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Abstract.  The multiscaling fractional advection-dispersion equation (ADE) is a 

multidimensional model of solute transport that encompasses linear advection, Fickian 

dispersion, and super-Fickian dispersion.  The super-Fickian term in these equations has a 

fractional derivative of matrix order that describes unique scaling rates in different 

directions.  The directions need not be orthogonal, so the model can be applied to 

irregular fracture networks.  The statistical model underlying multiscaling fractional 

dispersion is a continuous time random walk in which particles have arbitrary jump 

length distributions and finite mean waiting time distributions.  A subset of the model, the 

compound Poisson process, is used to develop a physical interpretation of the equation 

variables.  The Green’s function solutions are the densities of operator stable probability 

distributions, the limit distributions of normalized sums of independent and identically 

distributed random vectors.  These densities can be skewed, heavy-tailed and scale 

nonlinearly, resembling solute plumes in granular aquifers.  They can also have fingers in 

any direction, resembling transport along discrete pathways such as fractures. 
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1. Introduction 

Hundreds of studies have proposed modeling techniques to address the super-Fickian 

transport of solutes in aquifers.  Among them are fractional advection-dispersion 

equations (ADEs), analytical equations that employ fractional derivatives in describing 

the growth and scaling of diffusion-like plume spreading.  Fractional ADEs are the 

limiting equations governing continuous time random walks (CTRW) with arbitrary 

particle jump length distribution and finite mean waiting time distribution [Compte, 

1996].  They are a subset of fractional kinetic equations which allow fractional 

derivatives in both the space and time operators [Saichev and Zaslavsky, 1997; Benson, 

1998; Mainardi et al., 2001].  The spatially fractional equations are particularly suited to 

application in hydrogeology because they have tractable Green’s function solutions, 

given by stable probability distributions.   

One-dimensional fractional ADEs have been used to model the heavy leading edges 

and nonlinear scaling of conservative plumes observed in both laboratory and field solute 

transport experiments [Benson, 1998; Pachepsky et al., 2000; Benson et al., 2001].   

These phenomena were reproduced without the addition of “scale-dependent” parameters 

or the use of high-resolution numerical simulations.  The dispersion coefficient in each 

experiment was constant over time, since the spatially fractional derivatives account for 

the nonlinear link between plume size and time (t).     

In a Fickian plume, the dispersion coefficient is larger in the longitudinal direction 

than in the transverse directions, but the scaling rate is constant and growth is 

proportional to 1 2t in all directions [de Josselin de Jong, 1958].  Meerschaert et al. [2001] 
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demonstrate that a contaminant plume can also have different scaling rates in various 

directions (Figure 1).  They derive a multiscaling fractional ADE in which unique 

fractional derivatives govern scaling rates in different directions.  However, they do not 

explain the relationship between the equation and hydrogeologic parameters or how the 

equation can be used to model solute plumes.   

Herein, we extend the theory of fractional ADEs in hydrogeology to multiple 

dimensions.  By equating certain CTRW models of particle jump processes with the 

compound Poisson process, we interpret the meaning of the variables in the multiscaling 

spatially fractional ADE.  Emphasis will be placed on the relationship between the 

mathematics and particle-jump models so that the rationale for using multiscaling 

fractional ADEs in contaminant transport modeling remains clear.  We then develop a 

numerical procedure for computing the solutions to multiscaling ADEs. 

 

2. Fractional Advection-Dispersion Equations 

Spatially fractional ADEs are used as models for stochastic processes with heavy-

tailed independent increments or “jumps” [Fogedby, 1994; Zaslavsky, 1994a; Zaslavsky, 

1994b; Compte, 1997; Gorenflo and Mainardi, 1997; Saichev and Zaslavsky, 1997; 

Benson, 1998; Chaves, 1998; Gorenflo and Mainardi, 1998; Metzler and Klafter, 2000; 

Baeumer and Meerschaert, 2001].  The equations are subsets of the convolution-Fickian 

nonlocal ADEs described by Cushman and Ginn [1993, 2000].  As the scaling limits of 

sums of independent and identically distributed (iid) random variables, fractional ADEs 

are ergodic, nonlocal equations.  This study will focus on spatially fractional processes 

for conservative solutes. 
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The one-dimensional fractional ADE of form 

 
( )

( , ) ( , ) 1 1(1 ) ( , ) (1 ) ( , ),
2 2

C x t C x tv C x t C x t
t x x x

α α

ααβ β∂ ∂ ∂ ∂= − + + + −
∂ ∂ ∂ ∂ −

D D  (1) 

where 0 2,α< ≤ has been used to predict longitudinal plume growth at the Cape Cod and 

MADE test sites [Benson et al., 2000; Benson et al., 2001].  Lévy’s α-stable probability 

density functions (PDF) are the Green’s function solutions to diffusion equations in 

which the second spatial derivative is replaced with a fractional derivative of order 

0 2.α< ≤  The α-stable solutions have the Gaussian PDF as a subset when 2.α =   This 

equation models a plume that grows at a rate proportional to ,Ht  where 1H α= is the 

scaling coefficient. 

