
Multiscale Visualization Using Data Cubes

Chris Stolte, Diane Tang, Pat Hanrahan

Stanford University

Abstract

Most analysts start with an overview of the data before gradually
refining their view to be more focused and detailed. Multiscale pan-
and-zoom systems are effective because they directly support this
approach. However, generating abstract overviews of large data
sets is difficult, and most systems take advantage of only one type
of abstraction: visual abstraction. Furthermore, these existing sys-
tems limit the analyst to a single zooming path on their data and
thus a single set of abstract views.

This paper presents: (1) a formalism for describing multiscale
visualizations of data cubes with both data and visual abstraction,
and (2) a method for independently zooming along one or more di-
mensions by traversing a zoom graph with nodes at different levels
of detail. As an example of how to design multiscale visualizations
using our system, we describe four design patterns using our for-
malism. These design patterns show the effectiveness of multiscale
visualization of general relational databases.

1 Introduction

When exploring large datasets, analysts often work through a
process of “Overview first, zoom and filter, then details-on-
demand” [14]. Multiscale visualizations are an effective technique
for facilitating this process because they change the visual represen-
tation to present the data at different levels of abstraction as the user
pans and zooms. At a high level, because a large amount of data
needs to be displayed, it is highly abstracted. As the user zooms,
the data density decreases and thus more detailed representations of
individual data points can be shown.

The two types of abstraction performed in these multiscale visu-
alizations are data abstraction and visual abstraction. Data abstrac-
tions (e.g., aggregation or selection) change the underlying data be-
fore mapping them to visual representations. Visual abstractions
change the visual representation of data points (but not the underly-
ing data itself) to provide more information as the user zooms; e.g.,
an image may morph from a simplified thumbnail to a full-scale
editable version. Existing systems, such as DataSplash [21] and
Pad++ [2], focus primarily on visual abstractions with support for
data abstractions limited to simple filtering and the ability to add or
switch data sources. In addition, these systems primarily only allow
for a single zooming path.

Our goal is to develop a system for describing and developing
multiscale visualizations that support multiple zoom paths and both
data and visual abstraction. We want to support multiple zoom
paths because many large data sets today are organized using multi-
ple hierarchies that define meaningful levels of aggregation (i.e., de-
tail). Data cubes are a commonly accepted method for abstracting
and summarizing relational databases. By representing the database
with a data cube, we can switch between different levels of detail
using a general mechanism applicable to many different data sets.
Combining this general mechanism for performing meaningful data
abstraction with traditional visual abstraction techniques enhances
our ability to generate abstract views of large data sets, a difficult
and challenging problem.

Previously, we presented Polaris, a tool for visually exploring re-
lational databases [15] and later extended for hierarchically struc-
tured data cubes [16]. In this paper, we describe a multiscale vi-
sualization system using data cubes and Polaris. Specifically, we
present:

• Zoom graphs: We present zoom graphs as a formal nota-
tion for describing multiscale visualizations of hierarchically
structured data that supports multiple zooming paths and both
data and visual abstraction. We also present a system based
upon this formalism in which we can easily implement these
visualizations.

• Design patterns: While these graphs and our system provide
a general method for describing and developing multiscale vi-
sualizations of hierarchically structured data, designing such
visualizations remains a hard and challenging problem. We
use our formalism to enumerate four design patterns in the
style of Gamma et al. [10] that succinctly capture the critical
structure of commonly used multiscale visualizations. In ad-
dition, these patterns illustrate the use of small multiples and
tables in multiscale visualizations.

Note that we are using data cubes not only because they pro-
vide a powerful mechanism for data abstraction, but also because
many large and important data sets are already stored in relational
databases and data cubes.

The layout of the rest of this paper is as follows. In Section 2,
we survey existing approaches to multiscale visualization. Next,
we describe in Section 3 how multiscale visualizations can be ex-
pressed as graphs using our Polaris formalism and data cubes and
then implemented in Rivet [5]. We then present our design patterns
in Section 4 before concluding with some discussion and directions
for future work in Section 5.

