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Abstract Amultiscale theory of interacting continuum mechanics and thermodynamics of mixtures of fluids,
electrodynamics, polarization, and magnetization is proposed. The mechanical (reversible) part of the theory is
constructed in a purely geometric way by means of semidirect products. This leads to a complex Hamiltonian
system with a new Poisson bracket, which can be used in principle with any energy functional. The thermo-
dynamic (irreversible) part is added as gradient dynamics, generated by derivatives of a dissipation potential,
which makes the theory part of the GENERIC framework. Subsequently, Dynamic MaxEnt reductions are
carried out, which lead to reduced GENERIC models for smaller sets of state variables. Eventually, standard
engineering models are recovered as the low-level limits of the detailed theory. The theory is then compared
to recent literature.

Keywords GENERIC · Electrodynamics · Continuum mechanics · Non-equilibrium thermodynamics ·
Polarization · Magnetization · Multiscale modeling · Hamiltonian mechanics

1 Introduction

Theoretical electrochemistry aims to describe and predict behavior of chemically reacting systems of charged
substances. Themodelingmethods vary according to the characteristic times, lengths and details of the observed
electrochemical systems. This paper aims to develop a hierarchy of continuum models on different levels of
description using the frameworkof theGeneralEquation forNon-EquilibriumReversible-IrreversibleCoupling
(GENERIC) [1–4].

Let us first briefly recall GENERIC. Consider an isolated system described by state variables x. The state
variables can be for instance position and momentum of a particle, field of probability density on phase space,
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fields of density and momentum density, electromagnetic fields, etc. Evolution of functionals F(x) of the state
variables is then expressed as

Ḟ(x) =
{

F, E
}

+
〈

δF

δx
,
δΞ

δx∗

∣∣∣∣
x∗= δS

δx

〉
, (1)

where the former term on the right-hand side stands for a Poisson bracket of the functional F and the energy
E while the latter for scalar product of gradient of F and gradient of the dissipation potential Ξ . Conju-
gate variables (derivatives of the entropy S in the entropic representation) are denoted by x∗. The Poisson
bracket is antisymmetric, which leads to automatic energy conservation, and satisfies Jacobi identity, which
expresses intrinsic compatibility of the reversible evolution. The irreversible term yields a generalized gradient
flow driven by gradient of entropy and ensures the second law of thermodynamics. Many successful mod-
els in non-equilibrium thermodynamics have been formulated in the GENERIC structure (1), and many new
thermodynamically consistent models have been obtained by seeking that structure; see, e.g., [3,4].

We shall start the present work by recalling the semi-direct product coupling of reversible fluid mechanics
and electrodynamics in vacuum [5]. In other words, we let the electrodynamics be advected by fluid mechanics
as in [4]. To go beyond, we shall add also the field of polarization density and a canonically coupledmomentum
of polarization. It is important to express the behavior of dipole moment of molecules in interaction with
electromagnetic field and the overall motion. To this picture, we shall add magnetization (the famous Landau
& Lifshitz model) advected by fluid mechanics. This way we shall build a hierarchy of levels of description
with appropriate Poisson brackets expressing kinematics on the levels; see Fig. 1.

Subsequently, we shall introduce dissipation on the most detailed levels of description, we shall present
reductions to less detailed (lower) levels down to the level of mechanical equilibrium. On this level, the evo-
lution is governed by the generalized Poisson–Nernst–Planck equations. We believe that such a complete and
geometric picture of continuum thermodynamics of matter coupled with electrodynamics (including polariza-
tion and magnetization) was missing in the literature.

1.1 Mathematical aspects, terminology and further remarks

Adescription in termsoffields describingphysical quantities, e.g.,mass density andmagneticfield, is developed
throughout the manuscript. A mathematically rigorous formulation of the Poisson brackets and the dissipation
potentials for the fields would require deployment of an advanced functional analysis; see, e.g., [6]. We opt-out
from discussing the setting of the function spaces, convergence of the integrals and other mathematical aspects
that are not pertinent to the discussed physics at this stage of the development.

Only the bulk equations are investigated in this manuscript, and all boundary terms are thus neglected in the
calculations below. This means that the considered systems are assumed to be either boundary-less, isolated
or (infinitely) large with a reasonable decay of the fields at infinity. This is a standard assumption in geometric
field theories, see e.g. [3,4,6].

A level of description is given by a set of variables. If two sets of variables, belonging to the respective
levels of description, can be ordered by inclusion, then we say that the level of description with smaller set of
variables is less detailed level of description and vice versa.

This brings us to an another interpretation of themultiscale description not necessarily connected to different
space-time scales. For instance, in the Grad hierarchy [7,8], where kinetic moments are considered [9], the
scale (or rather level of description) is given by the number of moments considered. The advantage of the latter
meaning is that it is independent of the particular non-objective and observer-dependent spatiotemporal scale.

The term reversible is used through out the article in connectionwith the structure of the evolution equations
in the sense of the time-reversal transformation [10]. The Hamiltonian systems may often be cast in to the first-
order, symmetric hyperbolic partial differential equation form [11]. Assuming smooth initial data, solutions
of the hyperbolic systems may be constructed for short times using the Cauchy–Kowalevskaya theorem [12].
Such solutions are then short-time reversible in the usual sense of partial differential equations.

1.2 Notation (∂t x)rev/irr and x†, x∗

A problem under consideration usually admits multiple equivalent choices of state variables. Let us denote the
family of the admissible, equivalent, levels of description as X. For a given level of description, characterized
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by state variables x ∈ X, the presented theory aims to describe evolution of functionals depending on x, i.e.,
we are interested in Ḟ(x), see (1). Therefore, functional derivatives

(
δF

δx

)
≡ Fx (2)

are often used in this manuscript.
The part of the evolution generated by the Poisson bracket {·, ·} and the energy E(x), see (1), will be called

Hamiltonian or reversible and denoted as

{F, E} = (
Ḟ
)
rev = (∂t F)rev . (3)

The functional derivative of the energy w.r.t. variable x, also called the energy-conjugate to the variable x, will
be briefly denoted by † in the superscript, i.e., Ex = x†. Poisson brackets are usually conveniently expressed
in the energetic representation, i.e., when entropy density s is amongst the state variables, (s, ξ) ∈ X, where
ξ denotes the state variables other than the entropy density.

The part of the evolution generated by the dissipation potential Ξ and the entropy S(x), see (1), will be
called irreversible and denoted as

〈
Fx, Ξx∗ |x∗=Sx

〉 = (
Ḟ
)
irr = (∂t F)irr . (4)

The symbol x∗, called entropy-conjugate, denotes the variables on which the dissipation potential Ξ(x∗)
depends. The notation x∗ is going to be overloaded in Sect. 3 because it will be also used to denote the value
of the entropy derivative, i.e., x∗ = Sx. Since the irreversible evolution is expressed in terms of the derivatives
of the dissipation potential w.r.t. x∗, presence of energy density e amongst the variables makes it simple to
control the energy conservation, i.e., (e, ξ) ∈ X. Such set of variables is called entropic representation [13].

The relations between the energy conjugates in the energetic representation (s†, ξ†) and the entropy con-
jugate in the entropic representation (e∗, ξ∗) are explained in [4,14].

The overall evolution of a functional F is then composed from the reversible and irreversible parts,

∂t F = (∂t F)rev + (∂t F)irr . (5)

Symbols (∂t F)rev/irr be interpreted as the reversible and irreversible (w.r.t TRT) parts of the right-hand side of
the evolution equations, or as the reversible and irreversible vector fields; see, e.g., [10].

2 Hierarchy of Poisson brackets

2.1 Hamiltonian dynamics and semidirect product theory

A physical system described by state variables x is said to beHamiltonian if the differential equations governing
its dynamics can be written in the form of

(ẋ)rev = {x, E}, (6)

where dot stands for (typically partial) time derivative, and E is a Hamiltonian (energy) function [6,15,16].
Here, the (Poisson) bracket

{•, •} : F × F −→ F
is a (skew-symmetric and bilinear) mapping on the space of smooth functions depending on the state variables
x. It is required that a Poisson bracket must satisfy both the Leibniz and the Jacobi identities [17] that is

{FG, H} = {F, H}G + F{G, H}, (7a)

{{F, G}, H} + {{G, H}, F} + {{H, F}, G} = 0, (7b)

for any real valued functions F , G and H . A space endowed with such a bracket is called a Poisson space [18–
20]. Skew-symmetry of the bracket manifests conservation of the Hamiltonian function all along the motion.
This structure implies in particular to conservation of energy. This observation is fundamental for reversible
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character of the Hamiltonian systems. More on time-reversibility and Onsager–Casimir reciprocal relations
can be found in [4].

In order to write a system of equations in the Hamiltonian form (6), two tasks must simultaneously be
accomplished after deciding the state variables [18]. These are (1) to choose a Hamiltonian function and (2) to
construct a Poisson bracket. Even though there is no algorithmic way to accomplish these tasks, there are some
techniques to perform Hamiltonian analysis of a given system. Let us depict here one of them that we use in
the present work. Start with the most basic form of the system (by removing all possible field extensions and
symmetries). After the Hamiltonian analysis of the basic model is established, field extensions can be added by
applying pure geometric and algebraic techniques. For example, consider a classical hydrodynamical system,
start initially with analysis of incompressible and isentropic fluid flow. After this is done, let the mass density
and the entropy vary in time. Additions of these scalar fields can be done in purely abstract framework by using
the semi-direct product theory [21,22]. Accordingly, in this work, we shall start with Hamiltonian realizations
of two basic models, namely the one-component compressible fluid mechanics. Then we extend these models
with the additions of some field theories such as electromagnetic fields, polarization and magnetization.
For the basic models (without field extensions and symmetries), in the literature, there exist some popular
Poisson structures to begin with. Let us comment on these Poisson structures one by one in order to fix the
notation and to make the present work more complete.

Canonical Poisson bracket: Consider a vector space V and its linear algebraic dual V ∗. In finite dimensions,
the duality (pairing) 〈•, •〉 between V and V ∗ can be considered as the Euclidean scalar (dot) product whereas,
in infinite dimensions, (that is if V is a function space or the space of some fields) the duality can be an L2-
pairing (that is simply multiply-and-integrate form). The cotangent bundle T ∗V is isomorphic to the product
space V × V ∗ and carries a canonical Poisson structure. Let us exhibit this geometry. The elements of the
cotangent bundle T ∗V are pairs (a, a∗) in T ∗V . Consider two function(al)s F and H on T ∗V , that depend on
(a, a∗). By referring to the duality between V and V ∗, the canonical Poisson bracket is defined to be

{F, H}T ∗V (a, a∗) = 〈Fa, Ha∗〉 − 〈Ha, Fa∗〉, (8)

where, for example, Fa denotes the partial (for infinite cases, Fréchet) derivative of F with respect to a. We
assume that the vector space is reflexive that is V ∗∗ = V . This enables us consider Fa as an element of V ∗ for
a in V , and Fa∗ as an element of V for a∗ in V ∗.

