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Abstract—Edge preserving regularization using partial differ-
ential equation (PDE) based schemes are now widely used in
image restoration. We propose an adaptive multiscale variable
exponent-based anisotropic variational PDE scheme that avoids
current limitations such as over smoothing and blockiness arti-
facts while still retaining and enhancing edge structures across
scale. The innovative model automatically balances between L

2

Tikhonov and L
1 total variation (TV) regularization effects using

scene content information by adopting a spatially varying edge
coherence exponent term constructed from the eigenvalues of
the smoothed structure tensor. The multiscale exponent model
considered here leads to a novel denoising method which pre-
serves edges and provides selective denoising without generating
artifacts for both additive and multiplicative noise models. Math-
ematical analysis of the proposed method in variable exponent
space demonstrates its robustness, unconditional stability of the
scheme supporting large (time evolution) step sizes and that the
approach theoretically satisfies the maximum-minimum principle
which guarantees that artificial edge regions are not created.
Extensive experimental results on synthetic and real biomedical
images indicate that the proposed Multiscale Tikhonov-Total
Variation (MTTV) and Dynamical MTTV (D-MTTV) schemes
perform better than sixteen other denoising algorithms in terms
of several metrics including signal-to-noise ratio improvement
and structure preservation. Promising extensions to handle
multiplicative noise models and multichannel imagery are also
provided.

I. INTRODUCTION

IMAGE restoration and enhancement to improve image

quality under different noise models is a critical require-

ment across many image processing application domains in-

cluding defense, space and biomedicine. Regularization and

partial differential equations (PDEs) based schemes are very

popular for removing noise and directionally smoothing im-

ages [1], see [3], [4] for a review. Despite the success

enjoyed by these methods, there are problems related to edge

and fine structure preservation, staircasing artifacts or over-

smoothing of images. Variational regularization approaches

use the classical quadratic Tikhonov [5] and total variation

(TV) function studied by Rudin et al [6]. The over smoothing

nature of the Tikhonov functional results in noise removal but

at the expense of edge dislocation. On the other hand the TV

regularization functional does a good job in retaining edges
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while sometimes creating blocky or staircasing artifacts in

homogeneous regions. Various remedies have been proposed

for mitigating the drawbacks of the functionals including

combining both Tikhonov and TV functionals in an adaptive

way. Note that the Tikhonov regularization corresponds to

p = 2 whereas the TV functional corresponds to p = 1 using

the traditional Lp-norm of the gradient image. That is, the

general functional can be written in terms of the gradient p-

norm

min
u
E(u) =

∫

Ω

|∇u|p dx, (1)

where the minimizer u is the restored image, and Ω ⊂ R
2 is

the image domain with p ≥ 1.

Recently, the pseudo-p-norm with 0 < p < 1 has been

advocated by some researchers for better regularization of im-

ages [7]–[10]; see [11] for a review of different regularization

terms applicable for image segmentation. On the other hand,

generalizations of the exponent to adaptively vary p ∈ (1, 2]
has also been considered. The general energy minimization

model can be written as,

min
u
E(u) =

∫

Ω

Φ(x,∇u) dx+
µ

2

∫

Ω

f(u, u0) dx (2)

where f denotes the data fidelity function with u0 being the

noisy input image, and depends on the type of noise process

contaminating the image. The first term Φ is a gradient-based

regularization term. Nonstandard growth functionals like

Φ(x,∇u) = |∇u|p(|∇u(x)|)
(3)

where p(·) is a smooth monotonically decreasing function

such that lims→0 p(s) = 2 and lims→∞ p(s) = 1 were first

proposed by Blomgren et al., [12]. Bollt et al [13] used

smoothed gradients in the exponent function p(|∇Gσ ⋆ u0|)
and p(|∇Gσ ⋆ u|). Chen et al [14] utilized the following

regularization,

Φ(x,∇u) =
{

1
p(x) |∇u|

p(x)
if |∇u| < ǫ,

|∇u| − ǫp(x)−ǫp(x)

p(x) if |∇u| ≥ ǫ,
(4)

with ǫ > 0 is fixed, and the exponent is chosen as,

p(x) = 1 +
1

1 + k |∇Gσ ⋆ u0(x)|
. (5)

where k > 0 is a parameter. This functional is connected to

the classical Chambolle and Lions model [15], see also [16].
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Recently, Li et al [17] used a variable exponent functional

p = p(x) which is studied in the Musielak-Orlicz spaces. Guo

et al [18] studied an adaptive exponent based on anisotropic

diffusion models, see also [16], [19]–[23] for related adaptive

anisotropic diffusion PDE models. Tremendous progress has

been made on the variable exponent spaces, corresponding

functionals, and p(x)-Laplacian diffusion models with appli-

cations in various applied mathematical areas, as reviewed

in [24].

In this paper our novel contribution is to develop an

adaptive variable exponent functional which automatically and

continuously balances between edge and corner preserving L1

total variation and L2 Tikhonov-smoothing using image-based

local feature information that is multiscale and anisotropic.

The exponent p(x) is chosen according to the pointwise

structure tensor computed from the image which allows the

regularization method to denoise the image by modifying the

amount of smoothness automatically to fit different image

features. The smoothed structure tensor can identify different

image features such as flat, edge and corner regions [25].

The variational model which we derive adapts between total

variation which is edge preserving to the quadratic Tikhonov

case which helps in removing noise effectively. In contrast

other gradient only choice of exponents [14], [17], [26] inherit

the undesirable blockiness artifacts associated with TV mod-

els, whereas our multiscale structure tensor approach provides

better image restoration that preserves edge and corner regions

more accurately. The adaptive anisotropic models such as

Chen et al [26] or Guo et al [18] are adhoc methods and

lack a strong theoretical foundation in contrast to the model

proposed in this paper.

The proposed adaptive exponent operator can be combined

with other regularization functions which makes the proposed

approach a global image model for selective smoothing and

restoration. Well-posedness results for our adaptive smoothed

structure tensor (SST) driven variational - PDE model are stud-

ied. Mathematical analysis of the proposed method in variable

exponent spaces is described for our method. Experimental

results on different noisy images indicate the advantage of

the proposed adaptive variable exponent variational - PDE

model. Moreover, we extend it to handle multichannel and

multiplicative noise corrupted images. Further applications

in smoothing based thresholding segmentation on real and

biomedical images highlight the applicability of the method.

The proposed approach is proven to provide better edge pre-

serving smoothing with effective noise removal as illustrated

by variety of examples.

The rest of the paper is organized as follows. Section II

introduces the structure tensor driven variational scheme along

with detailed mathematical analysis of the variational - PDE

scheme. Section III illustrates the implementation details

along with extensive noisy image denoising, segmentation and

restoration results. Finally, Section IV concludes the paper

indicating future directions.

(a) Corner (b) Steps

(b) Circles (b) Line− Circle

Fig. 1. Structure tensor components characterize shape features in a given
image. In each sub-figure we show the entries of the tensor (6) as images to
the right of various synthetic (noise-free) images including Corner, Steps,
Circles, and Line− Circle.