2 Related Work

In this section, we review several existing multiscale visualization
systems, focusing on how the systems perform both data and visual
abstraction. Data abstraction refers to transformations applied to
the data before being visually mapped, including aggregation, fil-
tering, sampling, or statistical summarization. Visual abstraction
refers to abstractions that change the visual representation (e.g., a
circle at an overview level versus a text string at a detailed level),
change how data is encoded in the retinal attributes of the glyphs
(e.g., encoding data in the size and color of a glyph only in detailed
views), or apply transformations to the set of visual representations
(e.g., combining glyphs that overlap).

Multiscale Visualization in Cartography
Cartography is the source of many early examples of multiscale

visualizations. Cartographic generalization [19] refers to the pro-
cess of generating small scale maps by simplifying and abstracting
large scale source material and consists of two steps: (1) employing
selection to decide which features should be shown and (2) simpli-
fying the visual representations of the selected features. A map se-
ries developed using this process and depicting a single geographic
region at varying scales is a multiscale visualization. While the ini-
tial selection process is a specialized form of data abstraction, the
subsequent manipulations are all visual abstractions.

Multiscale Information Visualization
Several information visualization systems provide some form

of zooming or multiscale interface. Given our goal in expressing
general multiscale visualizations, we only discuss general systems;
domain-specific tools may apply both data and visual abstraction
but their abstractions are not generally applicable.



The Pad series of interfaces (Pad++ [2] and Jazz [3]) are among
the earliest examples of multiscale visualization in information vi-
sualization. These systems were developed not as data exploration
tools but as alternate desktops, although they have been applied to
other domains such as web histories [12]. Given this goal, their
focus has been on interaction and applying visual abstractions for
“semantic zooming” rather than easily applying data abstractions.

DataSplash [21] is the first multiscale visualization system fo-
cused on data exploration. It provides the layer manager, a novel
interface mechanism for easily constructing multiscale visualiza-
tions of graphs. Each individual graph can have multiple layers,
with each layer activated at different viewing elevations. As the
user zooms, the set of active layers change. Layers can be used
to change the visual representation of relations and to add or re-
move data sources. Although DataSplash provides mechanisms for
zooming on a single graph, it does not provide mechanisms for
zooming on tables or small multiples of graphs, nor does it provide
for multiple zooming paths on a single graph.

XmdvTool [13] provides multiscale views using hierarchical
clusters that structure the underlying data into different levels of ab-
straction; widgets such as as structured brushes [9] provide a mech-
anism for zooming. XmdvTool is limited to this single method for
providing data abstraction and does not provide visual abstraction
capabilities.

Eick and Karr also present a survey of common visual metaphors
and associated interaction techniques and motivate the need for
both data and visual abstractions from perceptual issues [6]. These
issues drive the ADVIZOR system, which uses multiple visual
metaphors, each with a single zoom path based on with the visual
and data abstractions given in their survey. They do not provide a
system for exploring other types of zooms nor a formal notation for
describing multiscale visualizations.

3 Multiscale Visualizations

In this section, we present our system for describing multiscale vi-
sualizations that support multiple zoom paths and both data and vi-
sual abstraction. Rather than considering multiscale visualizations
as simply a series of linear zooms, we think of multiscale visual-
izations as a graph, where each node corresponds to a particular set
of data and visual abstractions and each edge is a zoom. Zooming
in a multiscale visualization is equivalent to traversing this graph.
Each node in this graph can be described using a Polaris specifica-
tion that identifies the visual representation and abstraction and can
be mapped to a unique projection of the data cube, which is a data
abstraction of the underlying relational data.

In the remainder of this section, we first review the two tech-
nologies we use to perform data abstraction (data cubes) and visual
abstraction (Polaris). When reviewing Polaris, we also introduce
a graphical notation for describing the key elements of a specifi-
cation. Finally, we present how we can create a zoom graph of
Polaris specifications to describe a multiscale visualization of a hi-
erarchical data set, as well as how we can easily implement such
visualizations within our system.