Lie–Poisson bracket: Let us start once more with a vector space g. In this case, we are not coupling g with its
dual as in the previous case, but we consider g as a Lie algebra. A vector space g is called a Lie algebra if it
admits a bilinear skew-symmetric mapping (Lie bracket)

[•, •] : g × g −→ g (9)

satisfying the Jacobi identity. In this case, linear algebraic dual g∗ of g carries a Poisson bracket called as the
Lie–Poisson bracket. More concretely, if F and H are two function(al)s on g∗ then, for μ in g∗,

{F, H}g∗
(μ) = ±〈μ, [Fμ, Hμ]〉 (10)

where Fμ is assumed to be an element of g whereas 〈•, •〉 is the pairing between g∗ and g. Notice that there
exist two Lie–Poisson brackets according to the sign of the bracket (10). The choice of the sign is not arbitrary
for a chosen physical system. It is minus for the rigid body dynamics, since it admits a symmetry due to the left
action that is, matrix multiplication of the rotation group SO(3) on the configuration space R3, see [19,23]. In
this present work, we employ the plus Lie–Poisson bracket since, in the continuum theories there exists a right
symmetry, physically called as the particle relabeling symmetry [16,24]. We will continue to keep plus minus
notation in this introductory subsection. After having presented the canonical and Lie–Poisson structures, let
us now briefly explain (both direct and semi-direct) couplings and extensions of these geometries.
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Direct product of two Poisson structures: The most direct way to couple two Poisson structures is to add
the associated Poisson brackets directly without any cross terms and interactions. Consider, for example, two
Poisson spaces P1 and P2 equipped with Poisson brackets {•, •}P1 and {•, •}P2 , respectively. Then the direct
product Poisson structure is

{F, H}P1×P2 = {F, H}P1 + {F, H}P2 (11)

for two function(al)s on P1 × P2. In particular, consider two Lie algebras g1 and g2, and the dual spaces g∗
1

and g∗
2, respectively. Then by employing the isomorphism (g1 ×g2)

∗ = g∗
1 ×g∗

2, we construct the Lie–Poisson
bracket on the (direct product) dual space by

{F, H}g∗
1×g∗

2 = {F, H}g∗
1 + {F, H}g∗

2 , (12)

where the Lie–Poisson brackets on the right-hand side are the ones on g∗
1 and g∗

2, respectively.

Semi-direct product extension: We now extend the Lie–Poisson bracket. Consider a Lie algebra g and a vector
space V . Assume that g acts on V , that is there exist bilinear mapping

ρ : g × V �→ V . (13)

By fixing an element ξ in g, we define a linear mapping ρξ on V [25]. This enables us to define a Lie algebra
bracket on the product space g × V given by

[(ξ1, v1) , (ξ2, v2)] = (
[ξ1, ξ2] , ρξ1(v2) − ρξ2(v1)

)
. (14)

By referring to the Lie–Poisson structure presented in the previous paragraph, the dual space g∗ × V ∗ turns out
to be a Poisson space equipped the Lie–Poisson bracket. For two function(al)s F and H depending on (μ, a∗)
in g∗ × V ∗, the Lie–Poisson bracket is computed to be

{F, H}g∗×V ∗
(μ, a∗) = ± 〈

μ,
[
Fμ, Hμ

]〉 ± 〈
a∗, ρFμ(Ha∗) − ρHμ(Fa∗)

〉
, (15)

where the first pairing on the right-hand side is the one between g∗ and g whereas the second pairing on the
right-hand side is the one between V ∗ and V .

Direct product coupling of the canonical Poisson bracket and the Lie–Poisson bracket: Consider two Poisson
structures, the canonical Poisson bracket (8) on T ∗V and the Lie–Poisson bracket (10) on g∗. If a physical
system has a phase space as the product of these two spaces g∗ × T ∗V , then one way to define a Poisson
bracket on the product space by simply adding two brackets (8) and (10). This is, for two function(al)s F and
H depending on (a, a∗, μ), given by

{F, H}T ∗V ×g∗
(D P) = {F, H}T ∗V ± {F, H}g∗

. (16)

Semi-direct product coupling of the canonical Poisson bracket and the Lie Poisson bracket: If the quantities
in V are advected by the quantities in g, that is if there is an action of g as given in (13), then the Poisson
bracket in (16) fails to be the correct Poisson structure for the system. In this case, the cross terms (see, for
example, the second term in (15)) must be added as in the semi-direct product theory exhibited in the previous
paragraph. In this case, one is equipped, in addition to the action (13), with a (dual) action of ρ∗

ξ on the dual
space V ∗. This is due to the preservation of the duality between V and V ∗ under the action,

〈a∗, ρξ (a)〉 = 〈ρ∗
ξ (a∗), a〉 (17)

for all a in V and a∗ in V ∗. Note that the dual action ρ∗ is computed as linear algebraic dual of the linear
mapping ρξ . A direct computation shows that for two function(al)s F and H , under the existence of the actions,
the Poisson bracket is

{F, H}T ∗V ×g∗
(SD P) = {F, H}T ∗V ± {F, H}g∗

± 〈
a∗, ρFμ(Ha∗) − ρHμ(Fa∗)

〉 ±
〈
a, ρ∗

Fμ
(Ha) − ρ∗

Hμ
(Fa)

〉
. (18)

Notice that the first line is the same with the direct product case (non interaction) in (16), and the second line
is a manifestations of the advection. This is a particular case of the matched pair of Hamiltonian dynamics
presented in [26].
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2.1.1 Matched pairs

Only one-sided couplings and semidirect products are considered in this work. Only recently the two-sided
actions have been developed in classical physics, called matched pairs [26]. In the Galilean setting the one-
sided actions are usually enough, but it is indeed possible that matched pairs would turn necessary for the fully
relativistic and quantum (see works by Majid [27]) treatment. So far the only physically important matched
pair in classical physics has been identified in Grad hierarchy, where coupling of fluid mechanics and higher
kinetic moments plays an important role [28].

2.2 Hamiltonian fluid mechanics of mixtures

The Poisson bracket expressing kinematics of fluid mechanics has been long known [29–33]. The Poisson
bracket can be easily extended to mixtures with multiple densities, momenta and entropies (i.e., temperatures);
see, e.g., [34].

2.2.1 Classical fluid mechanics

The state variables of classical fluid mechanics are fields of density, momentum density and entropy density,
x = (ρ, u, s). The Poisson bracket generating one-component compressible fluid mechanics (hydrodynamic
Poisson bracket) is

{F, G}(FM)(ρ, u, s) =
∫

drρ
(
∂i FρGui − ∂i Gρ Fui

)

+
∫

drui
(
∂ j Fui Gu j − ∂ j Gui Fu j

)

+
∫

drs
(
∂i Fs Gui − ∂i Gs Fui

)
, (19)

where ρ, u and s are mass density, mass momentum density and volumetric entropy density, respectively. The
Poisson bracket in (19) is also an example of a semidirect product bracket obeying the form exhibited in (15).
This well-know analysis can be found, for example, in [21,29,35].

For an arbitrary energy E(ρ, u, s), the reversible evolution of a functional F of the state variables reads

(Ḟ)rev = {F, E}(FM)

=
∫

drFρ

(
−∂i (ρu†i )

)

+
∫

drFui

(
−ρ∂iρ

† − u j∂i u
† j − s∂i s

† − ∂ j (ui u
† j )

)

+
∫

drFs

(
−∂i (su†i )

)
, (20)

where integration by parts was used several times.1 Boundary terms disappear as we assume isolated (e.g.
periodic) system.

By comparing with the chain rule

Ḟ =
∫

dr
(
Fρ∂tρ + Fui ∂t ui + Fs∂t s

)
(21)

we can read the reversible evolution equations for fluid mechanics,

(∂tρ)rev = −∂i (ρu†i ) , (22a)

(∂t ui )rev = −ρ∂iρ
† − u j∂i u

† j − s∂i s
† − ∂ j (ui u

† j ) , (22b)

(∂t s)rev = −∂i (su†i ). (22c)

1 The energy-conjugate to variable x, i.e., functional derivative of the energy E w.r.t. x, is going to be denoted by x†, i.e.,
Ex = x†. The notation is summarized in Sect. 1.2.
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For the usual choice of energy,

EEuler (ρ, u, s) =
∫

dr
(

u2

2ρ
+ ε(ρ, s)

)
, (23)

the compressible non-isothermal Euler equations for ideal fluids are obtained from the system (22). The energy
conjugates ρ†, u† and s† represent the chemical potential, barycentric velocity and temperature, respectively.

2.2.2 Hamiltonian fluid mechanics of mixtures

Consider now a mixture of n + 1 species, each of which is described by its own density, momentum density
and entropy density. The Poisson bracket expressing kinematics of state variables x = (ρα, uα, sα), α ∈
{0, 1, . . . , n}, is

{F, G}(ρβ, uβ, sβ) =
n∑

α=0

{F, G}(FM)α (ρα, uα, sα). (24)

This Poisson bracket can be derived for instance by projection from the Liouville equation [34]. It consists of
the sum of n + 1 Poisson brackets (19), each expressed in terms of variables of mixture component α. The
Poisson bracket in (24) is a direct product Poisson bracket fitting the abstract framework in (11).

Poisson bracket (24) depends on n + 1 momenta and n + 1 entropies, each for one component of the
mixture, which is a rather detailed description allowing for independent motion of the constituents and for
different temperatures of them (as in cold plasma, where electrons have different temperature than ions). We
are, however, often interested in less detailed description, keeping only densities of the species, the total mass
momentum and the total entropy,

u =
n∑

α=0

uα and s =
n∑

α=0

sα. (25)

By letting the arbitrary functional depend only on state variables x = (ρα, u, s), bracket (24) becomes

{F, G}(CIT) =
n∑

α=0

∫
drρα

(
∂i Fρα Gui − ∂i Gρα Fui

)

+
∫

drui
(
∂ j Fui Gu j − ∂ j Gui Fu j

)

+
∫

drs
(
∂i Fs Gui − ∂i Gs Fui

)
, (26)

which is referred to as the classical mixture hydrodynamic bracket. It generates the reversible part of Classical
Irreversible Thermodynamics (CIT) [36].

The descriptions of the fluid and fluid mixture dynamic considered in the remainder of the paper will
be based on the brackets (19) and (26), respectively. Hence, the description considering the distinguished
momenta of species (24) is further avoided.

2.3 Electrodynamics in vacuum

The reversible evolution of electromagnetic fields is generated by the canonical Poisson bracket, see [4,5,37],

{F, G}(EM)A(A, Y) =
∫

dr
(
FAi GY i − G Ai FY i

) =
∫

dr
(
FDi G Ai − G Di FAi

)
, (27)

where A stands for the vector potential and Y = −D denotes negative of the electric displacement field (either
in variables (A, Y) or (A, D)). Poisson bracket in (27) is the canonical Poisson bracket as in (8). Here, the
vector space V is consisting of vector potentials whereas the dual space V ∗ is the space of electric displacement
fields.
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Let us define the magnetic field B as

Bi = εi jk∂ j Ak . (28)

In order to express the bracket (27) in terms of magnetic field, we assume that the functionals depend only on
the curl of A. Bracket (27), transformed in terms of (D, B), see [22], becomes

{F, G}(EM)(D, B) =
∫

dr
(

FDi εi jk∂ j G Bk − G Di εi jk∂ j FBk

)
. (29)

This is the Poisson bracket expressing kinematics of electromagnetic fields D and B.
For an arbitrary energy E , the evolution equations of the electromagnetic field given by (29) are

(∂t Di )rev = εi jk∂ j B†
k , (30a)

(∂t Bi )rev = −εi jk∂ j D†
k , (30b)

where daggers again denote the corresponding derivatives of energy. The conjugates are interpreted as electric
field and magnetic intensity in the laboratory frame,

E = δE

δD
and H = δE

δB
. (31)

A concrete energy will be specified later after matter is added to the system so that the theory becomes Galilean
invariant.