II. MULTISCALE TIKHONOV-TOTAL VARIATION (MTTV)

BLENDED RESTORATION

A. Adaptive smoothed scale space structure tensor

The p(x) growth regularization functionals studied before

typically are gradient based, i.e., p(x) = p(|∇u(x)|) or

p(x) = p(|Gσ ⋆∇u(x)|). Thus, the edge maps given by

these can inherit the traditional problems associated with

such gradient based functionals such as blocky artifacts [27],

edges dislocation [22], corner smoothing [28], etc. To mitigate

such problems one can consider the smoothed structure tensor

(SST),

Kσ(u) = Gσ ⋆ (∇u∇uT ) =
(

Gσ ⋆ u
2
x Gσ ⋆ uxuy

Gσ ⋆ uyux Gσ ⋆ u
2
y

)

(6)

where Gσ(x) = (σ
√
2π)−1 exp (− |x|2 /2σ2) is the 2D Gaus-

sian kernel, ⋆ denotes the convolution operator and super-

script T is the transpose. The use of the structure tensor

in locally adaptive regression steering kernels for adaptive

image filtering is noted as being exceedingly robust to noise

and perturbations of the data [29]. In Figure 1 we show the

entries of the matrix as images for different images with

commonly occurring features. Let the eigenvalues of the SST

Kσ be (λ+, λ−), with eigenvectors (θ+, θ−). The eigenvalues

(λ+, λ−) which are the maximum and minimum respectively,

describe average contrast within a neighborhood of size O(σ)
along the eigen-directions. The eigenvectors (θ+, θ−) describe

the orientation which maximizes gray value fluctuations and

preferred local direction of smoothing respectively. The SST

characterizes different image regions based on the range of

eigenvalues to indicate flat, edge and corner regions. The SST

has been advocated as an unifying choice and represents truly

anisotropic features as evidenced in Figure 1. We refer to [30]

for more discussion on anisotropic diffusion using SST.

Remark 1. The SST characterizes orientation energy and is

also called the second moment matrix with the pre-smoothing

by Gσ in each entry to avoid the ill-posedness of computing

derivatives. Thus, this smoothing makes it insensitive to small

scale details less than O(σ). This σ parameter is referred to

as integration scale and it provides a window size over which

orientation is analyzed.

Remark 2. An additional Gaussian convolution of the ten-

sor entries with standard deviation ρ can also be incorpo-
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(a) σ = 1 (b) σ = 3 (c) σ = 5 (d) σ∗ (11)

Fig. 2. Effect of parameter σ on the eigenvalue λ+ of the SST matrix (6)
for noise-free (top row) and noisy std σn = 30 (bottom row) Cameraman
image. λ+ is shown here with single scale based SSTs (6) (a-c), and multiscale
version of the SST (11).

rated [31],

Jρ,σ(u) := Gσ ⋆ (∇uρ∇uTρ ),

where uρ := Gρ ⋆ u is the additional smoothing and ρ can be

thought of as noise scale.

B. Growth variational regularization using adaptive expo-

nents

Following the above discussion, we make use of a vari-

able exponent based minimization functional driven by the

smoothed structure tensor. The proposed non-standard growth

variational functional,

min
u
E(u) =

∫

Ω

|∇u|p(x,σ) dx+
µ

2

∫

Ω

(u− u0)
2 dx (7)

where µ ≥ 0 is the regularization parameter; this variational

PDE operator is local, non-linear, anisotropic and spatially

varying. The quadratic data fidelity term in Eqn. (7) is by the

additive Gaussian model1 and can also be modified accord-

ing to other noise models, see Section III-C2. The variable

exponent function is chosen as,

p(x, σ) = 1 + exp

(

− 2 λ+(x, σ) λ−(x, σ)

k + λ+(x, σ) + λ−(x, σ)

)

× exp

(

−2

(

λ+(x, σ)− λ−(x, σ)

k + λ+(x, σ) + λ−(x, σ)

)2)

(8)

where parameter k > 0 is added for numerical stability.

Here, we use the notation p(x, σ) to indicate that the

eigenvalues of the SST matrix (6) are computed for the

particular scale σ > 0. The first exponential term is

H(x, σ) =

(

λ+(x, σ) λ−(x, σ)

k + λ+(x, σ) + λ−(x, σ)

)

=
detKσ

traceKσ
(9)

which we note is the harmonic mean of the eigenvalues (and

is also referred to as the Förstner corner operator [31] or

Noble corner measure [32], [33] that is sometimes used as an

alternative to the closely related Harris corner measure [34])

and emphasizes responses to local edge and corner structures

1Additive noise, u0(x) = u(x) + n(x). Noise follows a Gaussian
distribution with mean zero and variance σ2

n, i.e., n(x) ∼ N (0, σ2
n) =

(σn

√
2π)−1e(−|x|2/2σ2

n
).

(a) Images (b) k = 0.5 (c) k = 0.05 (d) k = 0.005

Fig. 3. Effect of parameter k on the variable exponent p(x, σ∗) in Eqn. (12)
for noise-free (top row) and noisy σn = 30 (bottom row) Cameraman
image.

in the image that contain high spatial frequencies. The second

term

C(x, σ) =
(

λ+(x, σ)− λ−(x, σ)

k + λ+(x, σ) + λ−(x, σ)

)2

(10)

is known as coherence and we normalize the eigenvalues to

[0, 1] before computing the coherence based exponent (8). The

motivation for introducing the variable exponent p(x, σ) ∈
(1, 2] based on the structure tensor (8) is due to the fact that

the amount of regularization on the gradient norm can be

automatically adjusted according to different image features.

The following image features are adaptively handled by the

above SST driven variational scheme:

• If 0 ≪ λ− ≤ λ+, then a corner is present as both

eigenvalues are large and p(x, σ) → 1 which in turn

implies that corner points are not smoothed out with H
large and C ≈ 1.

• If 0 ≈ λ− ≪ λ+, then an edge is present and p(x, σ) →
1.135 = (1+1/e2), thus object boundaries are preserved

with H ≈ 0 and C ≈ 1.

• Finally, if both λ+, λ− ≈ 0, then it represents homo-

geneous or noisy regions and p(x) → 2 which implies

stronger smoothing and hence the noise is removed from

flat regions with H ≈ 0 and C ≈ 0.

C. Multiscale TTV (MTTV)

Figure 2 shows the effect of pre-smoothing parameter σ
used in the SST (6) on λ+ eigenvalue for the Cameraman
test image. As can be seen a right balance of σ is important,

as the edge map provided by the exponent (8) depends on the

eigenvalues computed from the SST (6). Larger σ values tend

to blur the edge map and smaller can miss certain edge pixels.

We instead use a multi scale strategy for selecting the right

pre-smoothing parameter σ which is described in detail next.

Multi-scale structure tensor responses are computed by

selecting a range of Gσ where σ is the standard deviation

of the Gaussian distribution.

σ∗ = argmax
σ

|λ+(x, σ)| (11)

We take the corresponding λ− value and use it in the exponent,

p(x, σ∗) = 1 + exp (−2H(x, σ∗)) exp (−2C(x, σ∗)) (12)

and utilize the minimization of the functional (7). Controlling

the range of σ in (11) is important for getting the desired
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response and it is dependent on the amount of noise. The

normalized derivatives as shown in Eqn. (6) assume local

maxima over scales [35], [36] which corresponds to locally

strongest normalized feature response. Taking the maximum

over a range of σ results in responses from multiple scales.

Natural images have a variety of edge and corner features of

different sizes and intuitively, using a range of scales will help

capture responses that a single scale cannot do so.