3.1 Data Abstraction: Data Cubes

Not only are data cubes widely used, but they also provide a power-
ful mechanism for performing data abstraction that we can leverage.
Specifically, data cubes quickly provide summaries of the underly-
ing data at different meaningful levels of detail, rather than arbitrary
summarizations such as aggregating every two records. This goal
is achieved by building a lattice of data cubes to represent the data
at different levels of detail according to a semantic hierarchy and
providing mechanisms for then summarizing each cube. We first
describe an individual data cube before describing the lattice.

Data cubes categorize information into two classes: dimensions
and measures, corresponding to the independent and dependent

variables, respectively. For example, U.S. states are a dimension,
while the population of each state is a measure. Within a cube, the
data is abstractly structured as an n-dimensional data cube. Each
axis corresponds to a dimension in the data cube and consists of
every possible value for that dimension. For example, an axis cor-
responding to states would have fifty values, one for each state. Ev-
ery “cell” in the data cube corresponds to a unique combination of
values for the dimensions. For example, if we had two dimensions,
State and Product, then there would be a cell for every unique com-
bination of the two (e.g., one cell each for (California, Oranges),
(California, Coffee), (Florida, Oranges), (Florida, Coffee), etc.).
Each cell contains one value per measure of the data cube; e.g.,
if we wanted to know about product production and consumption,
then each cell would contain two values, one for the number of
products of each type consumed in that state, and one for the num-
ber of products of each type produced in that state.

Thus far, we have considered dimensions to be flat structures.
However, most dimensions have a hierarchical structure. For exam-
ple, rather than having a single dimension “state”, we may have a
hierarchical dimension “location” that has levels for country, state,
and county. If each dimension has a hierarchical structure, then the
data must be structured as a lattice of data cubes, where each cube is
defined by the combination of a level of detail for each dimension.

Data abstraction in this model means choosing a meaningful
summary of the data. Choosing a data abstraction corresponds
to choosing a particular projection in this lattice of data cubes:
(a) which dimensions we currently consider relevant and (b) the
appropriate level of detail for each relevant dimensional hierar-
chy. Specifying the level of detail identifies the cube in the lattice,
while the relevant dimensions identifies which projection (from n-
dimensions down to the number of relevant dimensions) of that
cube is needed. Figure 1 shows a simple lattice and projection.

While identifying a specific projection in the data cube corre-
sponds to specifying the desired data abstraction of the raw data, in
multiscale visualizations we need to specify both the data and vi-
sual abstractions; both sets of information are contained in a Polaris
specification.

3.2 Visual Abstraction: Polaris

Previously, we presented the Polaris database exploration tool [15],
consisting of three parts: (1) a formal specification language for de-
scribing table-based visualizations, (2) a user interface for automat-
ically generating instances of these specifications, and (3) a method
for automatically generating the necessary database queries to re-
trieve the data to be visualized by a specification. We later extended
all three parts to support hierarchically structured data cubes [16].

In this paper, we only use the specification language from the
previous papers. We use this language to describe a node within
the zoom graph identifying a multiscale visualization. In this sec-
tion, we briefly review the components of a Polaris specification
and introduce a graphical notation that succinctly captures the data
and visual abstractions in table-based visualizations of hierarchi-
cally structured data.

A Polaris specification uses a formal table algebra to specify the
table configuration of the visualization. Each expression in the table
algebra defines an axis of the table: how the table is divided into
rows or columns. The main components of an expression are the
operands and the operators. Each operand is the name of a field
and can be one of two types: a dimension is an ordinal operand (O)
while a measure is a quantitative operand (Q). (Note that nominal
fields become ordinal fields since the values must be drawn in some
order.) The type of the operand determines how the field is encoded
into the structure of the table: ordinal fields partition the table into
rows and columns while quantitative fields are spatially encoded as
axes within the table panes.