Applying divergence to (30) gives the following evolution equations:

∂t divB = 0 and ∂t divD = 0. (32)

Thefirst equality holds due to (28), the second equality demonstrates the absence of charges in a vacuum.Hence,
the usual constraints—Gauß’s laws [38]—hold true if satisfied by the initial condition, see [5]. Equations (32)
are thus a consequence of evolution equations (30).

2.4 Electromagnetic field advected by charged fluids

The purpose of this section is to formulate coupled kinematics of fluids and electromagnetic fields. We employ
the theory of semidirect product to find such coupling, and then we perform a transformation unveiling the
usual form of the Lorentz force.

2.4.1 Semidirect product extension

Let us recall the Lie–Poisson structure in (26) expressing kinematics of Classical Irreversible Thermodynamics,
i.e., for state variables (ρ, u, s), and the canonical Poisson bracket in (29) for the electromagnetic field theory
in terms of the fields (D, B). In this subsection, we couple these two in the light of the abstract framework in
(18) assuming that the action is minus the Lie derivative −L with respect to the velocity field u†. The physical
meaning is that a quantity is Lie-dragged or advected by velocity of the continuum (conjugate to the total
momentum); see, e.g., [39,40]. We obtain Poisson bracket

{F, G}(mEMHD) (ρα, m, s, D,B) = {F, G}(CIT)|u=m + {F, G}(EM)

{F, G}(SP)(D, m)

⎧⎪⎨
⎪⎩

+ ∫
drDi

(
∂ j FDi Gm j − ∂ j G Di Fm j

)
+ ∫

dr∂ j D j (Fmi G Di − Gmi FDi )

+ ∫
drD j (Fmi ∂ j G Di − Gmi ∂ j FDi )

{F, G}(SP)(B, m)

⎧⎪⎨
⎪⎩

+ ∫
drBi

(
∂ j FBi Gm j − ∂ j G Bi Fm j

)
+ ∫

dr∂ j B j (Fmi G Bi − Gmi FBi )

+ ∫
drB j (Fmi ∂ j G Bi − Gmi ∂ j FBi ),

(33)



Multiscale thermodynamics of charged mixtures 245

where m denotes total momentum density (of matter and electromagnetic field),

m = u + D × B. (34)

This standard relation, see, e.g., [41], can be either verified by a direct calculation [4] or inferred using physical
arguments; see Appendix D. Note that the notation introduced in (33) allows to write briefly

{F, G}(mEMHD) (ρα, m, s, D,B) = {F, G}(CIT)|u=m + {F, G}(EM)

+ {F, G}(SP)(D, m) + {F, G}(SP)(B, m) (35)

Bracket (33) expresses kinematics of a CIT mixture and electromagnetic field with state variables x =
(ρα, m, s, D, B) and was found (for the single species case) in [14,37,42].

2.4.2 Transformation to mass momentum

Let us suppose that each mixture component carries charge e0
zα

mα
proportional to the free charge density, which

is defined as

ρf =
n∑

α=1

zαe0
mα

ρα. (36)

Suppose functionals F(ρα, m, s, D, B) = F̃(ρα, u, s, D, B), the relation of the total and mass momenta (34)
implies the following transformation rules between their derivatives, it reads

Fρα = F̃ρα , Fs = F̃s, Fm = F̃u , (37a)

FDi = F̃Di + εi jk F̃u j Bk , (37b)

FBi = F̃Bi − εi jk F̃u j Dk ; (37c)

see Appendix D for further details. Poisson bracket (33) can be now transformed by means of relations (37)
to the mass momentum u instead of the total momentum m. The calculation was carried out in [22] and [4]
and leads to Poisson bracket

{F, G}(uEMHD) (ρα, u, s, D, B) = {F, G}(CIT) + {F, G}(EM)

+
∫

dr
n∑

α=1

e0
zαρα

mα

(
Fui G Di − Gui FDi

)

+
∫

dr
n∑

α=1

e0
zαρα

mα

Biεi jk Fu j Guk , (38)

which is the Poisson bracket expressing evolution of a CIT mixture coupled with electromagnetic field (using
the mass momentum u).2

Energy E(ρα, m, s, D, B, E, H)when consideringm as a state variable is equal to energy Ẽ(ρα, u, s, D, B)
when considering u as a state variable. However, to distinguish between the conjugates, we introduce the
notation Ẽx = x̃†. It follows from the formulae (37) that the chemical potentials, temperature and velocity are
unaffected by transformation (34), i.e.,

ρ†
α = ρ †̃

α, s† = s †̃, and v = m† = u†̃. (39a)

The energy-conjugates to D and B read

D† = D†̃ + u† × B , (39b)

B† = B†̃ − u† × D , (39c)

2 The transformation crucially depends on divB = 0.
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respectively. Note that the electromagnetic fields on the left-hand side are seen from the fluid frame while
those on the right-hand side from the inertial lab frame, see C for more details.

Energy can be chosen as

EE M H D =
∫

dr

(
1

2

(∑
α

ρα

)
v2 + 1

2
(D · E + B · H) + ε(ρa, s)

)
, (40)

c.f. [43]. The first part represents kinetic energy of the center of mass. The second part is the electromagnetic
energy, see, e.g., [44], where all the fields are measured in the laboratory frame. Finally, the last part is the
internal energy. In order to express the energy in terms of the state variables (ρα, v, s, D, B), we have to use
material relations

D′ = ε · E′ and B′ = μ · H′, (41)

which are valid in the frame co-moving with the center of mass of the matter, i.e., with velocity v with respect
to the laboratory frame. Symmetric positive definite tensors ε and μ represent the electric permittivity and
magnetic permeability. The co-moving fields D′, B′, E′ and H′ are then transformed to the laboratory fields by
transformation (130). This leads to energy

EE M H D =
∫

dr

(
1

2

(∑
α

ρα

)
v2 + 1

2
D · ε−1 · D + 1

2
B · μ−1 · B + v · (D × B) + ε(ρα, s)

)
. (42)

This energy has the right behavior with respect to Galilean transformations, see, e.g., [45].
The evolution equations implied by bracket (38) and energy (42) are

(∂tρα)rev = −∂i (ραvi ) (43a)

ρ(∂tvi )rev = −ρv j∂ jvi −
∑
α

ρα∂i
∂ε

∂ρα

− s∂i
∂ε

∂s

+
n∑

α=1

e0
zαρα

mα

(
Ei + εi jkv

j Bk
)

︸ ︷︷ ︸
=D†

i

(43b)

(∂t s)rev = −∂i (sv
i ) (43c)

(∂t Di )rev = εi jk∂ j Hk −
∑
α

e0
zαρα

mα

vi (43d)

(∂t Bi )rev = −εi jk∂ j Ek, (43e)

where we took velocity v as a state variable instead of the mass momentum u = ρv, ρ = ∑
α ρα being the

total density. The conjugate quantities remain the same because derivative of energy keeping u and ρ constant
is the same as when keeping v and ρ constant. Note that vi = gi jv

j is the velocity multiplied by the Euclidean
metric (equal to the unit matrix). The terms on the last line represent the Lorentz force acting upon the free
charge density. Equation (43) are invariant with respect to Galilean transformations (130). Therefore, they
represent a Galilean invariant form of electrodynamics coupled with matter. Note that Galilean invariance
would be impossible without the explicit presence of evolution equations for matter.

The relation between formulation (38) and (33) can also be understood in terms of surface balances of the
electric induction flux and magnetic induction flux for static and moving surfaces as it is shown in [46, Eqns.
2.95, 2.96]

Note that the bracket formulated with the total momentum (33) satisfies the Jacobi identity unconditionally.
This is not the case for the bracket with the mass momentum (38), where the validity of the Jacobi identity
cannot be established without divB = 0.
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2.4.3 Gauß’s law for electric charge and nonexistence of magnetic monopoles

Equations (32) represent the Gauß’s laws. Let us now consider the dynamics of coupled matter and elec-
tromagnetic field generated by brackets (38) and (33). After applying divergence on Eq. (43d) we obtain
that

divD = ρf
de f=

∑
α

e0
zαρα

mα

, (44)

where ρ f stands for the free charge. The equality holds if it holds at some initial time (which can be for
instance vacuum, so it indeed holds). Applying divergence on Eq. (43e), we obtain again that divB = 0. The
Gauß’s law is implied by the evolution equations even in the case of electrodynamics coupled with mixtures
of fluids.

2.5 Polarization

The reversible evolution of a charged mixture in electromagnetic field is described by one of the Poisson
brackets in the previous section and a choice of energy. But such description does not, in general, capture the
intrinsic dipole moments of the molecules, i.e., polarization. Indeed, a fluid of dipoles can be charge neutral
while still electromagnetically interacting. An additional bound charge is present due to internal dipole density
of the matter on top of the modeled free charge.

Description of the bound charge depends profoundly on the chosen variables, the time/space scales and
the internal structure of the assumed matter. The classical treatment on the macroscopic level, see, e.g. [47],
resorts to the definition of polarization vector P. The divergence part of P is set equal to the density of bound
charge. The time derivative of P represents current, and therefore it is added to the left-hand side of Ampere’s
law (43d).

Russakoff in [48] acquired the polarization as a consequence of averaging of microscopic Maxwell’s equa-
tions with point charges and subsequent expansion with respect to spatially correlated charges. This approach
leads, compared to the Purcell’s, to a definition of the polarization related with magnetization proportional to
the averaged relative velocities of the correlated charges.

2.5.1 Intrinsic dynamics of polarization

Density of polarization P represents a vector field just as the displacement field D. Advection of the vector
field by the fluid mechanics is then expressed by a semidirect product as in Sect. 2.4.1. Similarly as in that
section, we can add (besides P) the conjugate momentum variable (to be denoted by π ). The Poisson bracket
expressing advection of the pair (π , −P) by fluid mechanics is shown in the following section.

The canonical Poisson bracket (8) of state variables π and P reads

{F, G}Pπ (P, π) =
∫

dr
(
FPi Gπi − G Pi Fπi

)
. (45)

Bracket (45) can represent a continuum of elementary dipoles with fixed centers of mass, but changing length
and orientation. Indeed, covector field π can be interpreted as proportional to the relative momentum of
particles forming the dipole, c.f. variable t in (127) and (128). The divergence part of P represents the bound
charge density,

ρb
def= − divP. (46)
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2.5.2 Advected cotangent bundle (π , −P)

When the dipoles are not fixed in space, but advected by a fluid, the interaction is captured by coupling of
bracket (45) and fluid dynamics bracket (26) by semidirect product,

{F, G}FMPπ (ρα, πu, s, P, π) = {F, G}(CIT)(ρα, πu, s) + {F, G}Pπ (P, π)

+
∫

drPi (∂ j FPi G π u j − ∂ j G Pi Fπ u j

)

+
∫

dr∂ j P j (Fπ ui G Pi − G π ui FPi )

+
∫

drP j (Fπ ui ∂ j G Pi − G π ui ∂ j FPi )

{F, G}(SP)A(π , πu)

{
− ∫

dr∂ jπi
(
Fπi G π u j − Gπi Fπ u j

)
− ∫

drπi
(
Fπ j ∂ j G π ui − Gπ j ∂ j Fπ ui

) ; (47)

see bracket (18) later comments for more details. This Poisson bracket expresses kinematics of state variables
(ρα, πu, s, P, π). Note that the total momentum of the coupled system is denoted as π u. This Poisson bracket
expresses kinematics of fluid mechanics advecting the polarization density with its conjugate momentum
(relative momentum of the intrinsic dipole charges).

