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Multiscale statistical physics of the pan-viral
interactome unravels the systemic nature of
SARS-CoV-2 infections
Arsham Ghavasieh 1,2,5, Sebastiano Bontorin1,2,5, Oriol Artime 1, Nina Verstraete 3,4 &

Manlio De Domenico 1✉

Protein–protein interaction networks have been used to investigate the influence of

SARS-CoV-2 viral proteins on the function of human cells, laying out a deeper understanding

of COVID–19 and providing ground for applications, such as drug repurposing. Characterizing

molecular (dis)similarities between SARS-CoV-2 and other viral agents allows one to exploit

existing information about the alteration of key biological processes due to known viruses for

predicting the potential effects of this new virus. Here, we compare the novel coronavirus

network against 92 known viruses, from the perspective of statistical physics and compu-

tational biology. We show that regulatory spreading patterns, physical features and enriched

biological pathways in targeted proteins lead, overall, to meaningful clusters of viruses which,

across scales, provide complementary perspectives to better characterize SARS-CoV-2 and

its effects on humans. Our results indicate that the virus responsible for COVID–19 exhibits

expected similarities, such as to Influenza A and Human Respiratory Syncytial viruses, and

unexpected ones with different infection types and from distant viral families, like HIV1 and

Human Herpes virus. Taken together, our findings indicate that COVID–19 is a

systemic disease with potential effects on the function of multiple organs and human

body sub-systems.

https://doi.org/10.1038/s42005-021-00582-8 OPEN

1 Fondazione Bruno Kessler, Povo, Italy. 2Department of Physics, University of Trento, Povo, TN, Italy. 3Centre de Recherches en Cancérologie de Toulouse

(CRCT), UMR1037 Inserm, ERL5294 CNRS, Toulouse, France. 4University Paul Sabatier III, Toulouse, France. 5These authors contributed equally: Arsham

Ghavasieh, Sebastiano Bontorin. ✉email: mdedomenico@fbk.eu

COMMUNICATIONS PHYSICS |            (2021) 4:83 | https://doi.org/10.1038/s42005-021-00582-8 | www.nature.com/commsphys 1

12
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-021-00582-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-021-00582-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-021-00582-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-021-00582-8&domain=pdf
http://orcid.org/0000-0001-8138-7208
http://orcid.org/0000-0001-8138-7208
http://orcid.org/0000-0001-8138-7208
http://orcid.org/0000-0001-8138-7208
http://orcid.org/0000-0001-8138-7208
http://orcid.org/0000-0002-2591-0399
http://orcid.org/0000-0002-2591-0399
http://orcid.org/0000-0002-2591-0399
http://orcid.org/0000-0002-2591-0399
http://orcid.org/0000-0002-2591-0399
http://orcid.org/0000-0001-9694-3641
http://orcid.org/0000-0001-9694-3641
http://orcid.org/0000-0001-9694-3641
http://orcid.org/0000-0001-9694-3641
http://orcid.org/0000-0001-9694-3641
http://orcid.org/0000-0001-5158-8594
http://orcid.org/0000-0001-5158-8594
http://orcid.org/0000-0001-5158-8594
http://orcid.org/0000-0001-5158-8594
http://orcid.org/0000-0001-5158-8594
mailto:mdedomenico@fbk.eu
www.nature.com/commsphys
www.nature.com/commsphys


T
he COVID-19 pandemic, with global impact on multiple
crucial aspects of human life, is still a public health threat
in most areas of the world. Despite the ongoing investi-

gations aiming to find a viable cure, our knowledge of the nature
of the disease is still limited, especially regarding the similarities
and differences it has with other viral infections. On the one
hand, SARS-CoV-2 shows high genetic similarity to SARS-CoV1

—the virus causing 2003 coronavirus outbreak—and its infection
shares a number of symptoms with some other respiratory dis-
eases, such as flu caused by Influenza virus. On the other hand,
drugs usually used to treat different infection types, like AIDS
caused by Human Immunodeficiency Virus (HIV), are under
investigation to treat COVID-192–4, suggesting potentially
unexplored parallel between the function of other viruses and
SARS-CoV-2. Characterizing these (dis)similarities can result in a
deeper understanding of the novel coronavirus and facilitate the
search for reliable treatments.

With the rise of network medicine5–10, methods developed for
complex networks analysis have been widely adopted to effi-
ciently investigate the interdependence among genes, proteins,
biological processes, diseases, and drugs11. Especially,
protein–protein interactions (PPI)12 play an essential role in
every cellular process and, therefore, PPI network analysis has
been extensively used to predict protein function and understand
signal transduction pathways in normal or altered conditions.
The human PPI networks can include direct (physical) and
indirect (functional) interactions, identified through a wide range
of experimental and computational techniques.

Additionally, since PPIs are potential drug targets, a better
understanding of the interactomes is also essential in drug
development. In fact, interactomes are characterized by topolo-
gical modules bridged by a small number of cross-module PPI13,
organized into modular hierarchies14 essential for efficient
information exchange15,16 and, consequently, for the system
function.