A valid expression in the algebra is an ordered sequence of one



Figure 1: (a) The lattice of data cubes for a data base with three dimensions: Products (with levels Type and Product), Time (with levels
Quarter and Month), and Location (with levels Market and State). (b) Several projections of the least detailed data cube in the lattice.

or more operands with an operator between each pair of adjacent
operands. The four types of operators in this algebra, in order of
precedence, are dot (.), cross (x), nest (/), and concatenate (+).
Parentheses can be used to alter the precedence of the operators.
Each operand can be interpreted as an ordered set and the precise
semantics of each operator are defined in terms of their effects on
these operand sets. The dot operator specifies the desired level of
detail within a dimensional hierarchy. The cross and nest opera-
tor behave like a cross-product of two vectors (nest only produces
pairs for which data exist), and the concatenate operator yields the
union of two sets. The full details of these operators are given in
our previous papers [15][16].

The table algebra is only one of five portions comprising a com-
plete Polaris specification. We now briefly describe each part and its
corresponding portion in a graphical notation (inspired by Bertin’s
notation for describing charts and diagrams [4]) for succinctly com-
municating a Polaris specification.

• The table structure: Two expressions in the table algebra,
one each for the x- and y-axis, define (1) the rows and columns
of the table and (2) how data is spatially encoded within each
pane. Changing the expressions changes the data abstraction;
for example, using the dot operator on an operand identifies a
different data cube.

• Internal level of detail: This portion of the specification iden-
tifies any dimensions that are needed but not already encoded
in the table structure. Together, the complete list of dimen-
sions uniquely identify the desired projection of the data cube.
Changing the internal level of detail changes the data abstrac-
tion.

• The mapping of data sources to layers: Multiple data
sources may be combined within a single Polaris visualiza-

tion, with each source mapped to a separate layer. All layers
share the same table structure and are composited together
back-to-front to generate the final visualization.

• The visual representation for tuples: Both the mark type
and the retinal attributes of each mark can be specified. While
the current graphical notation encodes only color and size, it
is easily extended to include other retinal attributes such as
shape, orientation, or texture.

We will use this graphical notation throughout the rest of the paper
to describe our design patterns for multiscale visualizations. Note
that this notation can be used describe both a class of visualizations
(a visual template) or a specific visualization (visual instance).

3.3 Zoom Graphs

We describe a multiscale visualization as a graph because we want
to allow for multiple zoom paths from any given point; this ability
is necessary for exploring data cubes that commonly have multiple
independent hierarchical dimensions. An individual zoom can ei-
ther change the data abstraction, the visual abstraction, or both. The
zooming actions can be tied to an axis, for example allowing zooms



Figure 2: The Zoom Graph for the Chart Stacks Pattern as well as screenshots of a visualization of a 12-week trace of an in-building mobile
network developed using that pattern. The top visualization shows a line chart of average bytes/hour for each day for each research area. The
line charts are layered above a high-low bar encoding the maximum and minimum bytes/hour. In the next visualization, the user has zoomed
in on the y-axis, breaking apart the charts to create a chart for each advisor within the research groups. In the final visualization, the user has
zoomed on the x-axis, increasing the granularity of the line chart to hourly values from daily values.

along the x- and y-axis independently, or they may be triggered by
interacting with an external widget.

The previous sections describe how to express a node in the
graph using a Polaris specification and how a specification corre-
sponds to a particular projection of a data cube. Using the graphi-
cal notation we introduced, we can describe and design these zoom
graphs. In this section, we explain how we implement the multi-
scale visualization corresponding to a zoom graph within Rivet [5],
a visualization environment designed for rapidly prototyping inter-
active visualizations. The main components of any implementation
of a multiscale visualization are the nodes, the edges, and how user
interaction can trigger a transition (i.e., an edge traversal).

Nodes: Each node in a zoom graph is abstractly described using
a Polaris specification. In our implementation, we can concretely
describe a Polaris specification using XML. Rivet contains an inter-
preter that parses the XML to create a visualization, which includes
automatically generating both the necessary queries (i.e., SQL or
MDX queries) and drawing operations.