Note that bracket (47) may be briefly expressed as

{F, G}FMPπ (ρα, πu, s, P, μ) = {F, G}(CIT)(ρα, πu, s) + {F, G}Pμ(P, π)

+ {F, G}(SP)(P, πu) + {F, G}(SP)A(π , πu) , (48)

using the definition of {F, G}(SP) from (33) and {F, G}(SP)A from (47).
The evolution equations given by (47) are as follows:

(∂tρα)rev = −∂ j (ρα
πu† j ) (49a)

(∂t s)rev = −∂ j (s
πu† j ) (49b)

(∂t
πui )rev = −

n∑
α=1

ρα∂iρ
†
α − s∂i s

† − πu j∂i
πu† j − P j∂i P†

j + π† j∂iπ j

+ ∂ j

(
P†

i P j − πiπ
† j − πui

πu† j
)

, (49c)

(∂t Pi )rev = π†i − ∂ j

(
Pi πu† j − P j πu†i

)
− πu†i∂ j P j (49d)

(∂tπi )rev = −P†
i − πu† j∂ jπi − π j∂i

πu†i . (49e)

Later they will be equipped with dissipation of π triggering subsequent relaxation of polarization.
Note that the semi-direct product theory does not fully determine the relation of the total momentum πu

and the mass momentum. We only know that the velocities coincide, which means that

ρ
(

πu
)† = ρv = u. (50)

This relation can be ascertained by further assumptions on the physical properties of the interaction.
Let us assume πu = u, i.e., there appears no extra momentum on top of the mass momentum. The

assumption corresponds with the nature of the transformation (129), where motion of an elementary dipole is
described by two de-coupled canonical brackets, one for the center of mass and one for the relative quantities,
and the center-of-mass momentum of the dipole affects neither P nor π directly.
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2.5.3 Coupling to the electromagnetic field—total charge density

Having coupled fluid mechanics with polarization density and its conjugate momentum, let us finally make
the coupling to the electromagnetic field, i.e., having state variables (ρα, πu, s, D, B, P, π). Both pairs (π , P)
and (D, B)were coupled to fluid mechanics by semidirect product. Advection of both pairs by fluid mechanics
can be thus expressed (using (29), (33), (47)) by Poisson bracket

{F, G}EFPπ (ρα, πm, s, D, B, P, π) = {F, G}(CIT)(ρα, πm, s) (51)

+ {F, G}(EM)(D, B) + {F, G}(SP)( πm, D) + {F, G}(SP)( πm, B)

+ {F, G}Pπ (P, π) + {F, G}(SP)( πm, P) + {F, G}(SP)A( πm, μ),

which, however, does not contain any direct coupling between P and D. The coupling appears after the
transformation to the field of electric induction D,

D = D − P, (52)

for which it holds that

divD = divD − divP = ρf + ρb , (53)

where the second equality is due to (46) and (44). The divergence ofD represents the total charge density and
is given as a sum of the bound charge density and the free charge density.

For a functional F̂(D, P, . . . ) = F(D, P, . . . ) then holds that

F̂P = FP − FD and F̂D = FD. (54)

Poisson bracket (51) can be reformulated using the electric induction (52) and the transformation (54) as

{F, G}Dπ (ρα, πm, s,D, B, P, μ)

= {F, G}EFPπ (ρα, πm, s,D, B, P, π) − {F, G}Pπ (D, π). (55)

Surprisingly, just the evolution equations of D and of polarization momentum π are affected by the trans-
formation. The transformed evolution equations of the electric induction and polarization momentum π then
become

(∂tDi )rev = εi jk∂ j B†
k − π†i − ∂ j

(
Div j − D jvi

)
− vi∂ jD j , (56a)

(∂tπi )rev = −P†
i + D†

i − ∂ jπiv
j − π j∂iv

j . (56b)

Note that the Gauß’s law (53) is again compatible with the evolution of the divD, given by (56a).
The evolution of the bound charge density, given by bracket (55) and formally identical to (49d), reads

(∂t∂i Pi )rev = ∂iπ
†i − ∂i

(
vi∂ j P j

)
. (57)

The divergent part of (57) evolves as a convected density which also be changed by π†. The term π† can be
interpreted as a reversible polarization current. This reversible current appears in the evolution of D, see Eq.
(56a).

The material relation for electric intensity now changes to

ε0 · E′ = D′ − P′ , (58)

which is the usual relation in the frame co-moving with matter. Transformation (130) brings these relation to
the laboratory frame.
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Total momentum:In order to obtain the Lorentz force, the total momentum πm has to be related to the mass
momentum u. We choose

πm = u + D × B , (59)

since it is compatible with the choices made for the polarization-fluid coupling (50) and the EMHD cou-
pling (34). The bracket (55) may be transformed using (59) and transformation rules analogous (39b) so that
the descriptionwith themassmomentumu is obtained. The calculation is analogous to the transformation in the
case of EMHD brackets (33) to (38). Apart from the presence of (P, π) and its coupling to the fluid mechanics,
the only actual difference is the {·, ·}Pπ (D, π) appearing in (55). Relation (59) implies the following form of
the Lorenz force density (right-hand side of the evolution equation for momentum u)

∂ jD j
(
D†̃

i + εi jkv
j Bk

)
+ εi jkπ

†̃ j Bk , (60)

where x̃† denotes derivative of energy dependent on u with respect to x, analogously as in Sect. 2.4.2 trans-
formation (39b).

Let us analyze (60). The first term contains the electric field E = D†̃ and v × B acting upon the total
charge density divD. The main difference to the Lorentz force appearing in (43b), is the total charge density
appearing in front of the bracket. The second term in (60) is a product of the magnetic field B and the reversible
rate of change of polarization π †̃. Hence, it can be interpreted as a force exerted by the magnetic field due to
the current of the polarized charge. Due to the form of (59), it holds π† = π †̃ and P† = P†̃.

Energy (42) turns to

EE M H D Pπ =
∫

dr

(
1

2

(∑
α

ρα

)
v2 + 1

2
D · ε−1 · D + 1

2
B · μ−1 · B

+v · (D × B) + 1

2
P · ε−1

0

χ
· P + ε(ρα, s, P, π)

)
. (61)

Note that for pure substances the tensor ε in this formula for energybecomes the vacuumpermittivity (multiplied
by the inverse metric) because then the usual formula for dielectrics is recovered, see Sect. 3.3.2, after the
polarization has relaxed to equilibrium. However, for a mixture one should consider a polarization for each
constituent, and some of the polarizations can be relaxed while some not. We keep the tensor ε in the formula
for energy in order to cover also the mixtures.

In summary, reversible evolution equations for a mixture coupled with electromagnetic fields, polarization
and its conjugate momentum were constructed in a geometric way (semidirect products).

2.5.4 Polarization waves and stress

Let us demonstrate the dynamics of the P, π couple on the canonical polarization bracket (45), bringing new
equations for propagation of polarization. For the sake of simplicity, we assume state variables (P, π) in this
Section. Let us assume that the energy contains a contribution corresponding to a dipole-dipole interaction
that is proportional to the square of the polarization gradient ∇P. Hence, we have

EPw =
∫

dr
1

2

(
βi j∂ j Pi∂ j Pi + αi jπiπ j

)
, (62)

where αi j and βi j are assumed to be symmetric positive definite constant tensors. The Hamiltonian evolution
of P and π due to bracket (45) with energy (62) reads

(∂t Pi )rev = αi jπ j (63a)

(∂tπi )rev = βik∂ j∂ j Pk . (63b)

Assuming isotropy, αi j = αgi j and βi j = βgi j , where α and β are positive numbers and gi j the Euclidean
metric, Eq. (63) become

(∂2t t Pi )rev = α(∂tπi )rev = αβ∂ j∂ j Pi , (64)
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which is a polarization wave equation. Speed of the polarization sound is (αβ)−1/2.
Let us now consider the level of description with state variables (ρα, s, πm,D, B, P, π), which is equipped

with bracket (51) and where (62) contributes to the energy. The evolution equation for total momentum πm
is given by the bracket (55) also determines the evolution of the mass momentum using transformation (59).
Thus we have

(∂t ui )rev = −
n∑

α=1

ρα∂iρ
†̃
α − s∂i s

†̃ − u j∂i u
†̃
j − ∂ j

(
ui u

†̃
j

)

+β Pj∂i∂k

(
∂k P j

)
+ απ j∂iπ j + ∂ j

(
−β∂k∂k Pi P j − απiπ j

)
︸ ︷︷ ︸

Dipole-dipole interaction

+∂ jD j
(
D†̃

i + εi jkv j Bk
)

+ εi jkαπ j Bk

︸ ︷︷ ︸
Lorentz force

, (65)

without specifying the energy dependence of the other variables. Note that we no longer pay attention the
upper and lower indexes in this section for simplicity. The last line is the Lorentz force acting upon the total
charge, c.f. (60). The terms with P and π on the second line of the right-hand side of (65) can be written in a
divergence form as

∂ j

(
β Pl∂i (∂ j Pl) − δi j

β

2
∂k Pl∂k Pl − β∂k(∂k Pi )P j − απiπ j + α

2
δi jπkπk

)
, (66)

which is the stress contribution due to the dipole-dipole interaction. Momentum is conserved.
The third term in (66) is not symmetric w.r.t. change of i and j , but conservation of the angular momentum

is not violated. Indeed, the cross-product of the discussed term and the position vector r can be written in a
divergence form. We have, omitting β,

εsri rr∂ j

(
P j∂k(∂k Pi )

)
= εsri∂ j

(
rr P j∂k(∂k Pi )

)
− εsri P j∂k(∂k Pi )δr j

= εsri∂ j

(
rr P j∂k(∂k Pi )

)
− εs ji∂k(P j∂k Pi ) + εs ji∂k P j∂k Pi , (67)

where the last term is simultaneously symmetric and antisymmetric in i and j , hence it is zero. Similar
observation was made in [49]. The angular momentum is conserved for the proposed energy of the dipole–
dipole interaction (62).

2.6 Magnetization

The magnetization of matter, see, e.g., [47, Sec. 11], is due to the orientation of spins. Perhaps due to the
resemblance with dynamics of rigid body rotation, the pioneering model of magnetization by Landau &
Lifshitz [50] was based on that dynamics. In the following text, we first recall the Hamiltonian formulation
of rigid body dynamics and then we let the rigid body dynamics be advected by the fluid (using again the
semidirect product theory).

2.6.1 Intrinsic dynamics of magnetization

The configuration manifold of rigid body rotations is the Lie group SO(3). The standard machinery of differ-
ential geometry, e.g., [23,29] or [4, Eq.3.69], concludes that the Lie algebra dual, where angular momentum
M seen from the body reference frame plays the role of state variable, is equipped with a Poisson bracket.
Local version of the bracket (see also [30]) is

{F, G}SO(3)(M) = −γ

∫
drMiεi jk FM j G Mk , (68)



252 P. Vágner et al.

where γ is the gyromagnetic ratio and M(r) is the local angular momentum covector field. Bracket (68) is
also called the spin bracket; see, e.g., [51]. The evolution equation implied by this bracket is (by the same
procedure as in Sect. 2.2.1)

(Ṁ)rev = γ M × EM, (69)

E being energy of the rotation. Derivative of energy with respect to M is the angular velocity ω.