Moreover, PPI network analysis has been used for character-
izing the interactions between viral and human proteins in case of
SARS-CoV-217–19, providing insights into the structure and
function of the virus20 and identifying, for instance, drug
repurposing strategies21–24. Very recently, the molecular analysis
unraveled the potential reason behind the fact that SARS-CoV-2
infections lead to diverse outcomes for COVID-19, the disease
being more severe and lethal preferentially for males and for older
patients rather than children and young adults25–27.

A comprehensive comparison of SARS-CoV-2 against other
viruses has the potential to unravel hidden (dis)similarities with
the effects of existing and well-known viral agents, opening
the opportunity to network-based applications which comple-
ment the more standard ones. However, such a systematic ana-
lysis is still missing or limited to a few viruses biologically
similar to SARS-CoV-2: recently, the comparative analysis against
other zoonotic coronaviruses causing Severe Acute Respiratory
Syndrome (SARS) in 2002 and Middle East Respiratory Syn-
drome in 2012, revealed the existing of pan-viral disease
mechanisms28.

Here, we use statistical physics and techniques from compu-
tational biology to analyze pan-viral patterns of 93 viruses,
including SARS-CoV-2. We consider the virus–human PPI as an
interdependent system with two parts, human PPI network tar-
geted by viral proteins. We carry out a multiscale analysis of
virus–host interactomes to highlight how viral interactions
impact and perturb the PPI network. In Fig. 1 we illustrate,
schematically, the multiscale nature of this work, and the features
we extract from the interactomes. To discover pan-viral patterns,
we feed advanced machine-learning techniques with the output of
physics and biology analyses in order to cluster together viruses

with similar physical, biological, or biophysical features. Our
findings indicate that SARS-CoV-2 groups with a distinct number
of pathogens depending on the physical scale and on the biolo-
gical information used, providing complementary perspective on
its functional effects on organs and human sub-systems. For
instance, we find proximity with pathogens such as Human
Respiratory Syncytial virus while being very close to other clusters
including HIV1 and Herpesvirus, suggesting that COVID-19
exhibits properties typical of systemic diseases. The results of
these analyses confirmed the peculiar similarity found between
SARS-CoV-2 and viruses from distant families. By integrating all
the results obtained from each analysis, we reached a final clus-
tering for viruses which accounts, simultaneously, for biological
and physical features from micro to macro scales. Our finding
shed light on the unexplored aspects of SARS-CoV-2 from the
perspective of statistical physics of complex networks. The pre-
sented framework opens the doors for further theoretical devel-
opments aiming to characterize structure and dynamics of
virus–host interactions, as well as grounds for further experi-
mental investigation and potentially novel clinical treatments,
since one can exploit knowledge about existing drug-target
interactions related to known viral agents to perform network-
based prediction of drug candidates for SARS-CoV-2 from
viruses exhibiting similar properties from a statistical physics and
biological point of view, thus complementing existing and more
biologically only approaches.

Results
Here, we use data regarding the viral proteins and their interac-
tions with human proteins for 93 viruses (see “Methods”). To
obtain the virus–human interactomes, we link the data to the
BIOSTR Human PPI network (19,945 nodes and 737,668
edges)29,30 built from data fusion of two comprehensive public
repositories (see “Methods” and Fig. 2). We also refer to Sup-
plementary Note 1 and Supplementary Figs. 1–4, for summariz-
ing statistics about viruses size, targeted human proteins, and
viral families.

Mapping biology into mathematical models. To allow the
analysis from the perspective of statistical physics of complex
networks, we first need to map the biology of our problem into
mathematical assumptions that can be used operationally. On the
one hand, viral proteins try to coopt cellular processes, from
protein translation to nuclear transport, through a complex web
of PPI. On the other hand, the response of human cells consists in
initiating transcriptional programs which activate the adaptive
immune system innate and anti-viral countermeasures to control
and mitigate virus’ replication. However, DNA and RNA viruses
behave differently: the first ones target proteins to alter either
human cellular processes or metabolic processes—or both
simultaneously—while the second ones tend to target proteins
involved into RNA processing, intracellular transport and loca-
lization within the cell, preferentially31.

It is worth remarking that our hypotheses in this work do not
correspond to a difference between DNA and RNA viruses but,
instead, they are intended to provide an operational framework to
support the choice of the analytical techniques used in this study.
Here, we will consider the following mapping, regardless of the
type of virus, whether RNA or DNA, to allow for a consistent
comparison of results across all families of viruses considered in
this work:

(1) Type-I: the interaction between a viral protein and a human
target is assumed to inhibit the function of the latter,
destroying its existing interactions with the human
interactome. This approach induces a specific change in
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the function of sub-system the target belongs to and,
potentially, in the function of the whole interactome.

(2) Type-II: the interaction between a viral protein and a
human target is assumed to perturb the function of the
latter, propagating such a perturbation systemically accord-
ing to some specific biomolecular dynamics.

Note that more sophisticated approaches are also possible: for
instance, one can randomly rewire a fraction—or the whole set—
of the interactions involving the target protein, thus preserving
the overall network connectivity while only altering the
functionality of the system. While the Type-I approach inhibits
a target, the Type-II also encodes the activation of novel

interactions: however, in this second case, the results might
depend on the way rewiring is performed—e.g., within or across
functional modules—and, to avoid the dependence of our results
from the methodology used for rewiring, we prefer to keep the
lowest possible number of assumptions and degrees of freedom to
employ only Type-I and Type-II approaches.

