
Abstract

In this paper a multisensor setup for localization consisting

of a 360 degree laser range finder and a monocular vision

system is presented. Its practicability under conditions of

continuous localization during motion in real-time (re-

ferred to as on-the-fly localization) is investigated in large-

scale experiments. The features in use are infinite horizon-

tal lines for the laser and vertical lines for the camera pro-

viding an extremely compact environment representation.

They are extracted using physically well-grounded models

for all sensors and passed to the Kalman filter for fusion

and position estimation. Very high localization precision is

obtained in general. The vision information has been found

to further increase this precision, particular in the orienta-

tion, already with a moderate number of matched features.

The results were obtained with a fully autonomous system

where extensive tests with an overall length of more than

1.4 km and 9,500 localization cycles have been conducted.

Furthermore, general aspects of multisensor on-the-fly lo-

calization are discussed.

1. Introduction

Localization in unmodified environments belongs to the

basic skills of a mobile robot. In many potential service ap-

plications of mobile systems, the vehicle is operating in

structured or semi structured surroundings. This property

can be exploited by modelling these structures as geometric

primitives and using them as reliably recognizable features

for navigation. As it will be shown in this work, this ap-

proach leads to very compact environment descriptions

which allow for precise navigation with the limited compu-

tational resources fully autonomous systems typically pro-

vide. Furthermore, due to the extraction step, which is

essentially an abstraction from the type and amount of raw

data, information from sensors of any kind can directly be

included and managed in the same way, leading to versatile

and easily extensible environment models.

In this paper we take advantage of this property by simul-

taneously employing geometric features from different

sensors with complementary properties. We consider local-

ization by means of infinite lines extracted from 1D range

data of a 360° laser scanner and vertical edges extracted

from images of an embarked CCD camera. An extended

Kalman filter (EKF) is used for fusion and position estima-

tion.

Navigation in a step-by-step manner where localization is

performed only at standstill is unsatisfactory for many rea-

sons: The vehicle advances slowly, it has not a continuous

movement which is important for certain applications like

cleaning tasks. The position update rate is low with respect

to the distance travelled making the matching problem dif-

ficult for any localization method, and it is aesthetically

suboptimal. Continuous localization during motion in real-

time – henceforth referred to as on-the-fly localization – is

therefore desirable but contains difficulties which are

present but only hidden at low speed or step-by-step navi-

gation. This includes resolution and uncertainties of time

stamps the system can provide for sensory inputs. They im-

pose bounds on localization precision and feature matching

rates whose influence is to be studied when a localization

method shall prove its relevance for real-world applica-

tions.

Kalman filter localization with line segments from range

data has been done early [6][7]. Vertical edges in combina-

tion with an EKF have been employed in [4] and [8]. The

combination of these features is used in [9] and [10]. In [9],

a laser sensor providing range and intensity images within

a 60° opening angle was utilized, and in a recent work [10],

the absolute localization accuracy of laser, monocular and

trinocular vision was examined. Similar precision has been

found for the three cases.

In contrast to these contributions this paper reports exten-

sive experiments where the practicability of this multisen-

sor setup, the above mentioned features and an EKF is

examined under application-like conditions. We consider

the improvement with respect to precision when the vision

information is added to the range information by means of

the uncertainty bounds of the a posteriori position esti-

mates. For this, throughout of this work it was attempted to

employ physically well grounded uncertainty models for

odometry, laser range finder and vision system.
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2. Sensor Modelling

Odometry: Non-systematic odometry errors occur in two

spaces: the joint space and the Cartesian space. With a dif-

ferential drive kinematics the joint space is two-dimension-

al and includes the left and right wheel. Effects of wheel

slippage, uneven ground and limited encoder resolution ap-

pear in this space. In [5] a physically well-grounded model

for this kind of errors is presented starting from the uncer-

tain input with as the

distances travelled by each wheel, and the diagonal input

covariance matrix

(1)

which relies on the assumption of proportionally growing

variances per travelled. The odometry model for

the first and second moment of the state vector

 is then

(2)

(3)

where uses a piecewise linear approximation,

is the state covariance matrix of the last step and is

the Jacobian of with respect to the uncertain vectors

and . and are constants with unit

meter.

The Cartesian space is spanned by encoding position

and orientation of the vehicle. Effects of external forces

(mainly collisions) occur in this space. Non-systematic

Cartesian errors can be additionally modelled in eq. (3) by

a covariance matrix being a function of the

robot displacement in the robot frame. Such a

model has been used in [4]. In any case it is difficult to

identify these models, i.e. to obtain rigorous values for

and the coefficients in which are valid for

a range of floor types. In this work we used only the model

of [5].

Laser Range Finder: The laser range finder which was

used in the experiments is the Acuity AccuRange4000LIR.