Edges and Interaction: Visualizations are created in Rivet by
writing a script. An abstract zoom graph can be implemented as a
finite state machine within a Rivet script. We use Rivet’s event bind-
ing mechanism to bind user interaction events (e.g., mouse move-

ment events) to procedures within the script to trigger transitions
between states (i.e., nodes).

The notation described in this section is very general and can be
used to describe many different graphs, i.e., many different mul-
tiscale visualizations. Many of these visualizations are easily im-
plemented within Rivet. However, designing effective multiscale
visualizations is still a challenging task, and in the next section,
we present four patterns using our graphical notation that describe
common multiscale visualizations and encapsulate the changes in
abstraction that occur as the user zooms.

4 Multiscale Design Patterns

Even though implementing a multiscale visualization is simplified
using our system, designing such a visualization is still, in general, a
hard and challenging problem. One way to help solve this problem
is to capture zoom structures that have been effective as patterns
that can be reused in the design of new visualizations. In this sec-
tion, we present four standard zooms and express them using our
formal notation for zoom graphs. These zooms have traditionally
been used in domain-specific applications, and while we also give
specific examples for each, our notation expresses each pattern as a
general class of multiscale visualizations. Each zoom is described



Figure 3: Zoom graph for Pattern 2: Thematic Maps

in the style of Gamma et al. [10], and the goal is not only to provide
some guidance to others when designing multiscale visualizations,
but also to provide a formal way for exchanging design knowledge
and discussing multiscale visualizations (i.e., which data and visual
abstractions to apply).

Pattern 1: Chart Stacks
This first pattern applies when analysts are trying to understand

how a dependent measure (such as profit or number of network
packets) varies with two independent hierarchical ordinal dimen-
sions, one derived from continuous data (such as time). This type
of data can be effectively visualized using a vertically stacked small
multiple of line charts (e.g., a single column of charts) [20]. The
hierarchy derived from continuous data is encoded in the x-axis of
each chart while the other hierarchy determines the y-axis structure
of the table (e.g., the order and number of rows). The y-axis for
each individual chart encodes the dependent measure. The zoom-
ing in this pattern is inspired both by the types of visualizations
created in ADVIZOR [6] as well as in our own analyses of this type
of data [17].

The main thing to note in this pattern is that the analyst can in-
dependently zoom along either the x- or y-axis, leading to a graph
describing the multiscale visualization; the analyst can choose any
path through this graph. Each zoom corresponds to changing the
data abstraction: the dot operator is applied to the table algebra
expression corresponding to the relevant axis. Zooming along the
x-axis changes the granularity of each individual chart while zoom-
ing along the y-axis changes the number of charts. The zoom graph
for this pattern is shown in Figure 2.

Figure 2 also shows how we applied this pattern to a 12-week
trace of every packet that entered or exited the mobile network in
the Gates Computer Science building at Stanford University [18].
Each packet is categorized by the time it was sent (one hierarchy)
and the user who sent the packet (the second hierarchy); the schema
of this data is described in Figure 9. To transition between the dif-
ferent specifications, the user can trigger the y-zoom by clicking
on the arrow at the top of the y-axis to introduce a new level of
detail, and we animate the transition by growing one chart before
breaking it into multiple charts, and similarly animate the x-zoom
by growing a bar before showing its breakdown.

Figure 4: A series of screenshots of a multiscale visualization of
the population of the USA, developed using the “Thematic Maps”
pattern. The initial view is at the state level of detail, with each
state colored by population density. As the user zooms in, with the
x and y dimensions lock-stepped together, the visualization changes
data abstraction, drilling down to the county level of detail. As the
user zooms in further, the visual abstraction changes as layers are
added to display more details: both the county name and population
values are displayed as text.

Pattern 2: Thematic Maps
This pattern is applicable when visualizing geographically-

varying dependent measures that can be summarized at multiple
geographic levels of detail (such as county or state). Thus, the data
contains an ordinal dimension hierarchy that characterizes the ge-
ographic levels of detail, two independent spatial dimensions (e.g.,
latitude and longitude), and some number of dependent measures.
Examples of this type of data are census or election data. Typically,
this type of data is visualized as a map with measures encoded in
the color of the area features or as glyphs layered on the map.