Percolation of the interactomes and perturbation propagation:
microscopic analyses. In this section we introduce two analyses
performed on virus–host interactomes at the microscopic scale to
detect virus (dis)similarities. A complete discussion of methods
and results is presented in the Supplementary Notes 5 and 6. On

Fig. 1 Impact of virus interactions with the human interactome at micro, meso, and macroscopic scales. Schematic illustration of virus–host interactions

across scales, where viral proteins attack human protein targets and the corresponding effects are investigated with distinct techniques from statistical

physics of complex networks. Addition of viral components δG to the human protein–protein interaction (PPI) network G generates the virus–human

interactome G0 . Micro: percolation analysis evaluates static structural properties (SðG0Þ size of the giant connected component) and robustness of the

interactome under removal of proteins. Here, the underlying biological hypothesis is that viral proteins might inhibit the usual function of human targets, and

we map this activity into the removal of protein from the system. We also test another less invasive hypothesis: the viral proteins interact with the human

targets while altering, and not just inhibiting, their functions: the resulting perturbations are propagated (dashed lines mimicking the propagation) and we

analyze the system response36,79. Meso: in this case, the underlying hypothesis is that viral proteins alter the function of the human interactome at the

mesoscopic level, i.e., interfering with the functional organization in modules (green shaded areas) typical of biomolecular systems13,14,80. This interference

is mapped into the isolation of the target proteins, and the modular and hierarchical re-organization of the interactome is detected according to two popular

methods for community and hierarchy detection39,40. Macro: viral interactions δG perturb macroscopic properties of the interactome which are captured by

the analysis of the network density matrix46,47 von Neumann entropy, Massieu function (ϕ(β, G)) and energy functions at temporal scale β.
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the one hand, we investigate percolation processes, that, in the
past, have been proved useful to shed light on several aspects of
protein-related networks, such as in the identification of func-
tional clusters32 and protein complexes33, the verification of the
quality of functional annotations34 or identification of critical
properties35. These successful applications motivate us to inves-
tigate percolation properties of virus–host interactomes. How-
ever, it turns out that percolation does not offer valuable insights
when it comes at differentiating the topological response of our
set of viruses under protein removals (see Supplementary Fig. 11),
because the interactomes are too similar between each other. On
the other hand, we take a dynamical approach and consider a
regulatory dynamic process evolving on top of the reconstructed
interactome with the aim of assessing differences between viral
agents in the way they impact this system, by means of a dynamic
perturbation in its steady state36,37. We employ recent definitions
of correlation functions36,38 to quantify the system response. We
find that while this approach returns interesting insight regarding
the amount of perturbation distributed by single targeted proteins
(see Supplementary Fig. 12), there is need for more analyses to
bring a comprehensive picture. Therefore, these types of micro-
scopic analyses do not allow us to achieve our goal and we
devote the rest of the article to investigate alternative approaches
to differentiate between these so topologically similar
interactomes.

Functional organization in modules and hierarchy: mesoscale
analysis. In this section we analyze how the modular and hier-
archical organization of the human interactome changes in
response to perturbations caused by viral agents, to shed light on
the impact on the functional organization of human proteins and
their interactions. Here, the underlying assumption is that the
viral proteins alter the functional role of their targets in such a
way that they impact on the overall function of the system:
operatively, this alteration is mapped into the isolation of protein
targets from the network. This method alters the modular
structure and the hierarchical organization, leading to a change in

the number of functional modules and the hierarchical structure
of protein groups. We quantify this change by measuring the
number of modules obtained through multiscale modularity
maximization based on the Louvain method39 and through the
Bayesian inference of a hierarchical degree-corrected stochastic
block model (DCSBM)40. The hierarchical structure is probed by
extending iteratively the analysis on the network of community
nodes, where each module is treated as a supernode of a higher
level network. These properties are measured for both the un-
targeted human PPI and the targeted virus–human PPI network,
the relative change being quantified in the number of modules
and in the modularity, captured by ΔModules and ΔModularity,
respectively (see Fig. 3). The Louvain method suggests that viral
interactions tend to increase the number of modules, decrease the
modularity and reduce the number of levels in the hierarchy,
indicating a decentralization of functions and a large-scale change
in how information is exchanged, respectively. According to our
resutls, SARS-CoV-2 exhibits a non-negligible positive change in
modularity, like HPV type 16, Influenza A, and Bunyavirus.
When analyzed from the perspective of Bayesian inference, we
find a larger number of modules on average with respect to
Louvain and an opposite trend: after viral interactions, mod-
ularity increases in most of the cases. Overall, a few viruses do not
alter the hierarchical organization of the human interactome, the
trend being a reduction in the number of levels, indicating that
information exchange across units might be less efficient15,16. We
also compare the new partitioning of functional modules of the
targeted interactomes to the un-targeted groups of proteins, via
normalized mutual information41 and Variation of Information
(see Supplementary Fig. 7 in Supplementary Note 3). Some of the
largest variations are detected for human coronaviruses in the
Coronaviridae family. SARS-CoV and Coronavirus-229E, despite
not having shared targeted human proteins with SARS-CoV-2,
and impacting a sensibly lower number of proteins, show a var-
iation in the new modular structure comparable to SARS-CoV-2.
A result confirmed by both Louvain and DCSBM community
detection methods.