2.6.2 Advection by fluid mechanics

Similarly as in the case of electromagnetic field or polarization, we will now construct the Poisson bracket
expressing advection of magnetization and its dynamics by fluid mechanics (using again semidirect product).
Now, however, the advected structure is not a cotangent bundle, but a Lie algebra dual, i.e., having state
variables (ρ, Mm, s, M). The general formula for semidirect product of two Lie algebra duals, see [22, Eq.
40], then gives Poisson bracket

{F, G}SO(3)×(mEHMD)(ρα, Mm, s, D, B, M) = {F, G}mEHMD + {F, G}SO(3)
+ 〈

M, FMm � GM
〉 − 〈

M, G Mm � FM
〉

, (70)

where Mm is the new total momentum of the coupled system and M denotes the magnetization. Note that the
advected electrodynamics are kept in the bracket for completeness. The right action of velocity field Fm on
the vector field Gm is defined as negative of Lie derivative as usually,

(
FMm � GM

)
i = −

(
FMm j

∂ j G Mi − G M j ∂ j FMmi

)
. (71)

Using (71), bracket (70) becomes

{F, G}SO(3)×(mEHMD)(ρα, Mm, s, D, B, M) = {F, G}mEHMD + {F, G}SO(3)

{F, G}SPM( Mm, M) :=
{ + ∫

drMi
(
∂ j FMmi

G M j − ∂ j G Mmi
FM j

)

+ ∫
drMi

(
∂ j FMi G Mm j

− ∂ j G Mi FMm j

)
,

(72)

which is the explicit form of Poisson bracket expressing kinematics ofmagnetization advected by fluidmechan-
ics.

Let us choose

Mm = u + D × B , (73)

which, as in the polarization case, means that there is no excess momentum and Mm = m.
The evolution equation equations implied by (72) are

(∂t mi )rev = −
n∑

α=1

ρα∂iρ
†
α − s∂i s

† − m j∂i m
† j − D j∂i D†

j − B j∂i B†
j − M j∂i M† j

+ ∂ j

(
D†

i D j + B†
i B j − Mi M† j − mi m

† j
)

, (74a)

(∂t Mi )rev = γ εi jk M j M†k − M j∂i m
† j − ∂ j

(
Mi m

† j
)

. (74b)

These evolution equations show how magnetization is advected by fluid mechanics, and how such advection
affects the fluid motion itself. Moreover, magnetization keeps its intrinsic rigid-body-like dynamics. Finally,
note that there is no explicit coupling to the electromagnetic field just as in the original [50] paper. The coupling
is achieved implicitly later by letting energy depend on both M and B.
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2.6.3 Spin-spin interaction stress

Let us now suggest novel dynamics ofmagnetization advected by fluidmechanics. Let now (ρα, m, s, D, B, M)
be the considered level of description governed by (70). The spin-spin interaction contribution to the energy
can, on the continuum level, be modeled by the gradient of magnetization ∇M as in [50],

EMs =
∫

dr
αik

2
∂ j Mi∂ j Mk , (75)

where αik is a constant positive definite tensor. The mass momentum u, given by the evolution of the total
momentum (74a), relation (73) and relations analogous to (37), evolves as

(∂t ui )rev = −
n∑

α=1

ρα∂iρ
†
α − s∂i s

† − u j∂i u
† j − ∂ j

(
ui u

† j
)

+ γαM j∂i∂k∂k M j + ∂ j
(
γαMi∂k∂k M j

)

+ ∂ j D j
(

D†̃
i + εi jku† j Bk

)
, (76)

where only the derivatives of energy w.r.t. M are expressed explicitly. Note that we have put αi j = αgi j and
that we stopped distinguishing between upper and lower indexes for simplicity. The terms on the last line
represent the Lorentz force acting on the free charge. The terms on the second line in (76) are the stress due
to the spin-spin interaction. The terms can be, similarly to the dipole-dipole interaction (66), written in the
divergence form as

γα∂ j

(
Ml∂i∂ j Ml − δi j

2
∂k Ml∂k Ml + Mi∂k∂k M j

)
. (77)

The non-symmetric term in (77) is equivalent to the one already discussed in the polarization case (67), and
therefore, it also does not violate the conservation of the angular momentum.

2.7 General level (ρα, m̂, s,D, B, P, π , M)

The hierarchy of the brackets built in the preceding paragraphs will be completed on the level of description
containing all the discussed variables. The general bracket reads

{F, G}GEMHD(ρα, m̂, s,D, B, P, π , M) = {F, G}CIT(ρα, m̂, s)

+ {F, G}(EM)(D, B) + {F, G}(SP)(m̂,D) + {F, G}(SP)(m̂, B)

+ {F, G}Pπ (P, π) + {F, G}(SP)(m̂, P) + {F, G}(SP)A(m̂,π)

+ {F, G}SO(3)(M) + {F, G}(SP)M(m̂, M). (78)

The first line is due to the dynamics of the CIT-mixture. The second line of (78) accounts for the electro-
magnetism and its coupling to continuum. The third line contains the polarization bracket and its coupling
to continuum. The fourth line of (78) is due to the magnetization dynamics and its coupling to continuum.
Brackets {·, ·}(SP), {·, ·}(SP)A and {·, ·}(SP)M were found due to the semidirect product theory.
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The evolution equations implied by the General bracket are

(∂tρα)rev = −∂ j (ραm̂†
j ) (79a)

(∂t s)rev = −∂ j (sm̂†
j ) (79b)

(∂t m̂i )rev = −
n∑

α=1

ρα∂iρ
†
α − s∂i s

† − m̂ j∂i m̂
†
j

− D j∂iD†
j − B j∂i B†

j − P j∂i P†
j − π j∂iπ

†
j − M j∂i M†

j

+ ∂ j

(
D†

i D j + B†
i B j + P†

i P j − πiπ
† j + πkπ

†
k δi j − Mi M†

j − m̂i m̂
†
j

)
, (79c)

(∂tDi )rev = εi jk∂ j B†
k − π†i − ∂ j

(
Di m̂†

j − D j m̂†
i

)
− m̂†

i ∂ jD j , (79d)

(∂t Bi )rev = −εi jk∂ jD†
k − ∂ j

(
Bi m̂†

j − B j m̂†
i

)
− m̂†

i ∂ j B j (79e)

(∂t Pi )rev = π†i − ∂ j

(
Pi m̂†

j − P j m̂†
i

)
− m̂†

i ∂ j P j (79f)

(∂tπi )rev = −P†
i + D†

i − ∂ jπi m̂
†
j − π j∂i m̂

†
j (79g)

(∂t Mi )rev = γ εi jk M j M†
k − M j∂i m̂

†
j − ∂ j

(
Mi m̂

†
j

)
. (79h)

This is the most detailed set of reversible evolution equations expressing evolution of a mixture coupled with
electromagnetic field, polarization and its conjugate momentum and magnetization. When energy is among
the state variables (thus transforming first to u = ρv to v), the evolution equations read

(∂tρα)rev = −∂ j (ραv j ) (80a)

(∂t s)rev = −∂ j (sv
j ) (80b)

ρ(∂tvi )rev = −ρv j∂ jvi + ∂ jD j
(

Ei + εi jkv
j Bk

)
+ εi jkπ

†̃ j Bk

−
∑
α

ρα∂i
∂ε

∂ρα

− s∂i
∂ε

∂s
− P j∂i

∂ε

∂ P j
− π j∂i

∂ε

∂π j
− M j∂i

∂ε

∂ M j

+ ∂ j

(
P †̃

i P j − πiπ
†̃ j + πkπ

†̃kδi j − Mi M †̃ j
)

, (80c)

(∂tDi )rev = εi jk∂ j Hk −
∑
α

e0
zαρα

mα

vi − π †̃i , (80d)

(∂t Bi )rev = −εi jk∂ j Ek , (80e)

(∂t Pi )rev = π †̃i − ∂ j

(
Piv j − P jvi

)
− vi∂ j P j , (80f)

(∂tπi )rev = −P †̃
i + (Ei + εi jkv

j Bk) − ∂ jπiv
j − π j∂iv

j , (80g)

(∂t Mi )rev = γ εi jk M j M †̃
k − M j∂iv

j − ∂ j

(
Miv

j
)

. (80h)

Note that the form of energy is simpler when velocity v is among the state variables instead of the momentum,
as in Eq. (61). It should also be noted that these equations are not strictly Hamiltonian, since we do not have
derivatives of energy w.r.t. velocity on the right-hand side, but only velocity itself. The equations are equivalent
to the Hamiltonian formulation (79), but having velocity as a state variable is more suitable when formulating
the energy.

The bracket (78) can be projected to the levels of description upon which it was built. One can simply
evaluate the bracket (78) on a set of functionals independent of a certain variables; see [34]. In the rest of this
paper, we enrich the reversible equations by irreversible terms in order to reduce this rather detailed description
to the common continuum models coupling matter and electromagnetic field.

Consistently with the previously devised relations of the total momenta and mass momentum u, we choose

m̂ = πm = u + D × B. (81)

The Lorentz force is equal to the one given by (60).
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3 Continuum thermodynamics and reductions

After having constructed a hierarchy of Poisson brackets for fluid mechanics of mixtures advecting electrody-
namics, polarization and its conjugate momentum and magnetization, let us now enrich that detailed reversible
dynamics by dissipative irreversible terms. This allows to see relaxation of fast mesoscopic variables and the
effects on dynamics of less detailed variables. For instance we let the conjugate polarization momentum π
relax to recover the standard single relaxation time (SRT) model, which is widely used for comparison with
experiments. We also let the magnetization M dissipate to recover the full Landau & Lifshitz model not only
evolving in the laboratory frame, but being advected by the fluid. Finally, we approach the level of mechanical
equilibrium, where neither momentum nor velocity is among the state variables. In particular, a generalized
Nernst–Planck–Poisson equations are formulated on that level of description. In summary, a comprehensive
multiscale thermodynamic construction of fluid mixtures equipped with electrodynamics, polarization and
magnetization is provided.

3.1 Gradient dynamics

Before adding dissipative terms to the actual evolution equations, let us recall the general framework of gradient
dynamics, where irreversible evolution is generated by derivatives of a dissipation potential [52,53]. Sound
statistical arguments for gradient dynamics based on the large deviations principle was found in [54–56]. The
following paragraph closely follows [4, Sec. 4.5, 4.6].

3.1.1 Dissipation potential

Consider a set of state variables x and let energy, entropy and mass of the system be denoted by E(x), S(x)
and M(x), respectively. A dissipation potential Ξ̃(x, x∗) : x∗ → R is a family of functionals of conjugate
variables x∗ parametrized by x. We require every parametrization Ξ [x∗] = Ξ̃(x)[x∗] to satisfy:

1. Positiveness: Ξ [x∗] ≥ 0 and Ξ [x∗ = 0] = 0.
2. Monotonicity of derivative: 〈Ξx∗, x∗〉 ≥ 0 ∀x∗.
3. Convexity near x∗ = 0.
4. Degeneracy with respect to mass 〈Ξx∗, Mx〉 = 0.
5. Degeneracy with respect to energy 〈Ξx∗, Ex〉 = 0.
6. Ξ [x∗] be even with respect to time-reversal transformation; see [10].