Figure 3 shows the test image Cameraman used in our

experiments and its corresponding edge map shown for the

exponent p(x, σ∗) defined in Eqn. (12) for different parameter

values k with multi scale SST based eigenvalues (11). For

medium noise level 10 ≤ σn ≤ 30, the threshold value

k = 0.05 works fine. As can be seen the flat regions are

indicated by the value greater than one and other edge and

ramp regions are correctly labeled as unity. Although the

adaptive SST driven variable exponent p(x, σ∗) in Eqn. (12)

is utilized in the simple energy minimization of the form in

Eqn. (7), it can be used in other variational and PDE models

as well2. Note that when the exponent attains the critical value

one (p(x) → 1, the TV case) the existence of a solution

to the corresponding minimization problem (7) is non-trivial,

see [37]. It can be seen that p(x) ∈ (1, 2] and thus the

smoothness is restricted from the TV case, p = 1, which can

lead to staircasing in the results. Detailed analysis (existence

theorems, decay of solutions) of the proposed MTTV method

using multiscale exponents in the variational PDE model for

blended restoration are given in the Appendix.

Remark 3. The best scale at each pixel (11) can also be de-

termined by taking the maximum response of each eigenvalue

separately (See Chap. 13 in [38]):

λmax+ = argmax
σ

|λ+(x, σ)| , λmax− = argmax
σ

|λ−(x, σ)| .

Surprisingly, we observed that using a mixture of scales for

the min and max eigenvalues, in Eqn. (8), instead of the same

scale as shown in Eqn. (11) leads to visually similar results

for edge preserving smoothing.

Remark 4. The best scale can be found by maximizing the

coherence function directly over scale space instead of for

the largest eigenvalue. But this selection of σ∗ may be more

sensitive to noise.

III. EXPERIMENTAL RESULTS

A. Discretization and implementation details

To implement the proposed SST feature driven varia-

tional exponent Multiscale Tikhonov Total Variation (MTTV)

method with p(x) in (12) computed from the initial noisy

image u0 and the dynamic D-MTTV method using p(x)
computed from the previous iteration image u(x, t−1) we use

the corresponding dynamical PDE (24-26). We use an explicit

finite difference approximation scheme (central differences for

the spatial variables, forward difference for the time variable)

to solve the above PDE. Following [39] we can prove that the

2In what follows we use the simplified notation p(x) for the exponent with
the understanding it represents the multi scale exponent (12).

(a) Noisy (b) TIREG (1), p = 2 iteration 10, 40 (c) TVREG (1), p = 1 iteration 100,

200

(d) p = 1.25 (e) p = 1.5 (f) p = 1.75 (g) p(x) (h) D-MTTV

Fig. 4. Comparison results for additive Gaussian noise corrupted synthetic
Shapes gray scale image with classical regularization methods and different
scalar p-exponent based regularizations. (a) Noisy image (b) TIREG (1) with
p = 2 (c) TVREG (1) with p = 1 (d)-(f) Different scalar p value based
results (g) Multiscale SST based exponent p(x) (12) from noisy image for
scales σ = {1, 2, 3, 4} (h) D-MTTV. Top row: images Bottom row: surface.

discrete scheme is unconditionally stable and thus the time

step size (taken here △t = 0.2) can be chosen big without

worrying about instabilities. Moreover, the discrete scheme

satisfies the maximum-minimum principle, which ensures that

artificial edge regions are not created during the restoration

process. For images with Gaussian white noise level σn = 10
to 30 we set k = 0.05 and the range3 of σ in (11) to be the

interval [1, 4].
The smoothing with Gaussian kernel in (6) is approximated

by a fast box filtering in all our experiments4. Our scheme

takes on average 0.2 seconds for a gray scale image of size

256 × 256 using a MATLAB implementation on a 2.3 GHz

Intel Core i7, 8GB 1600 MHz DDR3 Mac Laptop. All the

schemes listed below for comparison were solved using their

corresponding time dependent PDE formulation and explicit

finite difference schemes [39]. The termination condition5

for all the schemes is chosen automatically according to the

stopping criteria
∥

∥ut+1 − ut
∥

∥

2
≤ 10−4.

B. Gaussian noise removal

1) Comparative results: We first compare our scheme

with classical schemes such as the regularization methods of

Tikhonov (TIREG, p = 2 in (1)), total variation of Rudin et

al [6] (TVREG, p = 1 in (1)) as well as scalar p exponent

based regularization. Figure 4 shows a comparison of different

regularization results for the Brain gray scale image of size

3We take maximum on discrete scale levels {1, 2, 3, 4} to find σ∗, see
Eqn. (11).

4See Supplementary for the justification of using Box filter, see also Section
Chap. 14 in [38].

5Other options are also possible, for e.g., stopping when a maximum
PSNR/SSIM value is reached, but will require extensive tuning of related
parameters in each scheme and noise-free image for reference.
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256 × 256 which is corrupted by Gaussian noise of strength

20%. Figure 4(b) illustrates the over smoothing effect of

Tikhonov regularization, though effective in noise removal

excessive smoothing of edges renders the result at higher

iteration not useful. In contrast TV regularization obtains a

better restoration though small staircasing is visible in low

iterations and piecewise constant result is obtained for higher

iteration. Intermediate scalar p exponent based regularizations

are given in Figure 4(d-f). The proposed variable exponent

p(x) map (12) is shown in Figure 4(g) which captures multi

scale edges. Figure 4(h) show that proposed scheme D-MTTV

provides better restoration without artifacts and edges are well

preserved. To show edge preservation properties of different

schemes we show the corresponding surface maps where the

traditional regularization methods such as TIREG, TVREG

and scalar exponent p-regularization have various artifacts

whereas the proposed MTTV schemes performs better overall.

We next compare some contemporary denoising filters

widely used in the image processing area. Although we do

not provide details of the different methods compared due

to space limitations6, the connections between a variety of

image denoising methods in the context of nonparametric point

estimation and kernel functions is discussed in [29]. Milan-

far [29] observes that the most successful modern filtering

approaches are nonparametric, adaptive to signal content and

iterative (repeated application of a filter or sequence of filters

followed by data aggregation). We note that the proposed

MTTV method and its variants incorporate all three elements

for improved performance.

Figures 5 illustrate the results along with their level lines

given to highlight various problems with other schemes. Fig-

ure 5(a) is the original synthetic test image, and Figure 5(b)

is the noisy image. Figures 5(c)-(t) show the denoising results

with the bilateral filtering (BLF) [40], Gauss curvature-driven

diffusion (GCDD) [41], Perona–Malik (PM) [1], nonlinear

complex diffusion (NCD) [42], adaptive smoothing via con-

textual, local discontinuities (ASCL) [43], nonlocal means

(NLM) [44], linear regression Yaralovsky neighborhood filter

(LYNF) [45], robust anisotropic diffusion (RAD) [46], adap-

tive TV method (ATV) [47], fourth-order PDE (FPDE) [48],

TVREG method [6], combined model of TV filter and fourth-

order PDE (TV2&4) filter [49], edge-flat-grey (EFG) scale fil-

tering [50], Gauss-TV (GTV) filtering [51], nonlinear diffusion

filtering with an additive operator splitting (AOS) scheme [39],

and ATVDC model [26] (see Eqn. (13) below), respectively.

Figure 5(s-t) are our MTTV and DMTTV results which shows

that we obtain improved noise reduction, edge preservation and

fewer staircasing artifacts especially for smooth gradients in

the horizontal and vertical grayscale ramps in the upper left

and lower right of the image.

