3D-DCNN 7.61 19.38
3DCNN [15] 6.65 5.96

SSRN 19.84 62.62
HybridSN 1.19 0.10

MCNN 10.56 0.79
SPRN 11.15 31.00

MS2FENet 3.86 0.20

branch structure and feature reuse within the MFC layers of
MS2FENet enlarge the convolutional receptive fields, leading
to more effective extraction of multiscale features. Uniformly,
peak performance is reached for four partitions. When the
number of partitions is less than four, the multiscale spatial-
spectral features extracted are likely insufficient and may
reduce discrimination ability. On the other hand, greater than
four partitions appears to lead to an overly complex network
at risk for overfitting. Consequently, for the remainder of the
experiments, four partitions are used.

C. Pointwise Convolution for Feature Fusion

Fig. 4 illustrates the feature-fusion block within the MFC
layer of MS2FENet. Therein, feature fusion is accomplished
via 2D pointwise convolution with M = CB kernels of size
1×1, necessitating reshaping of feature maps from 4D to 3D,
and vice versa. Alternatively, a 3D pointwise convolution using

Fig. 15. MS2FENet OA performance for varying numbers of MFC partitions.

C kernels of size 1×1×1 could have been employed, obviating
the need for feature-map reshaping. Table VII compares these
two feature-fusion alternatives and leads to the conclusion
that 2D pointwise convolution uniformly outperforms the 3D
alternative.

D. Ablation Experiments

We conduct a battery of ablation experiments to verify
various facets of the MS2FENet design. Specifically, we look
at the impact of using a multi-branch structure, depthwise
3D convolution, and a feature-fusion block within the MFC
layer. As discussed in Sec. II-C, depthwise 3D convolution
can reduce the number of network parameters as compared
to conventional 3D convolution. The multi-branch structure
within MFC can effectively extract multiscale information
from feature maps, while the feature-fusion block combines
information from across the multi-branch structure. We design
three additional networks as shown in Table VIII to gauge the
effects of these three main components within the proposed
MS2FENet. These three additional networks are:

1) Network A: To analyze the impact of the multi-branch
structure on classification performance, input feature
maps for MS2FE module are not partitioned. Thus, for
Network A, the multi-branch structure is replaced by
a single-branch structure in which there is no feature-
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TABLE VII
MS2FENET OA PERFORMANCE FOR 2D AND 3D POINTWISE CONVOLUTION FOR MFC FEATURE FUSION FOR TRAINING RATIOS OF 1%, 5%, AND 10%

Methods
Houston Pavia University Botswana

1% 5% 10% 1% 5% 10% 1% 5% 10%

3D Pointwise Convolution 87.91±0.943 97.39±0.432 99.08±0.094 97.14±0.208 99.50±0.024 99.69±0.048 76.34±2.416 94.82±0.755 99.60±0.215
2D Pointwise Convolution 91.55±0.672 98.31±0.200 99.40±0.067 98.18±0.181 99.66±0.045 99.85±0.027 88.22±0.139 96.42±0.320 99.71±0.133

TABLE VIII
STRUCTURE OF ABLATION-EXPERIMENT NETWORKS

Methods Depthwise 3D Conv Multi-Branch Feature-Fusion Block

Network A X

Network B X X

Network C X X

MS2FENet X X X

fusion block. Thus, only depthwise 3D convolution is
used to extract spatial-spectral features in the MFC layer.

2) Network B: To explore the impact of the feature-fusion
block for multiscale feature extraction, we remove this
block. Thus, the MFC layer simply concatenates features
from different scales.

3) Network C: The effect of depthwise 3D convolution
on the MFC layer is investigated by using instead
conventional 3D convolution on each partition.

The resulting ablation networks are evaluated in terms of OA
performance in Table IX and analyzed below. Additionally,
computational complexity, in terms of network parameters as
well as FLOPs, is tabulated in Table X for both Network C
and MS2FENet.

1) Influence of the Multi-Branch Structure: We see in
Table IX that Network B consistently outperforms Network A,
regardless of the dataset or training ratio. This suggests that the
multi-branch structure within the MFC layer yields significant
performance enhancement beyond a simple depthwise 3D
convolution.

2) Influence of the Feature-Fusion Block: In comparing
MS2FENet to Network B, we see that addition of the feature-
fusion block brings typically several percentage points of
improvement in classification performance beyond the multi-
branch structure. This suggests that the fusion of features
across the feature-map channels effectuated by the 2D point-
wise convolution, along with the resulting fine-grained multi-
scale features, is effective.

3) Influence of Depthwise 3D Convolution: MS2FENet
uses depthwise 3D convolution instead of conventional 3D
convolution as used in Network C. Consulting Tables IX and
X, we see that the use of depthwise 3D convolution reduces
the number of parameters and FLOPs without reduction of
classification performance, effectively saving significant com-
putational costs.