The irreversible part of the evolution of a functional F(x) is then given as

(
Ḟ(x)

)
irr =

〈
Fx, Ξx∗

∣∣∣
x∗= δS(x)

δx

〉
. (82)

Gradient dynamics automatically satisfies the second law of thermodynamics (growth of entropy in isolated
systems). This is guaranteed for instance for convex dissipation potentials, but also non-convexity far from the
origin (equilibrium) be taken into account [57]. Moreover, it is in close relation to the method of entropy pro-
duction maximization [58]. Gradient dynamics plays a key role when formulating dissipation in the GENERIC
framework.

Entropy-conjugate variables x∗ are most suitable for formulation of the gradient dynamics. However, it is
oftenmore straightforward to use the energy-conjugate variables x†, especiallywhen combining the irreversible
evolution with the Hamiltonian evolution (see, e.g., [35,42,59,60]). Details on the transformation between the
conjugate variables can be found in [4,14].

A simple notorious example of the dissipation potential expressed in the energy-conjugate variables is

Ξq =
∫

dr
1

2τ

(
ξ†

s†

)2

and
δΞq

δξ†
= 1

τ

ξ†

(s†)2
. (83)

This is a prototype of dissipation potential, since any general dissipation potential can be approximated by a
quadratic one due to the convexity near equilibrium and flatness at equilibrium. For further details see [4, Sect.
4.5].
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3.2 Dynamic maximum entropy principle

The principle of maximum entropy (MaxEnt), where unknown value of a variable is determined by finding the
maximum value of entropy subject to constraints given by declared knowledge, has been successfully applied
in many fields (information theory, thermodynamics, etc.) [61]. However, in non-equilibrium thermodynamics
the problem is not only to find value of a fast variable that has relaxed, but also to find the vector field along
which the fast variable evolves, its evolution equation, when only less detailed variables are among the state
variables (observables). To this end we recall the method of Dynamic MaxEnt (DynMaxEnt) [4,62]. Extensive
treatment of the DynMaxEnt principle in the context of the continuum thermodynamics can be found in [63].

3.3 Relaxation of conjugate polarization momentum π

In Sect. 2.5, polarization was equipped with its conjugate momentum π . Inspired by the relaxation of the
damped particle in Sect. 3.2, we shall let the conjugate momentum relax to recover dissipative evolution of
polarization. Let us choose state variables (ρα, m, s,D, B, P, π), represented in (55). The energy depends on
all the variables unless assumed otherwise.

3.3.1 Polarization relaxation via π

Let us assume a dissipation potential quadratic in π∗,

Ξ(π) =
∫

dr
1

2
π∗ · Λ(π) · π∗ =

∫
dr

1

2

π†

s†
· Λ(π)

π†

s†
, (84)

where Λ(π) is a positive definite symmetric constant tensor. Assuming also energy quadratic in π , the MaxEnt
value of π is zero. Using (56b), the DynMaxEnt relaxation of π can be formulated as

0 = ∂tπi = D†
i − P†

i − Λ(π)i j
π† j

s†
, (85)

which is the constitutive relation to be plugged into the remaining evolution equations. In particular, evolution
equation for polarization (79f) becomes

∂t Pi = s†Λ−1i j
(π) (D†

j − P†
j ) − ∂ j

(
Piv j − P jvi

)
− vi∂ j P j , (86)

which is an equation for polarization equipped with both reversible and irreversible terms.
Note that the irreversible terms on the right-hand side of equation (86) are generated by dissipation potential

Ξ(π) evaluated at constitutive relation (85),

Ξ(P) = Ξ(π)|
π†=Λ−1

(π)
s†(D†−P†)

=
∫

dr
Λ−1

(π)

2

(
P† − D†)2 . (87)

Similar ideas were presented in [64]. This is the dissipation potential generating irreversible evolution of P
and D. We may also pursue further relaxation of the polarization. If DynMaxEnt value of P is zero, e.g., the
total energy is quadratic in polarization, all the momentum coupling terms from (86) vanish and we obtain

D† = P† (88)

as the ultimate value of P†.
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3.3.2 Linear isotropic dielectric

Let us now demonstrate the results of the previous paragraph on a particular choice of energy (61) restricted to
state variables (ρα, v, s,D, B, P). Assuming that the internal energy be independent of P, the MaxEnt value
of P is zero so that (88) holds. We are going to determine the energy on the level where P is relaxed. Since the
following considerations are simpler with velocity v instead of momentum m̂, transformation (39b) is carried
out. Recalling (88), we have

P
ε0χ

= P†̃ = P† = D† = D†̃ + u†̃ × B 
⇒ P = χε0 (E + v × B) . (89)

Let us first observe that the relation (89)right can be also reformulated, using (37b), as

P = χD , (90)

Energy (61) then becomes

E(relax) →
∫

dr
(
1

2
ρv2 + 1

2
D · ε−1

0 (1 + χ)D + 1

2
B · μ−1

0 B + v · (D × B) + ε(ρ, s)

)
. (91)

The relations (52) and (90) can be combined to obtain,

P = χ

1 + χ
D. (92)

Finally, for either negligible magnetic field B = 0 or negligible velocity v = 0, we obtain that

P = χε0E , (93)

which leads to the usual form of Coulomb’s law for linear isotropic dielectrics [47],

ρf = ε0 div
(
(1 + χ)E

)
, (94)

since then D† = D†̃ = ε0E.

3.3.3 Single relaxation time model

Consider again equation (86) and assume further that v = 0 and B†=0 and that the internal energy is negligible.
Then, for energy

ESRT =
∫

dr

(
D2

2ε0
+ P2

2ε0χ

)
(95)

the evolution of polarization (86) becomes

∂t Pi = s†Λ−1
(π)

(
Ei − 1

ε0χ
Pi

)
, (96)

which represents a dissipative evolution of polarization subject to electric field.
Let us first analyze the evolution equation by applying harmonic electric field E = E0 exp(iωt). Equa-

tion (96) then gives the Single Relaxation Time (SRT) model of polarization, see, e.g., [65],

P0 = χE0

1 + ε0
iωχ

Λ−1
π s†

, (97)

provided that P = P0 exp(iωt).
In summary, by letting the conjugate polarizationmomentumπ relax, a dissipative evolution of polarization

is obtained (86). If the mechanical equilibrium is further assumed, this dissipative evolution is compatible with
the SRTmodel widely used for comparison to experiments. Finally, the equilibrium of the dissipative evolution
is the linear relation between polarization and electric intensity known from electrostatics.
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3.4 Relaxation of magnetization

Let us now discuss relaxation of magnetization M inspired by the Landau & Lifshitz model [50]. We consider
dissipation potential

ΞM =
∫

dr
1

2

(
M × M†

s†

)
· Λ(M) ·

(
M × M†

s†

)
, (98)

where Λ(M) is a positive definite symmetric tensor field. Let us, for simplicity, assume that Λ(M) is a constant
multiple of the constant Eucledian metric and let us not distinguish between the upper and lower indexes in
this section. The derivative of (98) w.r.t M† is

δΞM

δM†
i

= Λ(M)

s†2
εsmi Mmεs jk M j M†

k = −Λ(M)

s†2
(
M × (M × M†)

)
i . (99)

Hence, the irreversible evolution of M due to (98) is

(∂t Mi )irr = −s†
δΞM

δM†
i

= Λ(M)

s†
εims Mmεs jk M j M†

k

= Λ(M)

s†
(
(M · M†)M − (M · M)M†) , (100)

which is compatible with the Landau & Lifshitz model of magnetization once suitable energy is provided, [66,
Sec. 3.7].

Having recovered the Landau & Lifshitz model, let us also formulate its generalized version advected by
fluid mechanics and interactin g with magnetic field. Let us assume the following energy

E (M) =
∫

dr

(
1

2
ρv2 + D2

2ε0
+ (B − μ0M)2

2μ0
+ μ0M2

2χm
+ v · (D × B)

)
. (101)

The energy-conjugate to the magnetization M then reads

M† = −μ0H + μ0M
χm

. (102)

The field of magnetic intensity, which is conjugate to B, satisfies

H def= B†̃ = B
μ0

− M, (103)

which is the usual relation between H, B and M in the frame co-moving with matter. It holds, moreover, that

divH = − divM. (104)

Combining (80h) and (100), we obtain the evolution of magnetization, using also (102),

∂t Mi = −γ εi jk M j Bk − γ M j∂iv
j − γ ∂ j

(
Miv

j
)

−Λ(M)

s†
εims Mmεs jk M j Bk . (105)

Equation (105), suppliedwith the rest ofEqs. (79f), is the generalizedLandau–Lifshitzmagnetization relaxation
model3, where magnetization relaxes, interact with electromagnetic field and where it is advected by the fluid.

3 To fully recover the model, one should also add a weakly non-local term 1
2α(∇M)2 to the energy density, see Sect. 2.6.
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3.4.1 Linear isotropic magnetizable medium

Let us demonstrate some properties of energy E (M) in the context of MaxEnt. Introducing the MaxEnt value
of the magnetization,

δE (M)

δM
= 0 
⇒ MMaxEnt = χm

μ0(1 + χm)
B , (106)

into the energy E (M) gives

Ẽ (M) →
∫

dr

(
1

2
ρv2 + D2

2ε0
+ B2

2μ0(1 + χm)
+ v · (D × B

)
, (107)

for which it holds that

B = μ0(1 + χm)H. (108)

In particular, M† = 0, we obtain M = χmH. The MaxEnt value of the magnetization is used to recover the
usual relation between the magnetic field and its intensity for linear isotropic materials.

3.5 Electro-diffusion—dissipation of D and ρα

Let us now consider only state variables (ρα,D), which are essential for electrodiffusion. Poisson bracket (78)
for mixtures may be endowedwith a weakly non-local electrodiffusion dissipation potential expressing friction
between components of the mixture and the zeroth species (e.g., solvent),

ΞD(ρ∗
α,D∗) =

∫
dr

n∑
α,β �=0

[(
∂i

(
ρ∗

α − ρ∗
0

) − e0

(
zα

mα

− z0
m0

)
D∗

i

)

Mαβ

2

(
∂i

(
ρ∗

β − ρ∗
0

)
− e0

(
zβ

mβ

− z0
m0

)
D∗

i

)]
, (109)

where Mαβ is a symmetric, positive definite matrix of binary diffusion coefficients. Note that ∇ρ∗
α − e0

zα

mα
D∗

i
is proportional to the gradient of electrochemical potential of species α. This dissipation potential conserves
both mass and energy.