A straightforward generalization of the fractional ADE and its solutions to multiple 

dimensions is possible when the order of the fractional derivative α is equal in all 

directions.  This case, described by Meerschaert et al. [1999], has a constant order of 

differentiation in all directions: 

 ( , ) ( , ) ( , ).M
C x t v C x t C x t

t
α∂ = − ⋅∇ + ∇

∂
D  (2) 

The multidimensional fractional ADE could be used to describe contaminant plume 

growth if the growth rates (scaling coefficients) in the longitudinal and transverse 

directions are equal.   

A multiscaling, spatially fractional ADE in which a scaling operator treats different 

scaling rates of dispersion in different directions was introduced by Meerschaert et al. 

[2001]: 

 ( , ) ( , ) ( , ) ( , ),
-1

M
C x t v C x t C x t C x t

t
∂ = − ⋅∇ + ∇ ⋅ ∇ + ∇

∂ FD D H  (3) 
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where 1,−H  the inverse of the scaling matrix, provides the order and direction of the 

fractional derivatives.  The structure of 1−H  is described below.  Without the last term on 

the right-hand side (RHS), equation (3) is the classical, multi-dimensional ADE. The first 

term treats linear advection, while the second term treats Fickian dispersion, if it exists, in 

any of the principal directions of plume growth.  If dispersion is super-Fickian in all 

directions, then the Brownian motion modeled by the classical second-order dispersion 

tensor is overwhelmed.  In this case, all components of the Fickian dispersion tensor, 

,FD go to zero and the second term disappears.  The third term on the RHS of (3), which 

treats heavy-tailed dispersion in the appropriate coordinates, is the subject of this study.  

The probabilistic interpretation of the fractional Laplacian 
-1

,M∇Η with mixing 

measure M and matrix exponent 1,−H  is explored in detail.  In this study, 

“multidimensional fractional ADE” will refer to the multivariate equation (2) with a 

single value of α governing fractional differentiation in all directions.  “Multiscaling 

fractional ADE” will be used for the ADE with a matrix-order fractional operator (3). 

 

3.  Stochastic Foundation of Multiscaling Dispersion 

For lack of microscopic or complete measuring tools, constitutive equations are used 

to describe groundwater and aquifer contaminant movement at measurable scales.  

Although the physical processes governing particle transport in aquifers are deterministic, 

the constitutive problem can be solved using probability theory as an analytical tool 

[Bhattacharya and Gupta, 1990].   The convention has been to view solute transport in 

aquifers as an ensemble of particles moving randomly through the porous medium, with 

each pathline considered a vector sum of elementary particle displacements [Bear, 1972].  
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CTRWs, also called renewal-reward processes, are generalizations of classical random 

walks in which the distance a particle has traveled is the sum of iid jumps governed by 

one probability distribution while the waiting times between the jumps are iid and 

governed by a second probability distribution [Montroll and Weiss, 1965; Scher and Lax, 

1973].  The jump length and waiting time distributions can be independent of each other 

(uncoupled) or dependent and described by a single joint density (coupled).  The waiting 

time can be thought of as the period between instantaneous jumps or as the time it takes 

for a jump to be completed.  These stochastic processes have been applied to 

hydrogeology by Berkowitz and Scher [1995], Berkowitz et al. [2001], and Benson 

[1998].  CTRWs provide a useful model of aquifer solute transport; a particle can move 

through the aquifer with the groundwater or be motionless due to sorption or immobile 

zones.  By taking the scaling limits of CTRWs, a variety of limit processes governed by 

partial differential equations (PDE) are obtained.  The limiting probability distribution 

governing total displacement of a single particle after a large number of displacements is 

then interpreted as the spatial distribution of a cloud of particles, or the concentration 

profile of an aquifer contaminant plume at a snapshot in time.  The probability densities 

are the Green’s function solutions to the PDEs. 

Spatially fractional and integer-order ADEs are the scaling limits of uncoupled 

CTRWs with finite mean waiting time distribution [Compte, 1996].  Finite mean waiting 

time CTRWs converge to the same limit processes as their corresponding classical 

random walks [Barkai et al., 2000; Whitt, 2001; Meerschaert et al., 2002].  As a result of 

a functional central limit theorem, random walks composed of normalized, iid finite-

variance jumps converge in distribution to Brownian motion [Billingsley, 1968].  A 
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Gaussian density is the Green’s function solution to the ADE, which describes the 

location of a particle undergoing Brownian motion.  Random walks with infinite variance 

jumps and a single tail parameter in all directions lead to α-stable Lévy motion, governed 

by multidimensional fractional ADEs (2).  The limit of normalized sums of infinite 

variance random vectors with unique scaling parameters in each coordinate are operator 

stable distributions [Meerschaert and Scheffler, 2001].  Their densities are the Green’s 

function solutions to the multiscaling fractional ADEs (3) that govern operator Lévy 

motions [Sharpe, 1969; Meerschaert et al., 2001].  Operator stable distributions are the 

most general multivariate stable distributions, with independent tail parameters (αi) in 

each direction [Jurek and Mason, 1993].   