V. CONCLUSIONS

In this paper, multiscale spatial-spectral features were ex-
tracted from HSIs to improve supervised classification perfor-
mance. To this end, we proposed MS2FENet, a fine-grained

multiscale feature-extraction network at the heart of which lay
MFC layers that extracted multiscale spatial-spectral features
via feature reuse and feature fusion. In MFC layers, a multi-
branch structure expanded the receptive fields of depthwise
3D convolution in a manner more granular than that of
other multi-branch architectures common in the literature. This
was accomplished through the partitioning of input feature
maps, applying hierarchical connections across the partitions,
cross-channel feature fusion via pointwise convolution, and
depthwise 3D convolution for feature extraction. Ablation
experiments proved the ability and effectiveness of MS2FENet
to extract multiscale spatial-spectral features from HSIs, while
a battery of experimental results comparing to other state-of-
the-art networks demonstrated that the proposed MS2FENet
achieves outstanding classification performance while being
robust to limited training data as well as added noise. In
future work, we plan to explore lightweight networks with
multiscale feature extraction for more efficient and accurate
classification.
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[30] X. Li, M. Ding, and A. Pižurica, “Deep feature fusion via two-stream
convolutional neural network for hyperspectral image classification,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 4,
pp. 2615–2629, April 2020.

[31] Z. Lu, B. Xu, L. Sun, T. Zhan, and S. Tang, “3-D channel and
spatial attention-based multiscale spatial-spectral residual network for
hyperspectral image classification,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 13, pp. 4311–
4324, 2020.

[32] C. Zhong, J. Zhang, and Y. Zhang, “Multiscale feature extraction based
on convolutional sparse decomposition for hyperspectral image classifi-
cation,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 13, pp. 4960–4972, 2020.

[33] X. Zhao, R. Tao, W. Li, H.-C. Li, Q. Du, W. Liao, and W. Philips,
“Joint classification of hyperspectral and LiDAR data using hierarchical
random walk and deep CNN architecture,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 58, no. 10, pp. 7355–7370, October
2020.

[34] C. Shi, D. Liao, Y. Xiong, T. Zhang, and L. Wang, “Hyperspectral
image classification based on dual-branch spectral multiscale attention
network,” IEEE Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, vol. 14, pp. 10 450–10 467, 2021.

[35] H. Gong, Q. Li, C. Li, H. Dai, Z. He, W. Wang, H. Li, F. Han,
A. Tuniyazi, and T. Mu, “Multiscale information fusion for hyperspectral
image classification based on hybrid 2D-3D CNN,” Remote Sensing,
vol. 13, 2021.

[36] S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and
P. Torr, “Res2Net: A new multi-scale backbone architecture,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 43,
no. 2, pp. 652–662, February 2019.

[37] L. Bai, Q. Liu, C. Li, C. Zhu, Z. Ye, and M. Xi, “A lightweight and
multiscale network for remote sensing image scene classification,” IEEE
Geoscience and Remote Sensing Letters, to appear.

[38] M. D. Farrell and R. M. Mersereau, “On the impact of PCA dimension
reduction for hyperspectral detection of difficult targets,” IEEE Geo-
science and Remote Sensing Letters, vol. 2, no. 2, pp. 192–195, April
2005.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3179446, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

[39] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings
of the International Conference on Machine Learning, Lille, France,
July 2015, pp. 448–456.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in
Proceedings of the International Conference on Computer Vision, San-
tiago, Chile, December 2015, pp. 1026–1034.

[41] P. Gamba, “A collection of data for urban area characterization,” in
Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium, vol. 1, Anchorage, Alaska, September 2004, pp. 69–72.

[42] X. Zhang, S. Shang, X. Tang, J. Feng, and L. Jiao, “Spectral partitioning
residual network with spatial attention mechanism for hyperspectral
image classification,” IEEE Transactions on Geoscience and Remote
Sensing, to appear.

Zhen Ye received the B.S., M.S., and Ph.D. de-
grees in information and communication engineering
from Northwestern Polytechnical University, Xi’an,
China, in 2007, 2010, and 2015, respectively. She
spent one year as an exchange student of Mississippi
State University, Mississippi State, MS, USA.

She is currently an Associate Professor in the
School of Electronics and Control Engineering,
Chang’an University, Xi’an, China. Her research in-
terests include hyperspectral image analysis, pattern
recognition, and machine learning.

Cuiling Li received the B.S. degree from Linyi
University, Linyi, China, in 2019. She is currently
working toward the M.S. degree in control science
and engineering with the School of Electronics and
Control Engineering, Chang’an University, Xi’an,
China.

Her research interests include machine learning
and hyperspectral image classification.

Qingxin Liu received the B.S. degree from Linyi
University, Linyi, China, in 2019. He is currently
working toward the M.S. degree in transportation en-
gineering with the School of Electronics and Control
Engineering, Chang’an University, Xi’an, China.

His research interests include machine learning
and remote-sensing scene classification.

Lin Bai (Member, IEEE) received the B.S. degree in
electronic information science and technology from
Northwest University, Xi’an, China, in 2003, and
the M.S. degree in electronic science and technology
from Xidian University, Xi’an, China, in 2006. He
received his Ph.D. degree in signal and information
processing from Northwestern Polytechnical Univer-
sity, Xi’an, China, in 2010.

He is currently an Associate Professor with
the School of Electronic and Control Engineering,
Chang’an University, Xi’an, China. His research

interests include machine learning and remote-sensing image processing.

James E. Fowler (Fellow, IEEE) received the B.S.
degree in computer and information science engi-
neering and the M.S. and Ph.D. degrees in elec-
trical engineering from The Ohio State University,
Columbus, OH, USA, in 1990, 1992, and 1996,
respectively.

In 1997, he held a postdoctoral assignment at the
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