The rotation frequency of the mirror is 2.78 Hz, yielding a

1° angular resolution with its maximal sampling frequency

in calibrated mode of 1 kHz. It delivers range and inten-

sity as analogue signals. The latter is the signal strength

of the reflected beam and predominantly affects range var-

iance. In order to have a good physically based uncertainty

model of range variability accounting not only for the dis-

tance to the target but also for its surface properties, a rela-

tionship is sought. Identification experiments

with a Kodak gray scale patch performed in [2] yielded a

simple relationship describable by two parameters: al-

lows to reject too uncertain range readings with and

for measurement with a constant value for range

variance  could have been found.

Camera: The vision system consists in a Pulnix TM-9701

full-frame, EIA (640 x 480), grayscale camera with an 90˚

objective and a Bt848 based frame grabber which delivers

the images directly to the main CPU memory. There is no

dedicated hardware for image processing.

The camera system is calibrated by combining method

[11] with spatial knowledge from a test field. This provides

a coherent set of extrinsic, intrinsic and distortion parame-

ters. Since the visual features are vertical lines, only hori-

zontal calibration is needed, yielding the simplified model

of eq. (4) for parameter fitting

(4)

is the position of a point in the robot frame,

, and , where the

coordinates refer to the distorted location of the

point in the uncorrected image. Focal length , scale fac-

tor and image center are instrinsic parameters,

and are extrinsic parameters defining the robot to

sensor transformation and are the parameters

of radial distortion.

Uncertainties from the test field geometry and those

caused by noise in the camera and acquisition electronics

are propagated through the camera calibration procedure

onto the level of camera parameters, yielding a pa-

rameter covariance matrix.

3. Feature Representation and Extraction

Laser Range Finder: The algorithm for line extraction

has been described in [1]. The method delivers lines and

segments with their first order covariance estimate using

polar coordinates. The line model is

(5)

where is the raw measurement and the mod-

el parameters. is the angle of the perpendicular to the

line, its length. The method differs from the widely used

recursive split-and-merge technique which is also applied

in [6] and [10] in the segmentation criterion: Instead of us-

ing a line specific decision on a single point, it decides on

a model independent criterion on a group of points. Multi-

ple segments which lie on the same physical object are

merged for particular precise re-estimates of the line posi-

tion. This is realized by an clustering algorithm with a Ma-

halanobis distance matrix. It merges segments until their

distance in the -model space is greater than a thresh-

old from a -distribution. Figure 1 shows an extraction

example where six lines have been found.
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Camera: Vertical lines are extracted in four steps:

• Vertical edge enhancement: Specialized Sobel filter ap-

proximating the horizontal image gradient.

• Non-maxima suppression with dynamic thresholding:

The most relevant edge pixels (maximal gradient) are

extracted and thinned by using a standard method.

• Edge image calibration: The horizontal position of each

edge pixel is corrected yielding a new position  with

(6)

resulting from the camera model.

• Line fitting: Columns with a predefined number of edge

pixels are labelled as vertical edges. Line fitting reduc-

es to a one-dimensional problem. The resulting angle is

, where is the focal length and

the weighted mean of the position of the pixels in the

extracted line.

Uncertainty from the camera electronics is modelled on

the level of the uncalibrated edge image. Together with the

uncertainty of the calibration parameters it is propagated

through calibration and line fit, yielding the first two mo-

ments  of the vertical edges.

Map: The a priori map contains 117 infinite lines and 172

vertical edges for the m portion of the institute

building shown in fig. 2. This is an environment model of

extreme compactness with a memory requirement of about

.

4. Multisensor EKF On-The-Fly Localization

Under the assumption of independent errors, the estimation

framework of a Kalman filter can be extended with infor-

mation from additional sensors in a straight-forward way.

Since this paper does not depart from the usual use of ex-

tended Kalman filtering and first-order error propagation,

most mathematical details are omitted. Please refer e.g. to

[3] for a profound treatment and [7] for its use in the con-

text of mobile robot localization. Only aspects which are

particular are presented.

Matching: We assume independent errors between the

sensors and between the features. Thus the observation co-

variance matrix is blockwise diagonal and we

have the freedom to integrate matched pairings in a manner

which is advantageous for filter convergence:

The laser observations are integrated first since they typ-

ically exhibit far better mutual discriminance making their

matching less error-prone, followed by the vertical edges

from the camera where often ambiguous matching situa-

tions occur. Starting from the same idea, each pairing is in-

tegrated according to its quality in an iterative procedure

for each sensor: (i) matching of the current best pairing, (ii)

estimation and (iii) re-prediction of features not associated

so far. This procedure has also been used in [9] and [10]

where similar observations concerning feature discrimi-

nance have been made.

The quality of a pairing of prediction and observa-

tion is different for both sensors:

• For the line segments the quality criterion of a pairing

is smallest observational uncertainty – not smallest

Mahalanobis distance like in [9] and [10]. This renders

the matching robust against small spurious and uncer-

tain segments which have small Mahalanobis distances

(see fig. 1). The ‘current best’ pairing is

therefore that of observation with

 which satisfies the validation test

(7)

where is the innovation covariance matrix of the

pairing and a number taken from a distribution

with degrees of freedom. is the level on

which the hypothesis of pairing correctness is rejected.