The compound Poisson process is a subset of finite mean waiting time uncoupled 

CTRWs.  In the following sections, we develop a probabilistic interpretation of 

multiscaling fractional dispersion based on the parameters of the compound Poisson 

process.  The compound Poisson process is used here for heuristic purposes.  All finite-

mean waiting time CTRWs converge to the same limit processes as compound Poisson 

process. 

3.1. Compound Poisson process particle jump model 

The CTRW with exponential waiting time distribution independent of the jump 

distribution corresponds with the compound Poisson process.  To demonstrate, we first 

define the CTRW.  Particle location at time t, X(t), is the sum of random jumps, each with 

a random jump time: 

 
( )

1
( ) ,

N t

n n
n

X t R
=

= ⋅Θ∑  (4) 
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where N(t) is the random number of jumps by time t and Rn and nΘ are the random length 

and direction of the nth jump.   The complete solution to the CTRW with independent 

jump sizes and durations is typically given by its Fourier-Laplace transform (denoted by 

change of variables x k→  and ,t s→  respectively) [Scher and Lax, 1973]: 

 
ˆ1 ( ) 1ˆ( , ) ,ˆ1 ( ) ( )o

sP k s
s k sφ

− Ψ=
− Ψ

 (5) 

where the probability of particle location ˆ( , )P k s  is a function of the jump size (and 

direction) distribution ( )o kφ and the waiting time distribution ˆ ( ).sΨ   Let the waiting time 

be exponentially distributed with Laplace transform ˆ ( ) .s
s

λ
λ

Ψ =
+

  Then (5) simplifies to  

 
1 1ˆ( , )

1 ( )o

sP k s
s k

s

λ
λ

λφ
λ

−
+=

−
+

 

 ( )
1 .

( ) 1os kλ φ
=

− −
 

Inverse Laplace transform yields the Fourier transform of the compound Poisson process 

[Feller, 1968]: 

 ( )( )ˆ( , ) exp ( ) 1 ,oP k t t kλ φ= −  (6) 

where λ and oφ  retain their meaning as jump rate parameter and jump size distribution, 

respectively.  The compound Poisson process describes the location X(t) of a particle as 

the sum of random jumps where the number of jumps N(t) that occur by time t is a 

Poisson process.  Since the waiting time distribution is exponential with mean 1/ ,λ  

jumps have an average rate of occurrence .λ   Each jump has a random length and random 
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direction so the jump distribution oφ  can be divided into a jump length distribution and a 

jump direction distribution.  Jump direction is governed by a probability distribution 

known as the mixing measure ( )M dθ .  For example, in the 1D case, jumps are only 

permitted forwards or backwards and the discrete mixing measure is found directly in the 

terms of the 1-D fractional ADE (1) where 

 

1( 1) (1 )
2
1( 1) (1 ),
2

M

M

β

β

+ = +

− = −
 (7) 

so ( 1) ( 1) 1M M+ + − =  and 0 1β≤ ≤  defines the skewness of the process.   

3.1.1 Multivariate (multidimensional) compound Poisson process and limits 

Infinite-variance jump lengths affect both the scaling and the tails of this CTRW in 

multiple dimensions.  For example, if a single scaling coefficient 1 α  governs the growth 

rate in all directions, jumps may be written in the form 1 ,R αΘ  where 1R α represents the 

random jump length and Θ  is the jump direction random vector.  Note that the jump 

magnitude is isotropic.  This compound Poisson process describes particle location by  

 
( )

1

1
( ) .

N t

n n
n

X t R α

=

= ⋅Θ∑  (8) 

Multidimensional random jumps 1R αΘ  are still described by the distribution ( , ).o dr dφ θ   

The heavy-tailed distribution of R is defined 1( )P R r r−> ∝  so that 1( ) .P R r rα α−> ∝   

Also, 1nΘ =  and R and Θ  are independent.  The mixing measure ( )M dθ  governing 

jump direction where ( ) ( ),P A M AΘ∈ = can be continuous or discrete.    
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The product of ,λ  a positive real number that describes the average rate of motions, 

and ,oφ a probability measure of jump size and direction, is a measure 

( , ) ( , )odr d dr dφ θ λφ θ=  of total mass λ .  This measure, known as the intensity measure 

or Lévy measure of the compound Poisson process [Bertoin, 1996 p.12], describes how 

often jumps of a given size and direction will occur.  A measure assigns a value to a 

length or area and can be continuous or discrete.  For example, a probability measure 

integrates the area under a probability density so that  

 
( )  for a continuous probability measure

( )
( ) for a discrete probability measure.

x
x

x

f y dy
dy

p y
φ

∞
∞

∞


= 


∫∫
∑

 (9) 

For any probability measure, ( ) 1.dyφ
∞

−∞
=∫   A general measure follows the same rules, 

but the total mass of the measure need not be one.  For the Lévy measure of the 

compound Poisson process described above, ( ) .dyφ λ
∞

−∞
=∫    

To make this particle jump process converge to a limit process, let the particle jump 

rate λ approach infinity, and at the same time, let the length of particle jumps approach 

zero.  This subdivides motions into smaller and smaller units that occur with greater 

frequency, the usual process that transforms a random walk into a Brownian motion.  