Finally, we compare various adaptive exponent based

variational-PDE schemes from the recent literature. Adaptive

variable exponent based scheme of Chen et al [14] (VAREG,

Φ is given in (4)), Li et al [17] (IGEDV, p(x) = 1 +
(1 + |Gσ ⋆∇u0(x)|)−1 in (7)). Further, we compare with

three recent works which consider ad-hoc formulations for

6See Supplementary materials.
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Fig. 5. Comparison results for additive Gaussian noise corrupted synthetic
Shapes gray scale image with different denoising methods. (a) Original
image (b) Noisy image obtained by adding Gaussian noise σn = 30 (c)
[40] (d) [41] (e) [1] (f) [42] (g) [43] (h) [44] (i) [45] (j) [46] (k) [47] (l) [48]
(m) [6] (n) [49] (o) [50] (p) [51] (q) [39], (r) [26] (s) MTTV (t) D-MTTV.
Better viewed online and zoomed in.

controlling the smoothness7:

• Adaptive total variation with difference curvature

(ATVDC) model of Chen et al [26]:

min
u
E(u) =

∫

Ω

|∇u|p(D)
dx (13)

where the exponent p(D) = 2 −
√
D with D the

normalized difference curvature, D = ||uηη| − |uξξ||,
with derivatives parallel and perpendicular to the gradient

direction.

7Note that we have excluded the fidelity term in ATVDC, LAADE, α(x)-
PM, D-α(x)-PM models and our scheme i.e., we take µ = 0 in Eqn. (7).
Adding the fidelity term in the Gaussian noise case decreased the final PSNR
values and adaptive fidelity can be used to improve the results, see [23].
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• A locally adaptive version of the classical Chambolle-

Lions model [15] (LAADE) recently studied by Zhou et

al [16]:

min
u
E(u) =

∫

|∇u|<β(x)

1

2β(x)
|∇u|2 dx

+

∫

|∇u|≥β(x)

|∇u| dx− β(x)

2
(14)

where the adaptive parameter β(x) is obtained by solving

a separate energy minimization problem

min
β
F (β) =

1

2

∫

Ω

|∇β|2 dx+
λ

2

∫

Ω

(

β − |∇u|
2

)2

dx.

• Adaptive Perona - Malik models of Guo et al [18]:

∂u

∂t
= div

( ∇u
1 + (∇u/K)α(x)

)

(15)

with

α(x) = 2−
(

2

1 + k |∇Gσ ⋆ u0|2

)

(16)

called α(x)-PM, and

α(x) = 2−
(

2

1 + k |∇Gσ ⋆ u|2

)

(17)

called the dynamic α(x)-PM (or D-α(x)-PM) methods

respectively.

We consider restoring the Cameraman gray scale image

of size 256 × 256 which is corrupted by Gaussian noise of

standard deviation σn = 30 for testing different variable

exponent models. Figure 6 shows noisy images and their SSIM

maps (in [0, 1]). Figure 7 show corresponding denoised results

and close-up shots which highlight some of the problematic

regions in other schemes. Overall, our MTTV and D-MTTV

methods outperform other related methods in terms of multi-

scale edge preservation and improved noise reduction without

introducing staircasing artifacts seen in other variable exponent

and adaptive models. For example, the mouth region of the

cameraman is much better preserved in MMTV and D-MMTV

compared to other methods as shown in the close-up images

in Figure 7.

2) Error metrics: To compare the restoration results quan-

titatively, we use four error measures including three standard

error metrics peak signal to noise ratio (PSNR), improvement

in signal to noise ratio (ISNR), Mean structural similarity

(MSSIM), which are widely used in image processing lit-

erature and a new metric (PSNRE) based on gradient edge

maps [18] which uses the PSNR of the edge maps (EM),

EM(u) = 2−(2/(1+k |∇Gσ ⋆ u|2) with k = 0.0025, σ = 0.5.

PSNRE(u) = 20 ∗ log10
(

maxEM(uO)−minEM(uO)

MSEE

)

dB

where MSEE = (mn)−1
∑∑

(EM(u) − EM(uO))
2. Higher

PSNRE indicates the scheme performs better edge preservation

by way of matching the derivatives.

Tables I-II show MSSIM, SNR, PSNR (dB) values for

contemporary denoising filters and adaptive, exponent based

(a) Original (b) Noisy image and SSIM map

(c) Cropped image, pixel map, SSIM map

Fig. 6. Noisy Cameraman gray scale image used in our experiments and
their SSIM maps. (a) Original image (b) Noisy image obtained by adding
Gaussian noise σn = 30 and its SSIM map (c) Zoomed region with detail
(left) image (middle) pixel map (right) SSIM map.

TABLE I
MSSIM/SNR(DB) VALUES CORRESPONDING TO FIGURE 5.

Fig. (b) (c) (d) (e) (f) (g) (h) (i) (j)

MSSIM
SNR

0.3378
7.64

0.6276
11.69

0.4040
8.42

0.7858
12.11

0.7213
7.27

0.7287
7.00

0.7575
13.49

0.6520
7.12

0.7189
11.24

(k) (l) (m) (n) (o) (p) (q) (r) (s) (t)

0.8244
11.93

0.6460
10.65

0.7494
9.31

0.7853
10.06

0.7237
7.78

0.6850
8.66

0.8364
11.69

0.7702
10.79

0.8012
10.47

0.8318
12.64

variational-PDE schemes corresponding to Figures 5-7 re-

spectively. Tables III-IV show PSNR/PSNRE (dB), ISNR

(dB)/MSSIM values for synthetic and other test images for

different schemes8. Overall our scheme performs better and

higher MSSIM values indicate we preserve salient structures

and PSNR improvements further support our claim of efficient

noise removal. Following [26], [41] we use the normalized step

difference energy (NSDE) at every iteration,

NSDE =
|u(·, t)− u(·, t− 1)|2

u(·, t)2 (18)

as measure of convergence and Figure 8 shows a comparison

with [26] for the restoration of noisy synthetic test image from

Figure 5(b) and Cameraman image from Figure 6(b). Our

scheme converges faster and few iterations are usually enough

to obtain good denoising results. Figure 9 shows PSNRE values

for different noise levels on standard test images and our D-

MTTV outperforms all the schemes overall.

C. Further applications

1) Thresholding based segmentation: Improved denoising

leads to improved threshold estimation for image binarization

and foreground-background region partitioning. Our nonlinear

D-MTTVsmoothing can be used as a pre-processing step

8For the restoration of Gaussian noise corrupted (σn = 30) for different
schemes are given here. We provide error metrics for the restoration results
of 17 standard test images from the USC-SIPI Miscellanies data-set in a
supplementary file. Further results for different noise levels, stopping criteria,
data-sets, error metrics, SSIM maps, and denoised images are available at the
project website: http://cell.missouri.edu/pages/mttv

http://cell.missouri.edu/pages/mttv
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TABLE III
PSNR/PSNRE (DB) COMPARISON OF VARIOUS SCHEMES FOR SYNTHETIC AND BIOMEDICAL TEST IMAGES. NOISY IMAGE IS OBTAINED BY ADDING

GAUSSIAN NOISE OF STRENGTH σn = 30 TO THE ORIGINAL IMAGE. EACH COLUMN INDICATES THE PSNR/PSNRE VALUES FOR DIFFERENT TEST

IMAGES. BEST RESULTS ARE IN BOLDFACE.