The irreversible part of the evolution equations can be expressed in the energy-conjugate variables as

(∂tρα)irr =
n∑

β �=0

∂i

(
Mαβ

(
∂i

ρ
†
β − ρ

†
0

s†
− e0

(
zβ

mβ

− z0
m0

) D†
i

s†

))
(110a)

(∂tρ0)irr = −
n∑

α,β �=0

∂i

(
Mαβ

(
∂i

ρ
†
β − ρ

†
0

s†
− e0

(
zβ

mβ

− z0
m0

) D†
i

s†

))
(110b)

(∂tDi )irr =
n∑

α,β �=0

e0

(
zα

mα

− z0
m0

)
Mαβ

(
∂i

ρ
†
β − ρ

†
0

s†
− e0

(
zβ

mβ

− z0
m0

) D†
i

s†

)
. (110c)

Note that the divergence of (110c) is equal to the sum of (110b) and (110a) weighted by the charge per mass
of the respective species. Therefore, the irreversible evolution given by (109) is compatible with Gauß’s law
given by (44). In other words

∂i

(
(∂tDi )irr

)
=

n∑
α=0

e0
zα

mα

(∂tρα)irr. (111)

Equations (110) express irreversible evolution of densities of the constituents and electric displacement under
mutual interaction. The right-hand sides of the equations for densities can be regarded as gradients of respective
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electrochemical potentials. Evolution for the D field leads to relaxation of the field consistent with the Gauß
law and with the Poisson equation.

Note that a dissipation potential introducing dissipation of the partial mass densities (i.e., containing ρ∗
α) is

required to contain corresponding terms withD∗ otherwise the irreversible evolution would not be compatible
with the Gauß law, c.f. (111). Therefore, if the validity of Gauß’s law for the free charge is required, then the
form of dissipation potential involvingD† is constrained.

On short enough distancesmagnetic field effects are usually negligible compared with effects of the electric
field, in contrast to long distances, where electric field usually does not play any relevant role due to screening.
Let us analyze the former case, paving the way towards electrochemical problems. The electrodiffusion due
to (109) introduces dissipative fluxes identical to those of the generalized Planck–Nernst–Poisson systems
(gPNP) presented in [67]. Assuming that no magnetic field is present and that its evolution equation (80e) is
satisfied, it follows that

D† = −∇ϕ , (112)

see also (92). The considered level of description consists of (ρα, u, s, ϕ). Let us consider a further relaxation
of the mass momentum u. We can proceed in two ways. Either we suppose for that energy does not depend
on the mass momentum and the barycentric velocity vanishes, or we can think of a dissipation of the mass
momentum, e.g., viscosity, and use the DynMaxEnt principle in order to determine the value of the barycentric
velocity u†. Let us now follow the latter route. The energy is quadratic in u, see (92), hence, its MaxEnt value
is zero, leaving the remainder of the momentum equation as an constitutive equation for the velocity field. For
the dissipation potential generating the irreversible part of the Navier-Stokes equations; see, e.g., [4, Eqns.
4.74, 4.76]. The viscous dissipative terms are then added to the reversible balance of the mass momentum.
The whole gPNP-Stokes systems eventually reads

∂tρα = ∂i

⎛
⎝ραvi +

n∑
β �=0

Mαβ

(
∂i

ρ
†
β − ρ

†
0

s†
+ e0

(
zβ

mβ

− z0
m0

)
∂iϕ

s†

)⎞
⎠ (113)

∂tρ0 = ∂i

⎛
⎝ρ0vi −

n∑
α,β �=0

Mαβ

(
∂i

ρ
†
β − ρ

†
0

s†
+ e0

(
zβ

mβ

− z0
m0

)
∂iϕ

s†

)⎞
⎠ (114)

0 = −
n∑

α=0

ρα∂iρ
†
α − s∂i s

† − ρf∂iϕ + ∂ j

(
μ̂

2

(
∂ jvi + ∂iv j

)) + λ∂i∂ jv j (115)

0 = −∂i (e0(1 + χ)∂iϕ) +
n∑

α=0

e0
zα

mα

ρa . (116)

Note that the third equation is not violated if the curl-operator is applied on it.

4 Discussion

W. Dreyer, C. Guhlke and R. Müller in [67] published a comprehensive analysis of fluid mixtures coupled with
electromagnetic fields, including polarization and magnetization which will be further referred as the DGM
approach. Their treatment of surfaces, c.f. [68], as independent thermodynamic systems interacting with the
bulk, being beyond the scope of the presented work, have elucidated many electrochemical problems using
non-equilibrium thermodynamics, for instance a unified theory of the Helmholtz and Stern layers, a derivation
of Butler–Volmer equations, or useful asymptotic techniques, see [67,69–71,71,72]. Since our goal is in close
relation to that works, let us compare the two approaches in detail.

An important conceptual difference between the two approaches lies in the treatment of the state variables,
i.e., the levels of the description. In our approach, the level of description is always defined first by declaring
the set of state variables. Energy and entropy of the system can then, in principle, depend on all the state
variables. Each state variable has its evolution given by the GENERIC equation (1), where the reversible and
the irreversible parts of the evolution are separated. In contrast, the DGM approach develops a system of
general balance equations which outlines the relations between the physical quantities and their fluxes and
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productions. The dependence of the fluxes and production upon the variables is determined using the entropy
principle.

The DGM approach is formulated in an inertial frame of reference for which holds that (i) mass center not
subjected to external forces moves with a constant velocity and (ii) the Lorentz–Maxwell–aether (or material)
relations 41 are valid. This is similar, although not equivalent, to our construction. The choice of the energy in
DGM,

eD = u2

2ρ
+ D · E

2
+ B · H

2
+ εD (117)

is analogous to the energy 42. Moreover, the formulation of the Maxwell equation in DGM is, in vacuum,
formally equivalent to our approach.

In the non-vacuum case, the total charge is for both formulations given by divD. The divP also bears the
same meaning, i.e., the density of the bounded charge. The DGM evolution of the polarization P is given as
formal solution to the bound charge balance. It reads

(DGM) ∂t Pi = − εi jk∂ j MD
k + vi∂ j P j + JP

i , (118)

where MD is the Lorentz magnetization and JP denotes the non-convective part of the polarization current, cf.
equation (79f). The DGM formulation contains no balance equation concerning MD, an evolution equation
is later on found for M̂D = MD + v × P as a consequence of the closure. In contrast, the polarization
bracket (45) contains the polarization momentum π as a variable and therefore implies its reversible evolution.
Thepolarizationmomentumπ canbeprojected to a reducedvariableM = curlπ ,would lead to the appearance
of curlM† in the equation for polarization. This is perhaps the closest the two approaches can get in this respect.

In DGM, the balance equations for the densities of the partial masses ρα , mass momentum u, total momen-
tum u + D × B, total energy eD, internal energy εD, total charge ρf − divP, bound charge − divP, flux of
the magnetic field, and the entropy sD are formulated, see [67], which is translated in our approach to the
respective evolution equations. In particular, the total energy and the total momentum u + D × B are, in the
absence of external forces, conserved quantities in DGM as in our approach. Coupling between the charged
fluid and electromagnetic field is given by the choice of Lorentz’s force [67, Eqn. 36a]:

ki = ∂ jD j Ei + εi jk

(
v j∂lDl + JF

j + JP
j

)
Bk (119)

as a source term in the mass momentum balance and by the choice of Joule heating

π = (vi∂ jD j + JF
i + JP

i )Ei (120)

as a source term in the internal energy balance, cf. Appendix D. Symbols JF denotes the non-convective part
of the free charge current. This is similar to our formula (60), at least in the absence of irreversible terms.

As it is shown in Appendix D, the presented coupling between the motion of mass and the electromagnetic
field can be formulated using a similar choice of Joule’s heating, see (138), and restricts the form of the total
momentum to (142). The dissipation potentials for the irreversible, conductive, currents are formulated in
terms of total momentum m̂, so that D† is the co-moving electric field. Hence, the Lorentz force acting upon
the conductive currents can be found when the dissipation potentials are transformed into the variables with
the mass momentum u.

The choice of Lorentz’s force (119) tells that the electric field acts upon the total charge and the magnetic
field upon convective current density, JF and JP within the DGM theory. This is equivalent for the total charge
and the conductive free charge JF. The difference appears for JP, since it is not purely irreversible and contains
reversible terms in the sense of the time-reversal transform.

Our evolution equation for polarization consists of reversible and irreversible parts. The former is given
by Eq. (80f), and the terms of the right-hand side containing velocity be rewritten as the Lie derivative of P,
LvP. Polarization is thus simply advected by the fluid (apart from interacting with the electromagnetic fields
and apart from relaxation processes). On the other hand, polarization is not simply advected in DGM as the
equation for P contains other velocity-dependent terms therein. This is a difference between our approach and
DGM.
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Authors of DGM assumed that the entropy density sD depends only on a specific subset of the variables

sD(εD + M̂D · B, ρα, P, M̂D) 
⇒ 1

TD = ∂sD

∂(εD + M̂D · B)
, (121)

thus obtaining a specific definition of the temperature TD, see [67, Eqn. 48a, 49a]4. This choice allowed them
to find a reasonably simple closure of the equations using the entropy principle, c.f. [73]. On the other hand,
temperature is in our approach defined as derivative of the internal energy density with respect to entropy as
is usual [36].

Let us now focus on some features of the closure, especially, the non-convective flux of the bound charge
that. They derived the following evolution of the polarization P and magnetization M̂D,

∂t Pi = −v j∂ j Pi + 1

2
P j (∂ jvi − ∂iv j

) + 1

τP

(
TD ∂sD

∂ Pi
+ Ei + εi jkv j Bk

)

︸ ︷︷ ︸
=JP

i −εi jk∂ j MD
k +vi ∂ j P j

, (122a)

∂t M̂D
i = −v j∂ j M̂D

i + 1

2
M̂D

j

(
∂ jvi − ∂iv j

) + 1

τM

(
TD ∂sD

M̂D
i

+ Bi

)
, (122b)

respectively. The phenomenological coefficients τP and τM are relaxation times of polarization and magne-
tization, respectively. The relaxation of the polarization, i.e., the last bracket in (122a), is equivalent to the
dissipation derived using the DynMaxEnt principle given by potential ΞP, see (87). The conductive flux of
free charge JF is equivalent to the one generated by the dissipation potential ΞD in (110c), which also holds
for the mass diffusion fluxes.

When the relaxation time of polarization τP can be considered large, the dissipative part in (122a) can be
neglected. Eventually, the reversible part of the bound charge evolution in a volume V for the two theories
read

(DGM) ∂t

∫

V
∂i Pi =

∫

∂V

(
−v j∂ j Pi + 1

2
P j (∂ jvi − ∂iv j

))
νi , (123)

(our) ∂t

∫

V
∂i Pi =

∫

∂V

(
π†i − vi∂ j P j

)
νi . (124)

The net bound charge in a fixed volume V can thus be reversibly changed by convection or by change of π†.
In contrast to DGM, the bound charge is advected like a scalar field in our approach, which corresponds with
that polarization is Lie-dragged in our approach.

Also the evolution of magnetization in DGM, Eq. (122b), is different from our equation (80h). In our case
the evolution of magnetization caused by fluid motion is again just the Lie drag. Apart from that, there is a
contribution from inertia of the magnetization itself, as in the Landau–Lifshitz model, which brings interaction
with the magnetic field when energy depends on both magnetization and magnetic field.