Here, the sum of infinite variance particle jumps leads to Lévy motion [Bertoin, 1996; 

Saichev and Zaslavsky, 1997]. 

Since particle jump length 1R α  is governed by a power-law or Pareto probability 

distribution, its density looks like 1  a rα αα − − so that ( ) 1, .dr d a rα αφ θ λ α − −=   The smallest 

jump permitted is of size .a   Take the limit of this measure by rescaling in time 
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( )λ → ∞ and space ( )0 .a →  The limit must be taken so that ,aαλ →D where D  is a 

constant to avoid degenerate cases.  The limiting form of the Lévy measure  

 1( , ) ( )dr d r dr M dαφ θ α θ− −= D  (10) 

describes the jump intensity of the Lévy motion and has directional and radial weights 

derived from a compound Poisson particle jump model.  In approaching this limit, we 

also find that the dispersion coefficient D  is dependent on the theoretical particle jump 

rate, particle jump length, and the order of the scaling exponent. 

3.1.2 Multiscaling compound Poisson process and limits 

When scaling rates vary with coordinate, R  must be rescaled by H, a matrix whose 

eigenvalues are the scaling coefficients 1 iα  of the growth process. Then the multiscaling 

compound Poisson process is defined 

 
( )

1
( ) .

N t

n n
n

X t R
=

= ⋅Θ∑ H  (11) 

As in the standard multidimensional case, 1( )P R r r−> ∝ and ( ) ( ).P A M AΘ∈ =   The 

matrix RH is now anisotropic with different jump sizes in different directions.  Jump 

length probabilities on the ith eigenvector fall off as ir α−  while jump length probabilities 

on trajectories off the eigenvectors fall off like powers of a mixture of the scaling 

coefficients.   

Multiscaling compound Poisson processes converge to operator Lévy motion 

[Meerschaert et al., 2002].  The Lévy measure ( , )dr dφ θ  in (10) is valid for 

multidimensional ADEs with a single fractional derivative describing scaling in every 

direction, governing multivariate Lévy motion.  The varied effect of a velocity change in 
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one direction on multiscaling dispersion in all directions is controlled by the scaling 

matrix .H   When the Lévy measure is expressed in a coordinate system adapted to the 

matrix H (Section 5.1), the jump probabilities in all directions are equal. 

3.2. Relation of model variables to hydraulic properties 

The parameters in the compound Poisson particle jump model for solute dispersion 

can be related to hydraulic properties.  The mixing measure ( ),M dθ describing the jump 

direction density, is dependent on the hydraulic conductivity field and the direction of the 

hydraulic gradient.  Preferential pathways will be represented in the mixing measure by 

larger jump probabilities in their respective directions.  If the hydraulic conductivity in 

two directions is equal, the direction closer to the flow direction will be weighted more 

heavily in the mixing measure.  While an aquifer conductivity field remains constant over 

time, the magnitude of the velocity field may fluctuate.  As in the classical ADE, the 

dispersion coefficient measures the difference in particle velocities.  The change in 

particle jump size due to velocity fluctuations is represented by a change in the dispersion 

coefficient, a linear function of the compound Poisson rate parameter λ.  If the average 

linear velocity is doubled, the particle jump rate will be doubled, and in turn, the 

dispersion coefficient will be doubled.  This is in keeping with the traditional notion that 

the dispersion coefficient is linear with the hydraulic gradient or velocity field [Bear, 

1972].  In 1D, 1 1/ H α− = =H  has been related to the degree of heterogeneity in an 

aquifer [Schumer et al., 2001].  Greater heterogeneity implies greater deviation from the 

mean particle velocity, allowing for an increased rate of scaling or super-Fickian plume 

growth.  When 1−H  is a matrix, smaller coefficients still correspond with a greater degree 
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of heterogeneity.  Since dispersion is proportional to velocity and larger average 

velocities are found in the longitudinal direction of aquifers, the rate of scaling will be 

larger in the longitudinal direction than the transverse direction of solute plumes and the 

coefficients will be smallest in the longitudinal direction. 

 

4. Multiscaling fractional ADEs 

The multiscaling fractional ADE treats Fickian plume growth in any direction in the 

same manner as the classical ADE.  It can also model super-Fickian plume growth with 

unique scaling rates in any direction.  The multivariate Gaussian is notable among the α-

stable distributions because it has no skewness and its spread is described by a covariance 

matrix rather than a mixing measure.  Random walks with finite-variance particle jumps 

converge to Brownian motion with Gaussian distributions while infinite-variance random 

walks converge to Lévy motion with non-Gaussian α-stable distributions.  Brownian 

motion models imply scaling by 2nd-order derivatives (since ( ) 11 1 2 2H −− = = ) while 

non-Gaussian stables imply fractional derivatives.  The two classes of stable distribution 

are sufficiently different that they can not be treated by the same operator.  As a result, a 

Gaussian term and a heavy-tailed term appear in the multiscaling fractional ADE (3).  If 

particle dispersion in a given aquifer is due to heavy-tailed jumps in at least one direction 

and Gaussian dispersion in at least one other, then the multiscaling fractional ADE treats 

them independently [Meerschaert et al., 2001].   