Unlike the previous pattern, where the user could zoom indepen-
dently on x and y, in this pattern, the user must zoom on both si-



Figure 5: Zoom graph for Pattern 3: Dependent Quantitative-
Dependent Quantitative Scatterplots

multaneously. Thus, zooming in this pattern is like a fly-through: as
the viewer zooms, more detail is displayed. There are two types of
zooms in this pattern: the data abstraction can change by changing
the specification’s internal level of detail or the visual abstraction
can change by adding details in additional layers. The zoom graph
for this pattern is shown in Figure 3.

To illustrate this pattern, we show in Figure 4 a series of zooms
on a thematic map where the measure of interest is population den-
sity. The schema is shown in Figure 9. In this example, the user
can zoom in by moving the mouse up or zoom out by moving the
mouse down. As the user zooms in, the map zooms in; when a pre-
determined elevation is reached, the script switches to a different
specification, i.e., a different node in the zoom graph.

Pattern 3: Dependent Quantitative-Dependent Quantita-
tive Scatterplots

This pattern (inspired by the types of visualizations created in
DataSplash [21]) is very similar to the previous pattern in that the
main visualization again has two quantitative axes. However, the
primary distinction between the two patterns is that in this pattern,
the axes have no inherent mapping to the physical world; instead,
they spatially encode an abstract quantity, thus freeing many con-
straints imposed in the previous pattern. Thus, the data used in this
type of visualization can be any set of abstract measurements that
can be categorized according to some set of hierarchies. Many cor-
porate data warehouses fall into this category.

Like the previous example, there are two types of zooms in this
pattern. The data abstraction can change by either adding or re-
moving fields or changing the level of detail of the fields listed in
the internal level of detail portion of the specification. Changing
this portion of the specification changes the number of tuples, thus
changing how many marks are displayed.

Alternatively, the visual abstraction can change, either by adding
retinal encodings to the current layers or by adding information in
additional layers. Note that while the map pattern must keep a layer
with a polygonal mark, this pattern has considerably more flexibil-
ity. The zoom graph for this pattern is shown in Figure 5.

To illustrate this pattern, we use constructed data from a hypo-
thetical chain of coffee shops (the schema is shown in Figure 9). A

Figure 6: A series of screenshots of a multiscale visualization of av-
erage sales versus average profit over a two-year period for a hypo-
thetical coffeeshop chain. In the first visualization, each point rep-
resents profit and sales for a particular month and product, summed
over all locations. In the next visualization, the user zooms, chang-
ing the data abstraction: points that were originally aggregated over
all locations are now broken down by market, resulting in four
points for every original point. As the user zooms in further, the
visual abstraction changes as layers are added to display more de-
tails: each point is colored according to market and a text label is
added to redundantly encode the market name.

multiscale visualization of this data set is shown in Figure 6.

Pattern 4: Matrices
Our final pattern applies when the analyst is exploring how a de-

pendent measure varies with the values of two independent dimen-
sion hierarchies and is motivated by Abello’s work in visualizing
call density [1]. This type of data can be effectively visualized as
a table, where the rows encode one hierarchy while the columns
encode a different hierarchy and a glyph in each cell depicts the
measure.



Figure 7: Zoom graph for Pattern 4: Matrices

Zooming in this graph involves either aggregating rows (or
columns) or breaking a single row (or column) down into multiple
rows (or columns). In other words, the zooms are changes in the
data abstraction: the user can change the level of detail requested
on either the x- or y-axis (by applying the dot operator), either in-
dependently or together. The zoom graph for this pattern is shown
in Figure 7.

One type of data that fits this type of display particularly well
is DNA microarray data (the schema is shown in Figure 9), where
a series of microarray experiments are performed, each experiment
measuring the expression level of different genes. The genes can
be clustered to form one hierarchy and the experiments can also
be clustered to form another hierarchy. We illustrate this pattern
using publicly available yeast gene expression data [7] and Eisen’s
publicly available clustering software [8]. A visualization for this
data based on this pattern is shown in Figure 8.