(a) (b)

Fig. 2 Virus–host interactome as an interdependent network. BIOSTR human PPI (protein–protein interactions) used in this study, is obtained from data

fusion of two comprehensive public repositories, namely STRING and BIOGRID (see the text for details). The network consists of N= 19,945 proteins

linked by ∣E∣= 737,668 edges, and the largest connected component (99.8% nodes, 99.6% edges) is shown (a). Proteins targeted by viruses are

highlighted in two ways. On the one hand, markers of distinct size identify targeted proteins: bigger the marker larger the number of times a protein is

targeted by viruses in our dataset. On the other hand, distinct colored markers of constant size encode distinct viruses (93 in total, including SARS-CoV-2)

and the same color scheme is used to show the contribution of each virus to one of the most frequently targeted proteins (b), TP53, as an example. See

Supplementary Figs. 1–3 for more information on the contribution of viruses in targeting a number of other human proteins.
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Analysis of macroscopic properties: spectral information. In
this section, we use statistical physics of complex networks to
analyze the macroscopic features of virus–human PPI networks.
A variety of methods have been introduced to analyze the
information content of complex networks42,43. Since networks
can be viewed as collections of entangled entities, a density matrix
can be used to describe their state as in quantum statistical
mechanics. While some choices of the density matrix have been
shown to be unphysical44,45, Gibbsian-like density matrices have
been successfully used to define spectral entropy46,47 and estimate
the information content of empirical complex networks at mul-
tiple scales, with applications ranging from transportation
systems48 to the human microbiome46 and the human brain49. In
fact, it has been shown that such density matrices describe the
short to long range interactions between the nodes, and their Von
Neumann entropy encodes the diversity of information dynamics
within the structures16. The goal of this section is to study and
compare the effect of viral components on the state of informa-
tion dynamics in the human protein–protein network.

The density matrix can be defined in terms of the
combinatorial Laplacian matrix L=D−A, where D is defined
as Dij= kiδij, where δij= 1 if i= j and otherwise δij= 0, and ki ¼

∑jAij denotes the degree of ith node. The Laplacian matrix
governs the diffusion dynamics on top of the network and is
involved in the linear stability analysis of many complex
dynamics, such as synchronization. Here we use the Gibbs state
given by:

ρðβ;GÞ ¼
e�βL

Tr e�βLð Þ
; ð1Þ

which is defined in terms of the propagator of a diffusion process
on top of the network, where β encodes the temporal scale for
signal propagation, normalized by the partition function
Zðβ;GÞ ¼ Tr e�βL

� �

, which has an elegant physical meaning in
terms of dynamical trapping for diffusive flows48. Consequently,
the counterpart of Massieu function—also known as free entropy
—in statistical physics can be defined for networks as:

ϕðβ;GÞ ¼ logZðβ;GÞ: ð2Þ

Note that a low value of the Massieu function indicates high
information flow between the nodes. The von Neumann entropy
can be directly derived from the Massieu function by:

Sðβ;GÞ ¼ �β∂βϕðβ;GÞ þ ϕðβ;GÞ; ð3Þ

encoding the information content of graph G. In the following,
we use the above quantities to compare the interactomes
corresponding to different virus–host interactomes. In fact, as
the number of viral nodes is much smaller than the number of
human proteins, we model each virus–human interdependent
system G0 as a perturbation of the large human PPI network G
(see Fig. 4).

After considering the viral perturbations due to each virus, the
von Neumann entropy and Massieu function of the human PPI
network change slightly, as follows:

● δSðβ;G0Þ ¼ Sðβ;G0Þ � Sðβ;GÞ
● δϕðβ;G0Þ ¼ ϕðβ;G0Þ � ϕðβ;GÞ

In our analysis of the perturbations, the temporal scale β is
used as a resolution parameter tuned to characterize the
node–node interactions, from short to long range16.

Fig. 3 Mesoscale analysis of virus–host interactions. Different methods to detect the mesoscale functional organization of human PPI (protein–protein

interactions) highlight the impact of viral interactions on the human interactome in terms of variations in the number of modules, modularity, and

hierarchical levels. Axis with virus labels is shared between all panels. a The method based on multiscale modularity maximization (Louvain) shows that

viral interactions can significantly disrupt modules, leading to a higher number of smaller modules, while reducing modularity in most of the cases. The

relative impact is relevant for SARS-CoV-2 and Influenza A. b The degree-corrected stochastic block model (DCSBM) shows a more heterogeneous

pattern, where isolation of targeted proteins can lead to the merging of communities and more modular structure, or vice versa. c The number of levels (N

Levels) of the hierarchical structure of targeted interactomes is presented, compared to the un-targeted reference structure (human PPI, dashed red line).

Virus–host interactions often lead to a shallower hierarchical arrangement of communities.
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Based on the magnitude of perturbations, caused by the viral
components, and using k-means algorithm, a widely adopted
clustering technique, we group the viruses together (see Fig. 4)—i.e.,
the perturbations in Von Neumann entropy and Massieu function
shape our two-dimensional feature space and the number of
clusters has been calculated using the elbow method at each
temporal scale β= 1, 3, 5. A more advanced clustering and the full
description of the cluster members at different characteristic
propagation time scales is presented later in the text.