4.1. Multiscaling fractional derivatives 

The properties of fractional derivatives are described by Oldham and Spanier 

[1974], Samko et al. [1993], [Miller and Ross, 1993], and many others.  The fractional 
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operator M
α∇ of multidimensional ADEs (2), is a linear combination of directional 

derivatives, all of order ,α  with mixing measure M providing the relative weights in all 

directions [Meerschaert et al., 1999].  In multiscaling fractional ADEs, anomalous 

dispersion is modeled by the multiscaling fractional derivative M∇
-1Η .  This nonlocal 

fractional operator is defined by [Meerschaert et al., 2001]: 

 [ ] ( )
0

( ) ( ) ( ) ( ) ,M C x C x y C x y C x dyφ
∞

∇ = − − + ⋅∇∫
-1Η  (12) 

 with Fourier transform 

 ( ) ( )( ) ˆ( ) 1 ( ).ik x
M C x e ik x dx C kφ− ⋅ ∇ = − + ⋅  ∫

-1ΗF  (13) 

The Fourier transform of the fractional derivative (13) is equivalent to the Fourier 

transform of the mean-centered compound Poisson distribution (Appendix A) so the 

Lévy measure ( )dxφ can be equated with the limiting form of the compound Poisson 

Lévy measure, a function of 1−H  and M.  Particles undergoing fractional dispersion from 

any starting point will move in a random direction governed by the mixing measure M of 

the fractional derivative.  Associated with each direction is a jump length distribution.    

Computations in Lemma 7.3.8 of Meerschaert and Scheffler [2001] show that, in one 

dimension, ( ) ( ) ( )ˆ ˆ1 ( ) ( ).ikxe ikx dx C k ik C kαφ− − + =∫   This is a simple convolution of the 

concentration with a power law (in the sense of distributions, see Rudin [1991]):   

( )1( ) 1 .
( )

d C x r C x r dr
dx

α
α

α α
− −= −

Γ − ∫    The fractional derivative models a redistribution of 

the concentration at all points according to a power law of the distance (l).  The 

multidimensional generalization (13) is a redistribution of solute according to various 
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power laws in each direction.  Because of the link with the particle jump model, this 

implies that the jump length distribution in each direction decays as a unique power law 

prescribed by 1.−H   After a particle has made many of these power law jumps, the density 

C(x,t) describing its random location will grow in several dimensions according to the 

scaling matrix H.  Detailed discussions of the form of the scaling matrix H and the 

mixing measure M follow. 

4.1.1 Scaling matrix H    

The scaling matrix H describes the scale invariance of the PDF used to represent the 

contaminant plume.  The solutions C(x,t) to 1-D fractional ADEs grow as 

1 1( , ) ( , ),C x Kt K C K x tα α− −=  where K is a constant.  Similarly, the density of particle 

location governed by a multiscaling fractional ADE scales as 

( , ) ( , ),H HC x Kt K C K x t− −=  where ⋅  is the determinant.  If the primary directions of 

growth are perpendicular, as might be assumed for flow in granular porous media, then 

the scaling terms in each of the principal directions 1 jα are the eigenvalues of the matrix 

H and it is of the form 
1 0 0

0 1 0 ,
0 0 1

x

y

z

α
α

α

 
 =  
  

oH  where oH  will be used for a diagonal 

eigenvalue matrix.  In this case, plume growth in direction j scales by a power of 1 .jα   

Since the exponents 1 jα  reflect the self-similarity of the random process, they are 

sometimes called the Hurst indices.   

The form of the matrix H for applications such as fracture flow, where the principal 

flow directions are not assumed to be orthogonal, can be calculated by a change of basis, 
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or similarity transformation.  The matrix H will have the same eigenvalues as its 

eigenvalue matrix Ho, but eigenvectors along the fractures, rather than the x, y, and z 

axes.  Then the scaling matrix H in Cartesian coordinates will be diagonalized by the 

equation 

 1 ,−=oH S HS  (14) 

where Ho and S are, respectively, the eigenvalues and eigenvector matrices for H [Strang, 

1988].  By their physical interpretation, we assume the eigenvalues and eigenvectors of H 

in groundwater transport applications will always exist, guaranteeing that the matrix is 

diagonalizable.  Since the eigenvectors of H, which correspond to the fracture directions, 

are known, H can be calculated by 1.−= oH SH S   For example, working in two 

dimensions, if fractures occur at 0 and 30 , the eigenvectors will be 
1
0

 
 
 

and 
3

2 .
1

2

 
 
 
 
 

  