Let us consider the volume and shear viscosity to be vanishing, the stress tensor presented in [67, Eqn 62]
reads5

(DGM) σi j = p(TD, ρα, M̂D, P)δi j + (
M̂D

k Bk + Êk Pk
)
δi j

+ 1

2

(
Êi Pj + Pi Ê j

) − 1

2

(
M̂D

i B j + Bi M̂D
j

)
(125)

here Ê = E+v×B. The dependence of the stress tensor σ on the material properties linked to the polarization
P and magnetization M̂D is provided by the isotropic part pδi j the rest of the tensor is linear in P and M̂D,
independent of the choice of the energy. An energy weakly non-local in polarization or magnetization, see,
e.g., (62) and (75), leads in the here presented treatment to a structurally different stress since a non-symmetric
components can appear in the evolution equation for the mass momentum u; see (66) or (77). The stress in
DGM is different from our formulas for stress, mainly in the off-diagonal part.

4 The dependence on the bulk deformation gradient is omitted.
5 Omitting also the dependence on the volume-preserving deformation gradient.
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FMPπ EFPπ Dπ

CIT
mEMHD
uEMHD GEMHD

FM SO(3) (mEMHD)

(EM)

(Pπ)

(EM)

(Pπ)

Eqn. (52)

SO(3)

SO(3) (Pπ), E
qn.(5

2)

Fig. 1 Hierarchy of the Poisson brackets. The Poisson bracket CIT is gradually extended using the semidirect product eventually
reaching the over-arching bracket GEMHD

The Onsager-Casimir reciprocal relations [36,74,75] are one of the corner-stones of non-equilibrium
thermodynamics. Roughly speaking, they say that state variables with the same parity are coupled through
an operator symmetric with respect to the simultaneous transposition and time-reversal while variables with
opposite parities are coupled through an antisymmetric operator. They are automatically satisfied within the
GENERIC framework in a generalized sense (beyond near equilibrium) [3,4,10]. In [67] they seem to be
satisfied as well, but parities of the state variables are determined from the power of seconds in the units of
the variables instead of the time-reversal transformation, which is not invariant with respect to changing the
physical units. Although the results seem to be all right, one should be careful in principle, perhaps using a
precise definition of affine and vector spaces [76,77] or the definition based on projections from more detailed
levels [4].

5 Summary and conclusion

In the first section, a hierarchy of Poisson brackets describing the reversible dynamics of a charged, polarized
and magnetized continua coupled with electromagnetic field has been developed by means of differential
geometry, see Fig. 1. The semidirect product of the fluid mechanics Lie Algebra dual (ρ, u, s) and the elec-
tromagnetism cotangent bundle (A, −D) results in the reversible electro-magneto-hydrodynamics already
known [4,5,22,37]. Newly, cotangent bundle (π , −P) describing dynamics of bound charge is also coupled
to (ρ, u, s, D, B) using the same technique. Finally, the classical spin dynamics represented by the local Lie
algebra dual of SO(3) is coupled to the Lie algebra dual of fluid mechanics, which can be seen as advection
of the Landau–Lifshitz model by fluid mechanics. The theory is the Galilean invariant.

The second section is dedicated to introduction of irreversible dynamics using dissipation potentials and
subsequent reductions of the before-built levels of description to the less detailed levels. The reduction is carried
out by the Dynamic Maximization of Entropy (DynMaxEnt) technique, which forms passage from finer to
rougher levels of description in a geometric way. In particular, the polarization momentum π is relaxed giving
rise to dissipation of the polarization field itself. Further exploitation of the induced dissipation of P leads to
the standard formulas for linear dielectrics and to the Single Relaxation Time model. The dissipation potential
for the magnetization M is found so that the Landau–Lifshitz model of spin relaxation is restored. Finally, the
electro-diffusion dissipation potential is introduced, leading to a generalized Poisson–Nernst–Planck–Stokes
model.

In this rather complex dynamics, we observe phenomena like advection of polarization and magnetization
by the fluid, polarization and magnetization waves and the respective inertial effects. We leave concrete
applications of these phenomena for future researchers.
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Table 1 List of the basic quantities, symbols and SI units

Quantity Symbol SI units

Magnetic field B kg/s2/A
Magnetic field intensity B†, H Am−1

Displacement field D C/m2

Electric induction field D C/m2

Electric field E, D†,D† Vm−1

Electric potential ϕ V
Polarization density P C/m2

Polarization momentum π Vsm−1

Magnetization density M Am−1

Partial mass density ρα kg/m3

Chemical potential ρ†
α Jkg−1

Mass momentum density u kg/m2/s
Total momentum density m, m̂ kg/m2/s
Entropy density s J/K/m3

Table 2 List of momenta densities and the corresponding levels of description

Momentum density Level of description

u (ρα, s, u)
m (ρα, s, m, D, B)
m̂ (ρα, s, m̂, P, π,D, B, M)

author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Notation

(See Tables 1, 2).

B Elementary dipole

Two classical charged mass points are described by their positions, r1 and r2, momenta p1 and p2, carrying
charge q1 and q2, respectively. The dynamics of the particles is governed by the canonical Poisson bracket:

{F, G}mp(rβ, pβ) =
2∑

β=1

(F
rβ

i
G

pβ
i

− G
rβ

i
F

pβ
i
). (126)

Assume that q = q1 = −q2 and consider the following transformation of the variables:

R = m1r1 + m2r2

m1 + m2
, P = q(r1 − r2), (127)

Π = p1 + p2, t = m2p1 − m1p2

q(m1 + m2)
, (128)

Bracket (126) then transforms into:

{F, G}mp(R, Π,P, t) = (FRi GΠi − G Ri FΠi )

+ (FPi Gti − GPi Fti ). (129)

http://creativecommons.org/licenses/by/4.0/
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C Galilean transformations

Maxwell equations (30) are not in the usual form, e.g. from [41]. Usually the equations are derived in the
special relativistic setting by first forming the electromagnetic four-cotensor from fields E and B, and the
resulting evolution equations are for E and B as well.
TheMaxwell equations are naturally Lorentz invariant, as follows from the special relativistic treatment. How-
ever, it is often the case that Galilean invariance is sufficient for describing the observed phenomena.Moreover,
Galilean transformations can be seen as low-velocity and low-strength limits of Lorentz transformations. Since
Maxwell equations adequately describe usual phenomena around us, what is their behavior with respect to the
Galilean transformations?
When having the pair (E, B) at hand, as in the usual case, one has to be restricted either to the electric limit
(magnetic effects negligible) ormagnetic limit (electric effects negligible), as discussed in [45]. However, when
we have all the fields (E, B, D, H), which is the case of Eqs. (80), the equations are invariant with respect to
Galilean transformations

D′ = D, E′ = E + V × B, (130a)

B′ = B, H′ = H − V × D, (130b)

P′ = P, π ′ = π , (130c)

M′ = M, (130d)

which corresponds to the change of position r = r′ + Vt and velocity v = v′ + V. Note that polarization
and magnetization are not affected by the transformation. The reasoning can be found for instance in [76] or
[45], where four-vectors and four-covectors are split into the time-like and space-like parts, and the Galilean-
invariantMaxwell equations then result from such splitting of the special relativistic four-dimensional structure
in the low velocity limit, c.f. [78].
Maxwell equations in vacuum (30) are not Galilean invariant. However, equations (43), where Maxwell equa-
tions are complemented bymotion ofmatter, areGalilean invariant, as noted in [45], albeit without the evolution
equations for matter. In [45] they found material relations (41) not being Galilean invariant, since they had to
be formulated in a special reference frame (e.g. aether). However, we have a natural reference frame at hand
(the frame co-moving with the center of mass) where the material relations are valid. This makes the theory
fully Galilean invariant.

D Relation of the mass momentum and the total momentum

Let us define the mass momentum as

u = ρm† = ρv, (131)

for some given energy E(ρ, m, s,D, B, P, μ, M). This relation thus defines a function ũ such that

u = ũ(ρ, m, s,D, B, P, μ, M). (132)

Let us assume that there exists a different representation of energy Ẽ(ρ, u, s,D, B, P, μ, M). However, the
energy of the system is invariant w.r.t. the choice of representation. Therefore,

Ẽ(ρ, u, s,D, B, P, μ, M) = E(ρ, m, s,D, B, P, μ, M). (133)

We require the velocity field to be also invariant of the chosen representation,

v = m† = u†̃. (134)

As a consequence of the chain rule and formula (131), we obtain more specific form of ũ, that is,

ũi (D, B, m) = mi + fi (D, B) , (135)

the extra momentum f is also assumed to be independent of mass and entropy density and being caused only
due to the electromagnetic field.
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The form of (135) suggest that the extra momentum should be the momentum of the electromagnetic field.
Since the theory of the Maxwell equations is built upon the assumption of the field superposition, we assume
f to be a bilinear function of D and B, hence we have,

fi = ai jkD j Bk where ai jk ∈ R. (136)

Using the chain rule, formulas (133) and (136), we find the relations between the derivatives of the energy in
the two representations,

ρ† = ρ †̃, s† = s †̃, m† = u†̃ , (137a)

P† = P†̃, μ† = μ†̃, M† = M†̃ , (137b)

D†
i = D†̃

i − u†̃
l alik Bk , (137c)

B†
i = B †̃

i − u†̃
l al jiD j . (137d)

The kinetic energy of the system may be defined using either the velocity or the mass momentum. In general,
kinetic energy is not a conserved quantity and may be changed during evolution of the system. Experimental
evidence suggests that the change of the kinetic energy of a charged matter, due to the presence of the
electromagnetic field, is linearly proportional to the charge density and the electric field, i.e., ∂iDiD†

j m
† j .

We require this power density to be independent of the chosen representation, i.e., ∂iDiD†
j m

† j = ∂iDiD†̃
jv

j .
Using (137) we have

∂iDiD†
j m

†
j = ∂iDi

(
D†̃

j − ul̃†al j
k Bk

)
ũ j †̃. (138)

To this end, the extra term on the right-hand side must be zero, i.e., it must vanish for arbitrary magnetic and
velocity fields. For example, it must hold

0 = ai jkviv j ∀k ∈ {1, 2, 3}. (139)

Apparently, the tensor ai jk is antisymmetric and isotropic. Up to a sign, there exists only one such tensor in
three dimensions,

ai jk = εi jk . (140)

The sign choice is due to the experimentally observed difference in bending of rays of negatively and positively
charged particles [50]. Let us the calculate time change of the kinetic energy,

∂t

∫
u2

2ρ
=

∫
u
ρ

(
∂t (m − D × B) − u

2ρ
∂tρ

)

=
∫

dru†̃
i

(
−ρ∂iρ

†̃ − s∂i s
†̃ − u j∂i u j

†̃ + 1

2
u†̃

i ∂ j

(
ρu†̃

j

))
(141a)

+
∫

dru†̃
i

(
−P j∂i P†

j + μ† j∂iμ j + ∂ j

(
P †̃

i P j − μiμ
†̃
j

))
(141b)

+
∫

dru†̃
i

(
−M j∂i M †̃

j − ∂ j

(
Mi M †̃

j

))
(141c)

+
∫

dru†̃
i

⎛
⎜⎝D†̃

i ∂ jD j + B †̃
i ∂ j B j

︸ ︷︷ ︸
=0

⎞
⎟⎠ . (141d)

The terms on lines (141a), (141b), (141c) are the changes of the kinetic energy due to the fluid mechanics,
dipole mechanics and spin mechanics, respectively.
The terms on line (141d) are the change of the kinetic energy due to the power of the electromagnetic field.
In total, the change of kinetic energy is independent of the chosen energy representation, see (137) with the
choice of (140).
In summary, the relation between the mass momentum u and the total momentum m

m = u + D × B (142)

is recovered.
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