Gene ontology and pathways enrichment analysis. To under-
stand if these findings were biologically relevant, we have further

performed a clustering analysis on the 93 viruses based on the
human proteins they interact with (Supplementary Data 5). We
consider a human protein as a “shared target” if it was reported to
bind both to a SARS-CoV-2 protein and another virus’ protein,
according to the PPI data retrieved from http://viruses.string-db.org
(Supplementary Table 1). Out of the 332 human proteins directly
targeted by SARS-CoV-2, only 18 of them were found to be also
targeted by other viruses, among which Herpes viruses, HPV type
16, Reovirus or Encephalomyocarditis virus (Supplementary
Table 1). Figure 5a shows that SARS-CoV-2 does not indeed cluster
with any other virus on the basis of shared protein interactors
(Supplementary Fig. 2).

(a)

(b)

(c)

Fig. 4 Perturbation analysis of the virus–host interactome. a The BIOSTR human interactome G is targeted by viral proteins, considered as perturbations

δG, to build the virus–human interactome G0. Here, the SARS-CoV-2 interactome is shown, while excluding the 10% human proteins with the highest

degree, for clarity. The interdependence is reflected in the macroscopic functions of the network, perturbing the thermodynamic-like features, at different

temporal scales for signal propagation characterized by β. The perturbations of the macroscopic properties of the human protein–protein interaction

network (b), reflected in the von Neumann entropy δSðβ;G0Þand the Massieu function δϕðβ;G0Þ are shown, where each dot corresponds to a specific virus

and the color of the dotts shows their clustering (see the text). More specifically, the von Neumann entropy and Massieu function perturbations caused by

each virus, are used as features defining a two-dimensional space, k-means algorithm is used to cluster the viruses at different scales corresponding to

different temporal scales β≈ 1, 3, 5. The trajectories (c) indicate that the perturbation caused by each virus change with β, leading to possibly different

clustering at different temporal scales. The color of each trajectory in b is set by the clustering plot given at β≈ 3 (b).
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We then extended our clustering analysis to biological
pathways and processes in which these targeted proteins are
involved. The R package clusterProfiler50 allows to perform
enrichment analysis of gene clusters and was used to identify
statistically enriched Reactome pathways51 and Gene Ontology
terms52 potentially targeted by the viruses although through
multiple different proteins. Considering enriched Reactome
pathways, SARS-CoV-2 was shown to have the highest similarity
with Bunyavirus and Reovirus (Fig. 5b). The same clustering
analysis on Biological Processes as defined by the Gene Ontology

database showed that SARS-CoV-2 clusters with Rotavirus C,
another virus of the Reoviridae family (Supplementary Fig. 5).

These two methods to assess virus similarities (based either on
their targeted proteins, or on their relative enriched pathways
among these proteins) are complementary. Although Bunyavirus
does not share any human protein target with SARS-CoV-2
(Supplementary Table 1), it is still found to be the most similar to
SARS-CoV-2 based on their shared targeted biological pathways
(which are mostly related to mitotic checkpoint controls, see
Supplementary Table 2).

b

a

Fig. 5 Clustering analysis based on the viruses’ first range human protein targets and their related enriched Reactome pathways. Viruses are clustered

based on their (a) shared human protein direct targets (first range interactors) and (b) the enriched Reactome pathways containing these proteins. Binary

distance has been used to perform the hierarchical clustering in all subplots. Red boxes highlight the cluster containing SARS-CoV-2. Enrichment analyses

were performed with the R package clusterProfiler50 with a cutoff of p value <0.005. Viruses for which we could not find any enriched Reactome

pathway do not appear on the enrichment heatmaps. Complete results of these enrichment analyses are available as Supplementary material

(Supplementary Data 1 and 2).
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To investigate whether SARS-CoV-2 would cluster with other
viruses at a higher distance, we extended the clustering analysis to
the human proteins located one node further of the proteins
directly targeted by viruses (referring to them as second-order
interactors, Supplementary Data 6). Figure 6a shows that based
on the similarity of these second-order interactors, SARS-CoV-2
clusters with more viruses including Hepatitis B and C, HIV-1,
Influenza A, Herpesvirus 1/2/8, Varicella, Cytomegalovirus,
HPV16, Epstein-Barr and Bunyavirus. Based on enriched path-
ways from first-order and second-order targets, SARS-CoV-2
clusters with viruses of Bluetongue, West Nile, Cucumber mosaic,
Bunyavirus, Reovirus, Rotavirus C, Newcastle disease, Vesicular

stomatitis Indiana, Measles, and Myxoma (Supplementary Fig. 6).
Gene Ontology Biological Processes-based clustering using first-
and second-order targets shows an association of SARS-CoV-2
with more viruses as well, including Human SARS coronavirus,
Bunyavirus, HPV16/18, HIV-1/2, African swine fever, Simian
virus 40, Avian infectious bronchitis, Influenza A, Herpesvirus 1/
2/8, Hepatitis B/C, cytomegalovirus, and Epstein-Barr virus
(Fig. 6b). These latter clusters based on enrichments including
second-order viral interactors highlight non-trivial functional
similarity between viruses of different families, possibly retrieved
with the statistical physics approaches mentioned previously, and
in agreement with the results described in the last section. Full

b

a

Fig. 6 Clustering analysis based on the viruses’ first and second-range human protein targets and their related Gene Ontology biological processes.