Then, the scaling matrix will be 1 1 2 1

2 2

1 1 3 33 01 1 32
11 0 2 100 0

2

α α α α

α α

    −     −    = =                 

H .  If 

fractures occur at 30 ,± then 

1 1 2 1 2

2 1 2 1 2

1 1 1 3 333 3 0 1 2 2 2 232 2 .
11 1 3 3 3 1 10 1

2 2 3 6 6 2 2

α α α α α

α α α α α

      + −           = =     −   − − +           

H  

The inverse of the scaling matrix 1−H  is the matrix order of differentiation in the 

multiscaling fractional ADE.  Each eigenvalue of 1−H  is the order of the fractional 

derivatives in a principal direction of growth (the eigenvectors).  When the principal 
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directions of growth are along the standard Cartesian axes, the order of the fractional 

derivatives are the reciprocal to the scaling coefficients.   

4.1.2 Mixing Measure ( )M dθθθθ and Spectral Measure ( )dΛ θΛ θΛ θΛ θ  

While H  dictates the plume scaling characteristics, the mixing measure ( )M dθ  

 defines the shape and skewness of the plume.  The definition of ( )M dθ comes from the 

compound Poisson processes, where it represents the proportion of jumps in each angular 

interval .dθ   The dispersion coefficient D specifies the frequency of these jumps.  

Studies on heavy-tailed random vector parameter estimation refer to the spectral 

measure, the product of the mixing measure and the dispersion coefficient, as a single 

variable [Nolan, 1998] (see Table 1.)   We adopt the same notation because analysis of 

plume characteristics will likely yield an estimate of the spectral measure, rather than 

individual values of D  and ( )M dθ . 

A spectral measure ( )dθΛ  on the unit sphere assigns weights corresponding with 

probability of jumps in each direction and defines the properties that reduce to skewness 

( )β  and spread ( )σ  in one dimension.  The mixing measure is a probability measure 

with total mass ( ) 1.M d
θ

θ =∫   The spectral measure has mass ( ) .d
θ

θΛ =∫ D   The spectral 

measure can be continuous or discrete.  When the spectral measure is uniform, the 

probability of particle jumps is equal in all directions and the multivariate stable density 

is symmetric (Figure 2a).  When the spectral measure is discrete and concentrated on the 

intersection of the axes with the unit sphere (i.e., {1,0},{0,1},{-1,0},{0,-1}), then particle 

jumps are only possible to the north, south, east and west.  In this special case, the 
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particle jumps in each direction, representing longitudinal and transverse dispersion, are 

independent [Samorodnitsky and Taqqu, 1994; Nolan, 1998].  This highlights the notion 

that in assigning particle jump weights in every direction around a unit circle or sphere, 

the spectral measure defines the dependence between jumps in each of the principal 

directions (Figure 2b).   

In porous media flow, we expect the weight of the spectral measure to be greatest in 

the principal flow direction, with decreasing weight toward the transverse directions.  A 

conservative contaminant plume will have a spectral measure indicating a higher 

probability of particle velocities above the mean velocity than below (Figure 2c).  Spikes 

in the spectral measure may occur in a preferential flow path direction where there is an 

increased probability of particle movement. 

Operator Lévy motions in d-dimensions may have up to d unique heavy-tailed 

components.  In the limit, any others are overwhelmed by the d heaviest motions.  To 

illustrate, consider jumps allowed in 3 directions in 2-D, with 1.1,aα =  1.3,bα =  and 

1.5.cα =   In the limit, the large jumps in the a- and b-directions stand out and the effects 

of the heavy-tailed process in the c-direction will not be discernible.  Jumps will still 

occur in the c-direction in the mixing measure but the limiting operator stable will only 

have 2 principal scaling directions.  In this case, 1−H  will have eigenvectors equal to 

directions a and b and eigenvalues aα  and .bα  

4.2. Solutions to multiscaling fractional ADEs 

The Green’s function solution to multiscaling fractional ADEs can be calculated 

using Fourier transforms: 
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( ) ( ) ( ) ( ) ( )ˆ ( , ) ˆ1 ( , )ik xC k t iv k ik ik e ik x dk C k t
t

φ− ⋅∂  = − ⋅ + ⋅ + − + ⋅ ∂ ∫FD   

Solving for ˆ ( , )C k t  with an instantaneous release at the origin (0,0) 1C =  yields 

 ( )( )ˆ ( , ) exp 1 ( ) ,ik xC k t t iv k k Qk e ik x dxφ− ⋅ = − ⋅ − ⋅ + − + ⋅  ∫  (15) 

where Q is a covariance matrix.  This Fourier transform, known as the Lévy 

representation, simplifies to common parameterization of the 1-D and multivariate α-

stable characteristic functions (as in Samorodnitsky and Taqqu, 1994) when the proper 

power-law Lévy measure is applied [Meerschaert and Scheffler, 2001, chapter 7].  There 

is no simplified form for operator stable densities, so the Lévy representation (15) is used 

to represent them.   