5 Discussion and Future Work

This paper presents (1) a formalism for describing multiscale visu-
alizations of data cubes with both data and visual abstraction, and
(2) a method for independently zooming along one or more dimen-
sions by traversing a zoom graph with nodes at different levels of
detail. As an example of how to design multiscale visualizations
using our system, we describe four design patterns using our for-
malism. These design patterns show the effectiveness of multiscale
visualization of general relational databases.

One of the key insights behind the system is the importance of
performing both data and visual abstraction using general mecha-
nisms, especially since many of the multiscale design patterns rely
heavily on data abstraction. Data cubes are a commonly accepted
method for abstracting and summarizing relational databases, much
like how wavelets are used to abstract continuous functions. By
representing the database with a data cube, we can switch between
different levels of detail using a general mechanism applicable to
many different data sets. Previous multiscale visualization systems
performed data generalization using special-purpose mechanisms,
and hence are only applicable to their specific domain.

Given the Polaris formalism and data cubes, it was relatively

Figure 8: A series of screenshots of a multiscale visualization of
yeast microarray data developed using the Matrix pattern. The first
visualization shows the highest level gene clusters on the y-axis, the
microarray experiment clusters on the x-axis, and the average gene
expression in each cell. In the next visualization, the user zooms
on both axes to show more detailed information for both gene and
array clusters. In the final visualization, the user has zoomed to
show the original measurements for each gene in each microarray
experiment.

easy to construct a visualization of a particular level of detail in
a hierarchical database [16]. It turns out to be much more compli-
cated, however, to construct continuous zooms into the data. One
issue is that the user can zoom along different axes, since, unlike
previous systems, we allow both independent and coupled zooming
on the x- and y-axis. However, we do not allow pivoting during
a zoom, i.e., the dimension displayed along an axis cannot change
during a zoom. We also currently restrict zooms to always follow
the same linear hierarchy rather than allowing arbitrary branching
hierarchies (i.e., snowflake schemas) in which a category might be-
long to multiple hierarchies. Developing more flexible zooms is



Figure 9: The schemas for the example data sets.

one important area for future work.

Even with these restrictions, there are many ways to zoom, many
of which are not very effective. We have described four fairly sim-
ple patterns that are effective and that we have used in several ap-
plications. These patterns were motivated by previous work, but
are still quite general. Many incremental extensions of these pat-
terns are possible. For example, the thematic map pattern should
work whenever there is a fixed mapping between the spatial encod-
ings and the physical world. And, while we use line charts for the
vertically stacked charts pattern, other chart types (e.g., histograms,
strip charts, and Gantt charts) might work equally well. We should
also be able to embed one pattern within another. There are also
completely different patterns that also might work; developing an
extensive repository of zoom graphs would be another good direc-
tion for future work.

Another critical issue when designing a zooming interface is in
making natural transitions between levels of detail, requiring vi-
sualizations to clearly communicate the parent-child relationships.
We have found visual cues such as color and padding to be effec-
tive in indicating the hierarchy. Another difficulty in transitioning

between different views occurs when using categorical hierarchies
with non-uniform branching factors. This situation means that more
space is needed to zoom into some nodes than others. We have ex-
plored several transition mechanisms, including animating the tran-
sition and gradually fading between the two views to avoid the dis-
concerting “popping” that can happen.

A final area of future work is to develop the systems infrastruc-
ture so that very large datasets may be visualized in real-time. In
this paper, we have used small to moderate-sized data sets so that
the zooms are interactive. Larger datasets could viewed at interac-
tive rates if we optimized the data cube queries using a combination
of prefetching and caching.

6 Acknowledgments
The authors especially thank Maneesh Agrawala, Francois Guim-
bretiere, Tamara Munzner, Maureen Stone, and Barbara Tversky for
many useful discussions. This work was supported by the US De-
partment of Energy through the ASCI Level 1 Alliance with Stan-
ford University.