Viruses are clustered based on their (a) shared human protein targets including direct and secondary interactors and (b) the enriched biological processes

(Gene Ontology) containing these direct and secondary targets. Binary distance has been used to perform the hierarchical clustering in all subplots. Red

boxes highlight the cluster containing SARS-CoV-2. Enrichment analyses were performed with the R package clusterProfiler50 with a cutoff of p value

<0.005. Viruses for which we could not find any enriched GO biological process do not appear on the enrichment heatmaps. Complete results of these

enrichment analyses are available as Supplementary Data 3 and 4.
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investigation of these (dis)similarities require further experimen-
tal investigations and is beyond the scope of this work.

Clusters of viruses. In previous sections, we analyzed the effect of
viruses on the human interactome, across different scales. Each
analysis, coupled with embedding techniques and clustering
algorithms, can be used to investigate the (dis)similarities of
viruses from a specific point of view. Here, we use the UMAP
dimensionality reduction technique—a machine-learning tech-
nique exploiting the hidden geometry of the data—and
HDBSCAN—a hierarchical method exploiting spatial density and
accounting for the presence of noise—clustering algorithm to
groups together the viruses according to their biological and
physical effects. We combine the result of different analyses as
features to perform the UMAP embedding, to provide an inte-
grated view of virus clusters, identified via HDBSCAN algorithm
(for more information and a detailed list of features used, see
Supplementary Note 4 and Supplementary Figs. 8–10). In this
section, we present the clustering according to three analyses, one
based on physical methods, another based on biological and the
last one based on their combination (see Fig. 7).

More specifically, when the mesoscale organization is com-
bined with the results obtained from the spectral entropy and
Massieu function (β= 3), SARS-CoV-2 is clustered with
Influenza A (Puerto Rico), Human Herpesvirus, Human
Parovirus B19, and Mrine Minute virus. Instead, combining GO
and Pathways enrichment analyses for second-range interactions,
the novel coronavirus exhibits more similarity to Influenza A
(Puerto Rico), HIV-1, Epstein-Barr virus, and Vaccina virus.
Finally, combining all the mentioned features with microscopic
analysis of perturbation propagation and the analysis of second
interactors comparison, we find Human Herpesvirus, Epstein-
Barr virus, Varicella Zoster virus, Hepatitis C virus in the same
cluster with SARS-CoV-2. In the discussion, we report on the
clustering results according to each analysis and, also, elaborate
on the similarities between the results obtained from physical and
biological approaches and their integration.

Discussion
Our knowledge of COVID-19 is still far from being complete. To
enhance our understanding of properties of the virus responsible
for this emerging disease, one possibility is to compare, at a
molecular level, the effects of its interactions with the human
interactome against the effects of well-known viral agents. By
measuring such effects from multiple analysis, one can use the
results to cluster together viruses in order to learn about potential
hidden pan-viral relationships. However, comparing COVID-19
against other viral infections is still a challenge, since various
approaches can be adopted to characterize and categorize the
complex nature of viruses and their impact on human cells.

In this study, we used an approach based on statistical physics
to analyze virus–human PPI outlining 93 different viral infec-
tions. Our findings suggest that microscopic analyses such as
percolation and perturbation propagation are not sensitive to the
differentiating features of networks, due to the similarity of
interactomes and the high level of details which is a characteristic
of microscale analysis (see “Methods”).

Thus, we investigated the effect of virual components on the
mesoscale organization of human protein–protein interactome.
We used the UMAP dimensionality reduction technique with the
HDBSCAN clustering algorithm to find the viruses exhibiting
the highest similarity to SARS-CoV-2 in the way they affect the
functional modularity, including Influenza A (Puerto Rico) and
Marine Minute virus. While this analysis provides mesoscopic
details about the impact of viruses on the human proteins, it is

not sufficient to identify and compare the global effects of viruses.
Therefore, to complement the mesoscale analysis, we used
thermodynamic-like quantities—such as the von Neumann
entropy and the Massieu function—to quantify the effect of
viruses on human interactome, across multiple scales determined
by the resolution parameter β. We used the HDBSCAN algorithm
again and find SARS-CoV-2 showing similarity to Human
Respiratory Syncytial virus at small scales, while at larger scales
where the interplay between the topology of virus–host interac-
tion and information flow dynamics becomes more relevant,
Measles virus is found in their cluster. It is also worth pointing
out that in the geometric space determined by UMAP, the cluster
containing SARS-CoV-2 is very close to other clusters including
viruses such as SARS-CoV, Human Herpesvirus, and HIV-1,
suggesting that SARS-CoV-2 exhibits physical and biological
features which makes it similar to viruses well known for their
systemic effects, rather than for localized ones. Our findings
suggest unexplored relationships between SARS-CoV-2, Herpes-
virus, and HIV-1, motivating further theoretical and experimental
investigations.

Furthermore, our biological pathways enrichment analysis
highlighted that SARS-CoV-2 might impact specific pathways
also targeted by other viruses, from different families, although
their human protein targets were found to be different, in the
strict sense.