Images TIREG TVREG VAREG IGEDV ATVDC LAADE APM DPM D-MTTV
p = 2 p = 1 [14] [17] [26] [16] [18] [18]

Corner 25.61
10.60

34.56
24.92

34.62
21.66

36.81
24.31

37.18
25.75

34.77
21.37

36.07
22.34

33.83
19.15

44.78
34.61

Steps 27.33
15.59

35.85
25.28

37.76
26.92

36.01
26.81

38.04
27.98

38.23
26.99

36.66
24.60

36.21
24.69

43.44
32.12

Circles 14.33
6.13

30.51
20.87

31.13
20.77

30.18
20.39

31.02
20.99

31.40
20.66

29.95
20.13

29.89
20.35

36.35
28.49

Line-C. 21.31
11.96

34.98
23.20

35.36
21.51

34.01
22.82

35.46
22.97

36.12
20.98

33.51
21.41

33.29
21.51

43.13
30.27

Kiki 25.27
12.73

33.18
21.52

33.85
21.77

33.15
21.95

34.13
22.13

34.35
21.85

34.20
21.65

33.56
21.04

36.23
23.83

Shapes1 14.69
7.18

30.80
22.07

32.64
22.73

32.46
23.13

33.36
23.66

32.74
22.54

36.17
23.63

35.59
23.60

37.16
29.43

Shapes2 12.10
4.61

29.59
21.02

30.98
21.73

30.06
21.17

30.81
21.85

31.30
21.76

29.02
20.20

28.97
20.41

36.41
29.19

Bacteria1 17.27
4.20

25.49
10.00

25.16
9.26

25.88
10.60

25.70
9.99

24.48
8.74

23.64
8.47

24.02
8.69

28.55
12.50

Bacteria2 19.19
6.65

29.68
14.80

30.08
14.85

30.32
16.24

30.57
16.00

28.71
13.62

25.90
11.45

27.08
12.25

34.51
19.58

Mammo. 31.57
20.93

31.49
21.37

31.91
21.43

31.44
21.72

31.86
21.54

31.86
21.16

31.82
21.08

31.81
21.37

32.78
22.16

Brain 15.23
2.37

23.96
9.92

23.50
9.18

24.71
11.11

24.40
10.43

22.99
8.51

22.69
7.95

22.88
8.19

27.96
13.76

Nemacb3 24.37
9.24

26.91
12.16

26.48
11.03

27.15
12.96

26.99
12.06

25.78
10.39

25.77
10.40

26.14
10.61

28.64
14.78

TABLE IV
TABLE2 ISNR (DB)/MSSIM COMPARISON OF VARIOUS SCHEMES FOR SYNTHETIC AND BIOMEDICAL TEST IMAGES. NOISY IMAGE IS OBTAINED BY

ADDING GAUSSIAN NOISE OF STRENGTH σn = 30 TO THE ORIGINAL IMAGE. EACH COLUMN INDICATES THE ISNR/MSSIM VALUES FOR DIFFERENT

TEST IMAGES. BEST RESULTS ARE IN BOLDFACE.

Images TIREG TVREG VAREG IGEDV ATVDC LAADE APM DPM D-MTTV
p = 2 p = 1 [14] [17] [26] [16] [18] [18]

Corner 6.53
0.7244

15.48
0.9756

15.54
0.9546

17.72
0.9766

18.09
0.9781

15.69
0.9553

16.99
0.9777

14.74
0.9507

25.70
0.9960

Steps 8.77
0.8966

17.28
0.9327

19.20
0.9527

17.45
0.9211

19.48
0.9539

19.68
0.9584

18.09
0.9500

17.65
0.9416

24.89
0.9827

Circles −4.27
0.2975

11.90
0.8337

12.52
0.8587

11.57
0.8183

12.41
0.8563

12.79
0.8911

11.34
0.8470

11.28
0.8319

17.74
0.9410

Line-C. 2.75
0.7658

16.42
0.8412

16.80
0.8661

15.52
0.8032

16.90
0.8626

17.56
0.9322

14.95
0.8822

14.73
0.8418

24.57
0.9679

Kiki 6.56
0.8488

14.62
0.9177

15.29
0.9327

14.59
0.9044

15.57
0.9332

15.79
0.9415

15.64
0.9369

15.00
0.9251

17.66
0.9515

Shapes1 −3.87
0.4241

12.23
0.7783

14.08
0.8139

13.90
0.7634

14.80
0.8164

14.18
0.8747

17.61
0.8402

17.03
0.8001

18.60
0.9480

Shapes2 −6.45
0.3671

11.03
0.8823

12.43
0.9092

11.50
0.8717

12.26
0.9056

12.75
0.9378

10.46
0.8929

10.41
0.8862

17.85
0.9707

Bacteria1 −1.30
0.2925

6.93
0.6407

6.60
0.6129

7.32
0.6658

7.13
0.6421

5.92
0.5735

5.07
0.5665

5.46
0.5886

9.99
0.7454

Bacteria2 0.61
0.5367

11.10
0.8527

11.51
0.8611

11.75
0.8687

12.00
0.8724

10.14
0.8287

7.33
0.7811

8.51
0.8147

15.94
0.9133

Mammo. 13.00
0.8336

12.93
0.8273

13.34
0.8436

12.87
0.8200

13.30
0.8426

13.29
0.8378

13.26
0.8410

13.24
0.8400

14.22
0.8768

Brain −3.31
0.3156

5.42
0.7120

4.96
0.7138

6.17
0.7193

5.85
0.7435

4.45
0.7234

4.14
0.6788

4.33
0.6668

9.42
0.8857

Nemacb3 5.81
0.3739

8.35
0.4897

7.92
0.4564

8.59
0.5101

8.43
0.4864

7.22
0.4180

7.21
0.4228

7.57
0.4450

10.08
0.5642

TABLE II
MSSIM/PSNR(DB) VALUES CORRESPONDING TO FIGURE 7.

Fig. (a) (b) (c) (d) (e) (f) (g) (h)

MSSIM
PSNR

0.7741
25.49

0.7923
26.58

0.7954
26.30

0.7607
25.05

0.7674
25.59

0.7689
25.67

0.8359
28.06

0.8673
29.29

for thresholding based bi-modal segmentation and can be of

potential use in machine vision and biomedical imagery [52],

[53]. For comparison with ground-truth (GT) we use the Dice

coefficient between two binary images,

D(A,B) =
2 |A ∩B|
|A|+ |B| (19)

where |A| denotes the number of elements in the set. Dice

coefficient closer to one indicate that automatic segmentation

is closer to ground truth. Figure 10 shows segmentation results

for synthetic Spiral image used in [54] for different high

Gaussian noise levels. As can be seen from corresponding

histograms, we obtain good binary segmentations even at

higher noise levels. For example, at severe noise σn = 150
the bi-modality of the histogram is lost (Figure 10(c)) and

after smoothing with our D-MTTV method the histogram

(Figure 10(g)) cleary shows a separation of peaks and thresh-

olding works quite well. Additionally, comparing with the

segmentation model tested in [54] our scheme is accurate as

shown by Dice values. Figure 11 shows some sample images

used in the non-destructive evaluation (NDT) field and their

corresponding smoothing based thresholding results. As can

be seen, our D-MTTV smoothing based thresholding obtains

good segmentations compared to ground truth results.
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(a) VAREG (b) IGEDV (c) ATVDC (d) LAADE

(e) APM (f) DAPM (g) MTTV (h) D-MTTV

Fig. 7. Comparison results for additive Gaussian noise (σn = 30) corrupted
Cameraman gray scale image with adaptive methods. Top to bottom:
Image, SSIM map, cropped image, pixel map, SSIM map. Best results of:
(a) [14] (b) [17] (c) [26] (d) [16] (14) (e) [18] (15) with (16) (f) [18] (15)
with (17) (g) Our MTTV (7) with (12) computed from noisy image u0 (h)
Our dynamic MTTV (7) with (12) computed from updated image u(x, t).
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(a) Synthetic image
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(b) Cameraman image

Fig. 8. Iteration versus NSDE for the restoration of (a) noisy synthetic image
in Figure 5(b) and (b) noisy cameraman image in Figure 6(b) with different
schemes. Convergence curves for our D-MTTV, GCDD [41] and ATVDC [26]
using NSDE (18).
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(a) Shapes1
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(b) Cameraman
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(c) Barbara
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(d) Peppers
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(e) Lena
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(f) Boat

Fig. 9. Noise level σn = {10, 15, 20, 25} along the x-axis versus PSNRE

(dB) values for six different images to evaluate seven different denoising
algorithms VAREG, IGEDV, ATVDC, LAADE, APM, DAPM and D-MTTV
(colored bars).