References
[1] J. Abello and J. Korn. MGV: A System for Visualizing Massive Multidigraphs.

In IEEE Trans. on Visualization and Computer Graphics, 8(1), January 2002,

pp. 21-38.

[2] B. Bederson, J. Hollan, K. Perlin, J. Meyer, D. Bacon, and G. Furnas. Pad++: A

Zoomable Graphical Sketchpad for Exploring Alternate Interface Physics. In J.

of Visual Languages and Computing, 7, 1996, pp. 3-31.

[3] B. Bederson, J. Meyer, and L. Good. Jazz: An Extensible Zoomable User

Interface Graphics Toolkit in Java. In Proc. UIST 2000, 2(2), 2000, pp.

171-180.

[4] J. Bertin. Semiology of Graphics: Diagrams, Networks, Maps. Univ. of

Wisconsin Press, 1983.

[5] R. Bosch, C. Stolte, D. Tang, J. Gerth, M. Rosenblum, and P. Hanrahan. Rivet:

A Flexible Environment for Computer Systems Visualization. In Computer

Graphics, 34(1), February 2000.

[6] S. Eick and A. Karr. Visual Scalability. In J. of Computational and Graphical

Statistics, 11(1), March 2002, pp. 22-43.

[7] M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster analysis and display

of genome-wide expression patterns. In Proc Natl. Acad. Sci. USA 95, 1998,

pp. 14863-8.

[8] M. Eisen. Cluster and Treeview. http://rana.lbl.gov.

[9] Y. Fua, M. Ward, and E. Rundensteiner. Structure-based Brushes: A Mechanism

for Navigating Hierarchically Organized Data and Information Spaces. In IEEE

Trans. on Visualization and Computer Graphics, June 2000.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.

[11] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F.

Pellow, and H. Pirahesh. Data Cube: A Relational Aggregation Operator

Generalizing Group-By, Cross-Tab, and Sub-Totals. In J. of Data Mining and

Knowledge Discovery, 1(1), 1997, pp. 29-53.

[12] R. Hightower, L. Ring, J. Helfman, B. Bederson, and J. Hollan. Graphical

Multiscale Web Histories: A Study of PadPrints. In Proc. ACM Conference on

Hypertext, 1998, pp. 58-65.

[13] E. Rundensteiner, M. Ward, J. Yang, and P. Doshi. XmdvTool: Visual

Interactive Data Exploration and Trend Discovery of High-dimensional Data

Sets. In Proc. ACM SIGMOD 2002, June 2002.

[14] http://www.cs.umd.edu/hcil/research/visualization.shtml

[15] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A System for Query, Analysis, and

Visualization of Multi-dimensional Relational Databases. In IEEE Trans. on

Visualization and Computer Graphics, 8(1), January 2002, pp. 52-65.

[16] C. Stolte, D. Tang, and P. Hanrahan. Query, Analysis, and Visualization of

Hierarchically Structured Data using Polaris. In Proc. ACM SIGKDD 2002,

July 2002.

[17] D. Tang. Analyzing Wireless Networks. Ph.D. Dissertation, October 2000.

[18] D. Tang and M. Baker. Analysis of a Local-Area Wireless Network. In Proc of

the 6th International Conference on Mobile Computing and Networking,

August 2000, pp. 1-10.

[19] F. Topfer and W. Pillewizer. The principles of selection, a means of cartographic

generalization. In Cartographic J., 3(1), 1966, pp. 10-16.

[20] E. Tufte. The Visual Display of Quantitative Information. Cheshire,

Connecticut: Graphics Press, 1983.

[21] A. Woodruff, C. Olston, A. Aiken, M. Chu, V. Ercegovac, M. Lin, M. Spalding,

and M. Stonebraker. DataSplash: A Direct Manipulation Environment for

Programming Semantic Zoom Visualizations of Tabular Data. J. of Visual

Languages and Computing, Special Issue on Visual Languages for End-user and

Domain-specific Programming, 12(5), October 2001, pp. 551-571.