 

5. Computation and Application of Operator Stable Densities 

Section 3.1.2 references a coordinate system adapted to the scaling matrix. The Jurek 

coordinate system allows for the independent representation of the scale parameters and 

spectral measure in the Lévy measure ( )dxφ .  Since these are the variables that can be 

related to aquifer transport properties, this coordinate system must be used to express the 

Fourier transform of operator stable densities.  A description of the Jurek coordinate 

system is followed by the procedure for generating solutions to multiscaling fractional 

ADEs and a discussion of hydrogeologic applications.   

5.1. Jurek coordinate system  

The Jurek coordinate system is an anisotropic polar coordinate system.  The jump 

probability level sets of the spectral measure are ellipses (Figure 3).   If the order of 
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differentiation α  is equal to 1.1 in both the x and y directions, the probability of a particle 

jump length of 1.5 units is equally probable in all directions, so the 1.5jr =  coordinate 

line is circular (Figure 3a).  If yα  is increased to 1.6 (less heavy-tailed,) it is less likely 

that particles will jump as far in the y-direction and longer jumps are given more weight 

in that direction (Figure 3b).  This feature is more apparent as yα  is increased to 1.9 

(Figure 3c). 

In the Jurek coordinate system, jr , the analogue to the polar r is curved so that it is 

orthogonal to (independent of) the ellipses.  As in standard polar coordinates, θ denotes 

the angle at which jr crosses the unit circle (the 1 coordinate line in Figure 3a,b,c).  

However, this angle only corresponds with the angle between jr and the x-axis at the 

origin when the scaling parameters are equal in all directions and the Jurek coordinate 

system reduces to a rescaled polar coordinate system where 1 .jr r α=   When all 1iα =  the 

Jurek coordinate system is equivalent to the standard polar coordinate system. 

Transformation from Cartesian to Jurek coordinates requires the conversion 

.Jx r θ= H   For example, if H is symmetric then 11
1 cosjx r α θ=  and 21

2 sin .jx r α θ=   Jurek 

and Mason [1993] provide the form of the Lévy measure in Jurek coordinates:  

 2( ) ( ).J

J

drdx d
r

φ θ= Λ  (16) 

This conversion can be read ( ) 2

1( ) ,j
j

f x dx g dr d
r

θ θ→∫ ∫∫  resembling a typical 

Cartesian to polar coordinates conversion where 1 jr is the scaling required for the 

change of variables in (16). 
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In the Jurek coordinate system, the solution to multiscaling ADEs is the Lévy 

representation for an operator stable density [Meerschaert and Scheffler, 2001]: 

 ( )2 21 0
ˆ ( , ) exp 1 ( ) .

H
J

J

Hik r J
Jr

J

drC k t i k e ik r d t
r

θ

θ
µ θ θ

∞ ⋅

= =

 
= ⋅ − − ⋅ Λ 

 
∫ ∫  (17)   

5.2. Calculation of operator stable densities  

In most cases, there is no closed form analytical expression for operator stable 

densities.  This computation was performed by transforming the discrete counterpart of 

(17) to real space using a Fast Fourier Transform (FFT).  The singularities and 

oscillations in the integrand of (17) were treated individually to ensure convergence and 

accuracy.  A MathCAD worksheet (obtainable from the authors) that calculates two-

dimensional operator stable densities given a shift vector and spectral measure was 

developed and used to generate the figures described in the following section.  This 

worksheet was verified for the multidimensional case (α equal in all directions) using the 

code described by Nolan [1998].   

5.3. Model application in hydrogeology 

The flexible scaling rates and heavy leading edges of non-Gaussian operator stable 

densities capture some of the anomalous behavior of real contaminant plume growth 

unattainable by a Gaussian density (Figure 4).  The asymmetry of a spectral measure 

leads to skewness and slowly moving peak values of operator stable densities (Figure 4).   

Multiscaling fractional ADEs may also be useful in modeling solute transport in 

simple fracture networks (Figure 5a).  Use of a single analytical equation to describe 

multidimensional transport in fractured aquifers would be a novel approach.  Solute 
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transport in simple fracture networks is typically modeled using discrete network models, 

equivalent continuum models, or a combination of the two [National Research Council, 

1996].  Various deterministic and probabilistic techniques can be used to create these 

heterogeneous flow domains before numerical solutions to the classical ADE or particle 

tracking methods are applied [Clemo and Smith, 1997].  The same probabilistic 

techniques may be used to estimate the parameters of an operator stable model of 

fractured-aquifer plume growth.  The percentage of fractures in classes of orientations, 

along with the mean apertures, gives the spectral measure (Figure 5b).  The scaling rate 

along a preferred fracture direction ( )jα  may be more difficult to estimate a priori, but 

will depend on the variability of fracture length and aperture in a given orientation.  With 

estimates of these two parameters, the corresponding operator stable densities yields the 

probabilistic concentration profiles predicted by the multiscaling fractional ADE with 

time (Figure 5c).  Notable is the prediction of the greatest plume growth and earliest 

breakthrough along preferred fracture directions instead of directly downgradient of the 

source.   