In fact, we included the biological analysis based on enrich-
ment with gene ontology and biological pathways, considering
only first direct interactors, and then second-order interactors.
Concerning the direct interactors, although the approach solely
based on protein similarity did not allow to highlight any relevant
cluster, 18 human proteins were found to be targeted both by
SARS-CoV-2 and by other viruses. Surprisingly, no other mem-
bers from the coronavirus family were found to share human
targets with SARS-CoV-2. However, when using pathway
enrichment analysis, we observed that SARS-CoV-2 clustered
with Bunyavirus (La Crosse encephalitis) and Reovirus. It is
worth noting that La Crosse encephalitis virus can cause
inflammation of the brain and its symptoms include nausea,
headache, vomiting (in milder cases) and seizures, coma,
paralysis, and permanent brain damage (in severe cases)53,54.
Additionally, ribavirin has been shown to be effective against La
Crosse encephalitis virus both in vitro and in infected
patients55,56. Several clinical trials using the same drug to treat
COVID-19 are also ongoing57–59. Reoviruses can affect the gas-
trointestinal system (such as rotaviruses) and the respiratory
tract. Although they are mostly non-pathogenic in humans, a
strain of bat origin has been found to be associated with an acute
respiratory disease in humans60. When the second-range targets
were included in the clustering analysis, SARS-CoV-2 was
observed to share secondary targets, and thus clustered with a
wider range of viruses, including viruses responsible for skin and
eye infections (Varicella, Cytomegalovirus), or attacking the
hepatic (Hepatitis B/C), immune (HIV-1/2), respiratory (Influ-
enza, Epstein-Barr), neurological system (Bunyavirus), or more
systemic-infectious viruses (Herpes). This apparent similarity
with such diverse viruses may help explain the wide variety of
symptoms and organs involved with SARS-CoV-2 infection and
COVID-19.

We reach similar conclusions based on both physical and
biological approaches, providing evidence for the systemic effect
of the novel coronavirus. Noticeably, even when all the con-
sidered approaches are combined to reach an integrated view of
the virus clusters, we observe the same similarity between SARS-
CoV-2 and viruses such as Herpes.

It is worth mentioning that the SARS-CoV-2 outbreak is very
recent and its PPI is not yet available on the STRING repository.
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Therefore, for this particular virus, we relied on a study published
in Nature17, in April. We acknowledge the possibility that our
results might be affected by the limitations of the currently
available data sets.

Overall, our framework opens the doors for further analyses of
viral agents from the perspective of combining statistical physics
and computational biology, highlighting the sensitivity of mac-
roscopic functions, such as spectral entropy, to small variations
across interaction networks and, more specifically, virus–host
interactomes. Even though other analyses, such as the perturba-
tion propagation patterns, lack the same sensitivity, according to
our results it provides microscopic details about the interactions
between viral and human proteins that complement the macro-
scopic view, together enhancing our understanding of the novel

SARS-CoV-2 from a new perspective, which can provide a
mathematical ground for the exploration of further clinical
treatments and biological understanding.

The most likely application in this direction is drug repur-
posing, i.e., the identification of new roles of an existing drug to
discover previously unknown therapies for untreated diseases.
Usually, drugs are combined together to trigger their most direct
effects, i.e., at the first-order neighborhood of their targets:
however, this approach does not account for potential inter-
ference at a systemic level, and databases of empirically dis-
covered side effects have to be taken maintained to be
interrogated61,62. Conversely, network-based drug repurposing
has the potential to capture those systemic effects, reducing side
effects63, an application already being explored for SARS-CoV-2

Fig. 7 Machine-learning clusters of viruses according to their statistical physics and biology. Clustering of viruses according to combination of the

features obtained from the mesoscale (including modularity and depth of hierarchy), macroscale (including Massieu and Von Neumann values calculated

at temporal scale β= 3), and microscale analyses (including cumulative perturbation, see Supplementary Note 6) and biological analyses (including Gene

Ontology GO2, Pathways enrichment PW2, and protein interactors INT2 for first- and second-order shared interactors). To map the multidimensional

feature space into a 2d space, we use the UMAP dimensionality reduction technique and find the clusters by means of the HDBSCAN algorithm. In all

panels, viruses are shown as dots where their colors indicates their membership in clusters and their size is proportional to the reliability of their

assignment to that cluster. In each panel, the labels are added to the viruses that cluster with SARS-CoV-2 and located at the intersection of the dashed

lines. a Features from mesoscale organization coupled with spectral entropy and Massieu function perturbations. b Embedding using gene ontology and

pathways enrichment analyses. c Features from micro-, meso-, and macroscale analyses are combined with biological analyses GO2, PW2, and INT2.
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combining biological information with AI-based techniques21–24.
Our findings complement the ongoing efforts, providing infor-
mation on similarities between SARS-CoV-2 and other viruses
that can be exploited as an additional layer of information for
network-based drug repositioning.