(a) σn = 50 (b) σn = 100 (c) σn = 150 (d) GT image

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(e) Results for σn = 50, Dice 0.9939

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(f) Results for σn = 100, Dice 0.9937

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(g) Results for σn = 150, Dice 0.9934

Fig. 10. Synthetic Spiral image segmentation by D-MTTV smoothing based
thresholding method. (a-c) Different Gaussian noise corrupted images with
their histogram at top left corner (d) Ground truth binary image (e-f) show
p(x) map, restoration, histogram, and thresholded results for each case.
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Dice 0.9990

Dice 0.9375

Dice 0.9628

Dice 0.8789

(a) Input (b) p(x) (c) Restoration (d) Segmented (e) GT

Fig. 11. Non-destructive evaluation (NDT) image segmentation with our
proposed D-MTTV smoothing based segmentation. (a) Input image (b)
Computed p(x) exponent from the input image (c) Restored image using
our scheme (d) Simple thresholding on the resultant denoised image in (d)
results in good segmentation (e) Ground truth (GT) for comparison.

(a) Input (b) p(x) (c) Restoration (d) Segmentation

Fig. 12. Cryo-electron microscopy images denoised and segmented based
on our adaptive scheme. Top row: GroEL suspended in vitreous ice (Image
Courtesy of Dr. Neil R. Voss, The Scripps Research Institute, USA). Bottom
row: Tomato Bushy Stunt Virus (Image Courtesy of Dr. Ricardo Aramayo,
Université Pierre et Marie Curie, France). (a) Input image (b) Computed
p(x) from the input image. (c) Restored image using our scheme. (d)
Simple thresholding on the resultant denoised image in (b) results in reliable
segmentation of compact viruses.

The applicability of image denoising using our D-MTTV

scheme on biomedical cryo-electron micrograph of bacteria

and viruses is illustrated in Figure 12. After smoothing out se-

vere multiplicative noise degradation using our D-MTTV (20),

a simple thresholding of grayscale values suffices to show

a clear separation of foreground-background. Note that the

amount of noise level is unknown and the segmentation shows

separation of bacteria, and viruses against a non-homogeneous

background. Thus, the proposed D-MTTV scheme can be used

for effective denoising based segmentation processes.

2) Multiplicative noise removal: Next, we consider the

multiplicative noise model for images and the corresponding

MTTV scheme based restoration,

min
u
E(u) =

∫

Ω

|∇u|p(x) dx+
µ

2

∫

Ω

(

log u+
u0
u

)

dx, (20)

where the fidelity term is important and the fidelity parameter

µ determines the amount of noise removed. We compare with

a recent work of Liu et al [55] which uses a scalar p(x) ≡ p
based scheme (with µ values set approprietly). Figure 13

(a) Noisy u0 (b) Noise, σ2
n

=

1/9

(c) p = 1, µ = 40, SNR = 8.34

dB

(d) p = 1.2, µ = 75, SNR= 8.52

dB

(e) p = 1.5, µ = 225, SNR= 8.50

dB

(f) p = 1.8, µ = 605, SNR= 8.78

dB

(g) D-MTTV, µ = 120, SNR=

9.23 dB

(h) p = 1 (i) p = 1.2 (j) p = 1.5 (k) D-MTTV

Fig. 13. Multiplicative noise removal results for the Barbara grayscale
image based on highest possible SNR (dB). (a) Noisy image with multiplica-
tive Gamma noise with mean 1 and deviation 1/3. (b) Amount of noise level
(u0−uO), where uO is the original image. (c-f) Result of [55] with different
scalar exponent p values. (g) Result based on our scheme, see Eqn. (20). The
right side image in each sub-figure is residue (u0 − u) image indicating the
amount of noise and details removed by each scheme. (h)-(k) Comparison
with close-up showing noticeable improvements obtained with our D-MTTV
scheme.

shows restoration results of Barbara 256 × 256 image with

heavy multiplicative Gamma noise9 with mean 1 and variance

1/9. Note that noise level depends on the intensity, that is

the noise is larger in bright areas, see Figure 13 (b) which

shows the amount of noise added. Figure 13 (c)-(f) show

results of with increasing scalar p values in Eqn. (20) with

our adaptive p(x) based scheme. To compare the performance

of the schemes we use signal to noise ratio (SNR)10. As

can be seen using the corresponding residue (u0 − u) images

for different p values, the proposed approach using adaptive

exponent leads to improved SNR values compared to the

method studied in [55].

3) The multichannel case: Extending the variable exponent

model to the multichannel (color, multi spectral) images is

an interesting option and is currently our focus of attention.

We let u : Ω → R
N be the multichannel image u =

9Multiplicative noise model is given by u0(x) = n(x) × u(x). Noise
n(·) follows a Gamma law of mean 1 and variance σ2

n, i.e., n(x) ∼
(baΓ(a))−1xa−1e−x/b, ab = 1, ab2 = σ2

n. We used the following
MATLAB command to generate noise: n = gamrnd(1/σ2

n, σ2
n, 256,

256).
10This was the metric used in [55] to present their restoration results.

Note that PSNR values were similar to SNR values and our scheme out-
performed [55] in PSNR values as well.
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(a) Original image (b) M-MTTV (c) Residue (d) P(x)

(e) VTVREG [56] (f) p(x) (g) M-MTTV (h) P(x)

Fig. 14. Color image smoothing of noise free image 100007 (top row)
and restoration of a noisy image 101087 (bottom row) from BSDS500 with
different schemes (MSE values). (a) Original noise free image (b) Denoising
with M-MTTV (c) Residue ‖u0 − u‖2 scaled to [0, 1] for visualization (e)
VTVREG [56] (f) Channel-wise p(x) exponent (h) Multichannel SST (21)
based p(x) exponent. Better viewed online and zoomed in.