 

6. Summary 

CTRW models of particle transport converge to stochastic limit processes governed 

by PDEs.  Compound Poisson processes with arbitrary jump distribution and finite mean 

waiting time distribution lead to operator Lévy motion, governed by multiscaling 

fractional ADEs.  These equations describe linear advection and Fickian or super-Fickian 

dispersion.  The super-Fickian dispersive term 
1

( , )M C x t
−

∇HD  of multiscaling fractional 

ADEs is a fractional derivative of matrix order.  The scaling matrix H describes the 
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scaling of the contaminant plume growth, and the inverse of this matrix contains the 

order (eigenvalues) and directions (eigenvectors) of fractional differentiation.  The 

eigenvectors of the growth process can be orthogonal (as in granular aquifers) or non-

orthogonal (as in fracture flow).  In d-dimensions as many as d independent scaling rates 

remain in the limit.  The mixing measure ( )M dθ  specifies the proportion of particle 

jumps in every direction while the dispersion coefficient D describes the overall jump 

intensity given the scaling coefficients from the scaling matrix H.  The operator stable 

densities that solve multiscaling fractional ADEs can be computed via Fourier transform 

using a modified polar coordinate system we call the Jurek coordinate system.  These 

solutions capture essential features of real plumes, including different growth rates in 

different directions and skewed and/or fingered plumes.
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Notation 

C solute concentration, ML-3. 

C Pareto shift parameter. 

DF Fickian dispersion tensor, L2t-1. 

D generalized dispersion coefficient, Lαt-1. 

k  wave vector, L−1. 

H scaling matrix. 

M  mixing measure. 

Q covariance matrix  

R jump length variable, L. 

v average solute velocity, Lt-1. 

α order of fractional differentiation/α-stable tail parameter. 

β α-stable skewness parameter. 

σ α-stable spread parameter. 

Λ spectral measure. 

θ angle around the unit circle, radians. 

Θ  unit vector. 

φ Lévy measure. 

φο jump length measure. 

λ Poisson rate parameter, #t-1. 

Ψ waiting time distribution. 
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Appendix A.  Equivalence of compound Poisson and multiscaling fractional 

derivative transforms 

Demonstration that the Fourier transforms of the multiscaling fractional derivative 

and mean-centered compound Poisson process are equivalent requires the definition of ,b  

the average particle jump length (assuming one exists).  Equation (6) gave the Fourier 

transform of the compound Poisson distribution 

 ( ) ( )( )compound Poisson
exp ( ) 1 .ikX

oE e kλ φ− = −  

Then, using the relations ( )ˆ ( ) ,ikx
o ok e dxφ φ−= ∫  ( ) 1,o dxφ =∫ and ( ) [ ] ,ox dx E x bφ = =∫  

the Fourier transform for a centered compound Poisson Y X bλ= −  is 

 ( ) ( ) ( )ˆexp ( ) 1ikY
oE e k ik bλ φ λ−  = − − −   

 ( ) ( )( )ˆexp ( ) 1o k ik bλ φ λ = − +    

 ( ) ( )( ) ( )exp ikx
o o oe dx dx ik x dxλ φ φ λ φ− = − + ∫ ∫ ∫  

 ( ) ( )exp 1 .ikx
oe ikx dxλφ− = − + ∫   

Expressing the Fourier transform for a centered compound Poisson process in terms of 

the intensity measure we have 

 ( ) ( ) ( )exp 1 ,ikY ikxE e e ikx dxφ− − = − + ∫   

which was given as the Fourier transform of the multiscaling fractional derivative in (13). 
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Figure captions 

 

Figure 1.  Measured longitudinal (circles) and lateral (squares) variance of the bromide 

plume vs mean travel distance from the MADE-1 test [Adams and Gelhar, 1992].  Lines 

indicate power laws of order 2 / .α   Transverse values are artificially high at early time 

due to the wide arrays of injection wells. From Meerschaert et al. [2001]. 

 

Figure 2.  a) discrete, uniform spectral measure.  b) measure concentrated on coordinate 

axes representing independent jump probabilities.  c) possible spectral measure for a 

particle jump model representing plume growth  

 

Figure 3. Comparison of level sets in the Jurek coordinate system for various 

combinations of αx and  αy. 

 

Figure 4.  Growth of Gaussian and operator stable plumes with time. 

 

Figure 5.  A conceptual model of plume growth in a fractured aquifer: a) conceptual 

model, b) operator stable parameters, and c) operator stable densities with time. 
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parameter  symbol meaning 

mixing measure ( )M dθ  

specifies the probability 
of a particle jumping 
through segment dθ of 
the unit circle 
 

spectral measure ( ) ( )d M dθ θΛ =D  
specifies the probability 
and relative magnitude of 
particle jumps 
 

Lévy measure 

 
1 1

(multidimensional form)

( , ) ( ) ( )dr d r dr d r dr M dα αφ θ α θ α θ− − − −= Λ = D
 

specifies the probability 
of jumps of a given size 
in each direction θ 

 

Table 1.  Definitions of stochastic measures used in particle jump models. 
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