Finally, we would like to comment on a more speculative, but
extremely fascinating, connection between our findings and latest
evidence on the impact of COVID-19 on immune response. On
the one hand, in the recent years the study of the human virome64

—a part of the microbiome—enhanced our knowledge of its
relationships with systemic inflammation, immunophenotype,
and disease susceptibility, to mention a few. Usually, the human
immune system monitors and co-exists with the virome: however,
deviations from this equilibrium condition happening, for
instance, when immunity is hampered because of a pathogen like
SARS-CoV-2, can lead to the proliferation of other viruses which
are successfully suppressed in normal circumstances. This per-
turbation of the immune system state might lead, as a con-
sequence, to bacterial and viral co-infections, as confirmed by
meta-analysis of host pathways in SARS-CoV-2 and its potential
copathogens65. It is tempting to consider viruses clustered with
SARS-CoV-2 as natural candidates for such co-infections. Intri-
guingly, the recent literature on this topic is in agreement with
this possibility, for instance in the case of the Influenza A66,
Epstein-Barr67, HIV68 as well as other respiratory69,70 viruses,
such as respiratory syncytial virus and adenovirus.

On the other hand, it is known that some viruses are able to
module the development of autoimmune diseases71 through
distinct mechanisms, such as molecular mimicry and bystander
activation72. SARS-CoV-2 might be in this class of viruses (see73

and refs. therein) and the recent finding for a pathological role for
exoproteome-directed autoantibodies in COVID-1974.

Taken together, such an experimental evidence calls for further
analysis to gain deeper insights about the physical and biological
features of SARS-CoV-2.

Methods
Overview of the dataset. The human interactome used in this study combines
PPI from two of the largest repository publicly available to date, namely STRING
v10.512—publicly available at https://string-db.org/cgi/download.pl—and BIO-
GRID v3.5.18275,76—publicly available at https://downloads.thebiogrid.org/
BioGRID/Release-Archive/BIOGRID-3.5.182/). For a consistent analysis, all pro-
tein names and aliases have been standardized to follow the common nomenclature
of official symbols of NCBI gene database (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
GENE_INFO/Mammalia/ (accessed: 28/03/2020)77). In the following we will refer
to this comprehensive network, in standardized format, as BIOSTR.

The virus–host interactions for 93 viruses are collected from the STRING
database—publicly available at http://viruses.string-db.org/. We consider
interactions of any type as long as their confidence (score) is equal or larger than
0.7. For each virus, we record the targeted human proteins and build a virus–host
interactome by merging this information with BIOSTR. While BIOSTR contains
19,945 proteins, the number of human proteins in each human-virus interactome is
19,929, as we excluded the disconnected components. Also, our analyses are
focused only on the human interactome and virus–human interactions, discarding
the virus–virus interactions.

It is worth noting that to build the COVID-19 virus–host interactions, a
different procedure had to be used. In fact, since the SARS-CoV-2 is too novel we
could not find its PPI in the STRING repository and we have considered, instead,
the targets experimentally observed in Gordon et al.17, consisting of 332 human
proteins. The remainder of the procedure used to build the virus–host PPI is the
same as before.

Figure 2 shows a visualization of the human interactome where proteins
targeted by viruses are highlighted. It is worth noting that viruses target a certain
number of proteins which have interesting functions in the interactome. In fact,
based on our dataset, TP53 (Tumor Protein p53, NCBI Gene ID: 7157) is the most
targeted node: it is responsible for inducing changes in metabolism, DNA repair,
apoptosis and cell cycle arrest, and its mutations are associated with several human
cancers. Other relevant targets (see Fig. 2) include GK (Glycerol Kinase, NCBI
Gene ID: 2710), an important enzyme contributing to regulate metabolism and
glycerol uptake, and its mutations are associated with glycerol kinase deficiency;
TBP (TATA-box Binding Protein, NCBI Gene ID: 6908), which composes the
transcription factor IID, which coordinates the activities of more than 70

polypeptides to initiate the transcription by RNA polymerase II; TLR4 (Toll Like
Receptor 4, NCBI Gene ID: 7099), relevant for recognizing pathogens and
activating innate immunity; STAT2 (Signal Transducer and Activator of
Transcription 2, NCBI Gene ID: 6773), acting as a transcription activator within
the cell nucleus: it is likely that it contributes to block interferon-alpha response by
adenovirus; PTGS2 (Prostaglandin-endoperoxide Synthase 2, NCBI Gene ID:
5743), a key enzyme involved in the process of prostaglandin biosynthesis; IFIH1
(Interferon Induced with Helicase C domain 1, NCBI Gene ID: 64135), encoding
MDA5, an intracellular sensor of viral RNA responsible for triggering the innate
immune response: it is fundamental for activating the process of pro-inflammatory
response that includes interferons, for this reason it is targeted by several virus
families which are able to hinder the innate immune response by evading its
specific interferon response.

Gene ontology, reactome pathway, and clustering analysis. The compar-
eCluster function in clusterProfiler R package was used to perform the Reactome
pathway enrichment analysis on viral target proteins with a p value cutoff of 0.005.
The parameters “enrichPathway” and “enrichGO” with ontology “BP” were used to
retrieve enriched Reactome pathways and biological processes from Gene Ontol-
ogy, respectively. They are based on hypergeometric distribution to calculate
enrichment test for GO terms and Reactome pathways, determining whether some
protein sets within the same Reactome pathway or defined by particular GO terms
are more represented than expected randomly. Enrichment analysis output results
were binarized and clustering was performed using pheatmap R package with
binary distance and complete method.

Data availability
Data available in figshare repository78.

Code availability
The code to perform the analysis will be available upon request.
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