(u1, u2, . . . , uN ). Then the definition of the multichannel SST

is given by,

Kσ = Gσ ⋆
N
∑

i=1

∇ui(∇ui)T (21)

where as before we compute the variable exponent p(x) (see

Eqn. (12)) with the largest and smallest eigenvalues of Kσ as

Λ+, Λ−. Then the following regularization is used

min
u
E(u) =

N
∑

i=1

∫

Ω

∣

∣∇ui
∣

∣

p(x)
dx+

µ

2

∫

Ω

(ui − ui0)
2 dx, (22)

where we assume the noisy image u0 = (u10, u
1
0, . . . , u

N
0 )

is obtained by adding adding Gaussian noise of standard

deviation σn = 30 to each channel. Figure 14(a) shows

smoothing a noise free RGB color image (from the Berkeley

Segmentation Data Set (BSDS500), image id 101087) with

our multichannel MTTV (M-MTTV) scheme. The result in

Figure 14(b) shows strong piecewise smoothing occurring with

edge preservation, and Figure 14(c) shows the amount of

texture removed by the scheme. Figure 14(d) shows the vari-

able exponent map. Figure 14(bottom row) shows an example

comparison in color image restoration for a noisy (image id

101087) of size 201 × 201 × 3. We compare with Bresson

and Chan [56] vectorial total variation (VTVREG), and our

MTTV applied with channel-wise p(x) (C-MTTV) estimation,

and multichannel SST (21) exponent P(x) based scheme (M-

MTTV). Note that the regularization couples different color

gradients using the multichannel SST (21) based variable

exponent P(x) (Figure 14(h)) whereas the channel-wise uses

the exponent function (8) in each channel separately. As can

be seen, M-MTTV model provides better restoration result

without staircasing artifacts when compared to VTVREG.

Table V shows PSNR(dB) and MSSIM values obtained with

our schemes against VTVREG method. We obtain better

structural similarity scores indicating better edge preservation.

Other approaches can also be incorporated and the implicit

coupling of regularization in each channel can further improve

denoising results [57]–[59].

TABLE V
PSNR/MSSIM COMPARISON OF OUR SCHEMES CHANNEL-WISE MTTV
(C-MTTV), MULTICHANNEL MTTV (M-MTTV) WITH VTVREG [56]

FOR RGB IMAGES. NOISY IMAGES WERE OBTAINED BY ADDING

GAUSSIAN NOISE OF STRENGTH σn = 30 TO ORIGINAL IMAGES. BEST

RESULTS ARE IN BOLDFACE.

Images Noisy VTVREG [56] C-MTTV M-MTTV

Baboon 18.59
0.4339

19.09
0.5052

19.10
0.5372

19.33
0.6383

Barbara 18.59
0.7416

17.04
0.7400

20.39
0.7884

24.27
0.8360

Boat 18.57
0.5338

16.16
0.6584

19.01
0.6971

23.69
0.7530

House 18.57
0.3493

14.79
0.7256

17.92
0.7718

24.72
0.8141

Lena 18.59
0.6884

15.36
0.7744

17.84
0.8102

22.41
0.8681

Peppers 18.59
0.6884

18.28
0.8574

21.97
0.8926

28.83
0.9303

IV. CONCLUSIONS

In this paper we developed a novel adaptive multiscale

PDE regularization-based denoising method using smoothed

structure tensor variable exponents that preservers coherent

image structures. The proposed non-linear anisotropic operator

incorporates the local structure tensor eigenvalues for coherent

feature adaptation. Wellposedness of the proposed model is

studied using the theory of variable exponent spaces and we

obtain existence and long time behavior of solutions to the

proposed model. The MMTV method incorporates elements

of recently successful filtering approaches including nonpara-

metric operators, adaptation to signal content and repeated

filtering with aggregation. Extensive experiments on noisy syn-

thetic, machine vision and biomedical imagery demonstrated

the effectiveness of the proposed MMTV method and its

variants compared to other denoising methods especially those

related to variational-PDEs. The proposed adaptive multiscale

exponent provides robust fine structure maps that enables

smoothing without generating staircasing artifacts typically

associated with point-wise estimators. We show analytically

that the proposed method satisfies the maximum-minimum

principle ensuring that artifact edge structures are not created

in the denoising process. Extensions to the MMTV method

readily handle multiplicative noise, RGB or multispectral

images and lead to improved binary segmentation results.

Extending the multiscale exponent to handle other types of

noise and image decompositions defines our future work in

this area.

APPENDIX

ANALYSIS OF THE VARIATIONAL PDE MODEL

A. Existence of minimizer

We recall the basic notions of variable exponent spaces,

for further details we refer to the recent monograph [24]. Let

M(Ω) be the set of measurable functions in Ω. Though in

imaging problems Ω ⊂ R
2 is a rectangle, we can study general

open domain Ω ⊂ R
N for any N > 1 as well. The Orlicz-

Lebesgue spaces Lp(x)(Ω) are a generalization of the classical

Lp spaces to the variable exponent case p(x). Let

p− = ess inf
Ω
p(x), and p+ = ess sup

Ω
p(x).

The exponent sets are

P(Ω) = {p ∈ M(Ω) : 1 ≤ p− ≤ p+ <∞}
Po(Ω) = {p ∈ M(Ω) : 1 < p− ≤ p+ <∞} .
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We next recall the variable exponent spaces.

Let p ∈ M(Ω), ρ(u) =
∫

Ω
|u(x)|p(x) dx. Then

Lp(x)(Ω) := {u ∈ M(Ω)|∃λ > 0 : ρ(u/λ) <∞}.

The Luxemburg-Nakano norm on Lp(x) is ‖u‖p(·) := inf{λ >
0 : ρ(u/λ) ≤ 1}. The Orlicz-Sobolev space is defined as11

Wm,p(x)(Ω) := {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), ∀ |α| ≤ m}

with ‖u‖m,p(·) :=
∑

|α|≤m ‖Dαu‖p(·). We first recall a

general existence result for a variable exponent p(x) that

is bounded away from 1 in the variable Sobolev space

W 1,p(x)(Ω).

Lemma 1. The regularization functional E(u) given in (7) is

lower semi-continuous in W 1,p(x)(Ω), i.e., for every sequence

uj → u in W 1,p(x)(Ω) we have,
∫

Ω

|Du|p(x) dx ≤ lim inf
j→∞

∫

Ω

|Duj |p(x) dx.

Proof: This follows from the facts that the space

W 1,p(x)(Ω) is a Banach space with the norm ‖u‖1,p(·) :=
‖u‖p(·)+‖Du‖p(·), and the semi-norm part of it, |Du|1,p(x) =
‖Du‖p(·) dx is sequentially lower semi-continuous, and from

the following inequality
∫

Ω

|Du|p(x) dx ≤ max{‖Du‖p+

p(·) , ‖Du‖
p−

p(·)}.

We recall the following fact from functional analysis (see

[60, Sec. 25]).

Lemma 2. Let B be a reflexive Banach space. If F : B →
[0,∞) is convex, lower semicontinuous, and coercive, then

there is an element in B which minimizes F .

Theorem 1. Let p ∈ Po(Ω). Then

F (u) =

∫

Ω

|Du|p(x) dx+
µ

2

∫

Ω

|u− u0|2 dx

has a unique minimizer in W 1,p(x)(Ω).

Proof: From Lemma 1, the first term is lower semicon-

tinuous in W 1,p(x)(Ω). The second term is strictly convex and

continuous in u. Since p− > 1 the function F is coercive as

|Du|p(x) satisfies |Du|p(x) ≥ |Du|1+δ
and the space W 1,p(x)

is reflexive. Thus from Lemma 2 we have a minimizer in

Wm,p(x)(Ω). Since ξ → |ξ|p(x) is strictly convex if p− > 1,

the minimizer is unique.

Our proposed variable exponent function (12) satisfies

p(x) ∈ [1, 1.5), hence Theorem 1 is not applicable. Therefore,

it requires a careful treatment as in [37] and it represents

the border case of total variation [6] regularization. This also

means we leave the realm of reflexive Sobolev spaces and need

a new space with the properties of the traditional functions of

bounded variation space BV (Ω). Before extending the results

to the variable bounded variation space BV p(x)(Ω) we require

the following notations and preliminary results.

11We revert to the notation of Du for the generalized gradient function.
Note that if u ∈ W 1,2(Ω) then Du = ∇u.

Recall [61] the definition of BV (Ω) and its norm defined

in terms of test functions: u ∈ BV (Ω) if u ∈ L1(Ω), and its

total variation

TV (u) := sup

{
∫

Ω

u divφ : φ ∈ C1
0 (Ω), ‖φ‖L∞ ≤ 1

}

is finite; the norm in BV (Ω) is given by

‖u‖BV := ‖u‖1 + TV (u).

The distributional gradient Du is in fact a vector-valued Radon

measure, and its “modulus” can also be interpreted as a Radon

measure, which is called the total variation measure, and is

denoted by ‖Du‖. Note that

‖Du‖(Ω) = TV (u).

For more details and results about the bounded variation space

we refer to [61]–[63].

Let p(x) ∈ P(Ω) be a lower semicontinuous function.

Similarly to W 1,p(x)(Ω) spaces, we can define BV p(x)(Ω).
Let Y (Ω) := {x ∈ Ω : p(x) = 1}, that is the critical set where

the exponent takes the value 1.

We now put BV p(x)(Ω) := BV (Ω) ∩W 1,p(x)(Ω \ Y (Ω)),
and define the modular

Γ(u) := TV (u) +

∫

Ω\Y (Ω)

|Du|p(x) dx.

Then the norm in BV p(x) is

‖u‖BV p(x)(Ω) := ‖u‖p(.) + inf {λ > 0 : Γ(u/λ) ≤ 1} .
One can get a similar existence result like that of Theorem 1

in the BV p(x) space.

Theorem 2 (see [37]). Assume that Ω has Lipschitz boundary,

and p(x) ∈ P(Ω) is lower semicontinuous. Then the functional

F̃ (u) =

∫

Ω\Y (Ω)

|Du|p(x) dx+‖Du‖(Y (Ω))+
µ

2

∫

Ω

|u− u0|2 dx

has a minimizer in BV p(x)(Ω).

B. Wellposedness of the PDE flow

To derive the PDE flow associated with the energy min-

imization in Eqn. (7) we need to use the weight 1
p(x) , i.e.,

∫

Ω
|∇u|p(x)

p(x) dx, the derivation is straightforward using the

Euler-Lagrange formulation [4] and is omitted here for brevity;

µ(u(x, t)− u0(x)) = △p(x)

:= div
(

|∇u(x, t)|p(x)−2 ∇u(x, t)
)

, x ∈ Ω. (23)

This is the p(x)-Laplacian which generalizes the traditional

p-Laplacian and has been found useful in various scenarios,

see the recent monograph [24]. We next turn our attention to

the corresponding dynamic time-dependent version of the PDE

given in Eqn. (23),

∂u(x, t)

∂t
= div

(

|∇u(x, t)|p(x)−2 ∇u(x, t)
)

− µ(u(x, t)− u0(x)) in Ω× (0,∞), (24)

u(x, t) = 0 on ∂Ω× (0,∞), (25)

u(x, 0) = u0(x) in Ω. (26)
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This is an inhomogeneuous p(x)-Laplacian PDE, and the

existence result may be proven via a subdifferential approach,

cf. [64]. The above time dependent PDE flow paves the way

to relate to the concept of scale-space {u(x, t)}∞t=0 and is

related to the classical Perona-Malik [1] anisotropic diffusion

paradigm [65].

To prove the existence result, we define the following

subspaces of L2:

L2,p(x)(Ω) =

{

u ∈ L2(Ω) :
∂u

∂xi
∈ Lp(x)(Ω), i = 1, . . . , N

}

with the norm ‖u‖L2,p(x)(Ω) =
(

‖u‖22 + ‖∇u‖2p(x)
)1/2

, and

L
2,p(x)
0 (Ω) = L2,p(x)(Ω) ∩W 1,p−

0 (Ω).

Now the main existence result can be stated as follows.

Theorem 3. Let p ∈ Po(Ω). Then the following hold:

(i) For u0 ∈ L2(Ω), the problem (24-26) admits a unique

solution

u ∈W 1,2
loc (0,∞, L2(Ω)) ∩ C((0,∞), L

2,p(x)
0 (Ω)).

(ii) For u0 ∈ L
2,p(x)
0 (Ω) and T > 0,

u ∈W 1,2(Ω)(0, T ;L2(Ω)) ∩ C([0, T ];L2,p(x)
0 (Ω)).

(iii) The solution u continuously depends on the original

image u0:

‖u1(t)− u2(t)‖2 ≤ (t+ 1) ‖u0,1 − u0,2‖2 , ∀t ≥ 0,

where u1 and u2 are the two solutions of (24-26) with

u0 = u0,1 and u0,2, resp.

To prove the above theorem, we note that the functional

ϕp(x) : L
2(Ω) → [0,∞] defined by

ϕp(x)(ψ) =
{

∫

Ω
µ
2ψ

2(x) + 1
p(x) |∇ψ(x)|

p(x)
dx if ψ ∈ L

2,p(x)
0 (Ω),

∞ otherwise,

(27)

is proper, lower semicontinuous and convex functional on

L2(Ω) (cf. [64]). Then, the subdifferential12 satisfies

∂ϕp(x)(ψ) = µψ −△p(x)ψ.

Therefore, the parabolic problem (24-26) is equivalent to an

abstract Cauchy problem,

du

dt
(t) + ∂ϕp(x)(u(t)) = µu0 in L2(Ω), u(0) = u0.

Then the proof follows from the results of [66] and [64].

Remark 5. The critical case p ∈ P(Ω) \ Po(Ω) seems to be

much more involved, and existence of any kind of solution to

(24-26) is an open problem in this case.

12The subdifferential of the functional
ϕp(x) is defined as usual: ∂ϕp(x)(u) =
{

ρ ∈ L2 : ϕp(x)(v)− ϕp(x)(u) ≥
∫

Ω(ρ, v − u), ∀v ∈ L
2,p(x)
0

}

.

Assume in addition that p satisfies the log-Hölder condition.

Then one can obtain decay of solutions if we have a strong

growth in our exponent:

Theorem 4 (see [64]). Let p− > 2, u0 ∈ L
2,p(x)
0 (Ω) \ {0},

and u = u(x, t) be the solution of (24-26) with µ = 0. Then

a constant C > 0 such that,

(t+ 1)−1/(p−−2)

C
≤ ‖u(t)‖2 ≤ C (t+1)−1/(p+−2), ∀t ≥ 0.

One can also obtain extinction of solution if we restrict our

exponent to less than a quadratic:

Theorem 5 (see [64]). Let 2N
N+2 ≤ p− ≤ p+ < 2, u0 ∈

L
2,p(x)
0 (Ω) \ {0}, and u = u(x, t) be the solution of (24-26)

with µ = 0. Then there exists a finite time t∗ > 0 and a

constant C > 0 such that

(t∗ − t)
1/(2−p−)
+

C
≤ ‖u(t)‖2 ≤ C (t∗ − t)

1/(2−p+)
+ , ∀t ≥ 0.

Thus, the solution u = u(x, t) vanishes at time t∗ (extinction

time of u).
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