• The criterion for vertical edges is uniqueness. Predic-

tions with a single observation in their valida-

tion gate are preferred and integrated according to their

smallest Mahalanobis distance provided that they satis-

fy eq. (7) with (subscript become ). When

there is no unique pairing anymore, candidates with

multiple observations in the validation region or obser-

vations in multiple validation regions are accepted and

chosen according to the smallest Mahalanobis distance.

Time Stamps: The main difference from the viewpoint of

multisensor localization between step-by-step and on-the-

fly navigation is that temporal relations of sensor observa-

tions, predictions and estimations of all sensors involved

have to be maintained and related to the present. This is
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Figure 1: A scan of the Acuity sensor and the extraction

result. Eight segments on six lines have been found. Two

closely situated objects produced evidence for the two

‘outlier’ segments. Thus, the local map contains six

-pairs which are passed to the EKF matching step.α r,( )
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done by assigning time stamps to observations and record-

ing odometry into a temporary buffer. When sensor per-

forms its data acquisition, the data receive a time stamp

and, after feature extraction is completed, the correspond-

ing state prediction is read out from the odometry buffer.

When the position estimate arrives from the Kalman filter,

it is valid at time stamp . Based on the odometry model,

a means is then needed to relate this old position estimate

to the current position of time . This is done by forward

simulation of eq. (2) and eq. (3) from  to .

For a multisensor system, care has to be taken that pre-

diction and estimation results of one sensor are not over-

written by those of another sensor. This would be the case

if each sensor would have its own EKF running independ-

ently from the others with its own cycle time, yielding tem-

porally nested updates. Nested updates are unfavourable

since a slow outer update cycle (e.g. vision) overwrites the

estimation results of faster running inner cycles (e.g. laser).

A sequential scheme of EKFs for each sensor is therefore

required with the constraint that the estimates get integrat-

ed in the succession of their respective observation.

Scan Compensation: The vehicle movement imposes a

distortion on the raw data of the laser scans. This deformity

depends on the ratio robot speed to mirror rotation velocity

which in our case is non-negligible. It is important to note

that scans have to be compensated on the raw data level

and not on the feature level. Since in the latter case the ex-

traction method would operate with an artifically modified

features evidence.

We compensate for the vehicle displacement during a

scan by transforming each range reading acquired in

the sensor frame into the non-stationary robot frame

and then into the world frame . Followed by a re-trans-

form into the stationary robot frame and finally into the

desired reference frame of the scan . For a compensation

on-the-fly, must be the sensor frame at the start position

of a new scan. By reading out odometry each time when a

new range reading arrives, it gets immediately transformed

by the expression

, (8)

where . The matrices are homogene-

ous transforms casting the rotation and translation of the

general transform into a single matrix. is the sensor-to-
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Figure 2: Floor plan of the

environment where the

experiments have been con-

ducted. The points show the

locations where the robot

localized itself during one of

the tests. Crosses indicate

the modelled vertical edges.

The robot starts in the labo-

ratory, goes to the elevator,

then passes through the cor-

ridor to offices 1, 2 and 3,

continues to the seminar

room and returns to the lab-

oratory via the coffee room.

The trajectory length is

140 m and has been driven

10 times with about 950

localization cycles per run.

The average speed was 0.3

m/s, maximal speed 0.6 m/s,

resulting in about 7’45” for

the whole path.

In order to compare the mul-

tisensor setup and the laser-

only setup with respect to

localization accuracy, five

runs have been made with

laser-only, five with laser

and vision. The resulting

uncertainty of the a posteri-

ori position estimates are

illustrated in fig. 4, overall

averages are given in

table 1.
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5. Implementation and Experiments

5.1 The Robot

Our experimental platform is the robot Pygmalion which

has been built in our lab (fig. 3). Its design principles are

oriented towards an application as service or personal ro-

bot. Long-term autonomy, safety, extensibility, and friend-

ly appearance were the main objectives for design. With its

dimensions of about 45x45x70 cm and its weight of 55 kg

it is of moderate size and danger opposed to many robots in

its performance class.

5.2 Experimental Results

The experiments have been conducted in the environment

illustrated in figure 2. It shows the floor plan of a

m portion of the institute building. In the laser-

only mode and in the multisensor mode the trajectory has

been driven five times. The overall trajectory length is 1,4

km with 9,500 localization cycles. Care has been taken that

both experiments had the same localization cycle time by

limiting the implementation to 2 Hz resulting in about 950

cycles on the 140 m test trajectory. The average speed was

0.3 m/s, maximal speed 0.6 m/s. The robot was driven by

its position controller for non-holonomic configurations.

No obstacle avoidance was active.

The resulting 2 -uncertainty bounds of the a posteriori

position estimates are shown in figure 4. For both cases

they generally reflect a very high localization accuracy in

all three state variables. Subcentimeter precision is ap-

proached. Table 1 shows the overall means of error bounds

, number of matches per localization cycle

, and execution times . The vision information

contributes equally to a reduction of uncertainty in and

, but particularly in the orientation .

This although the average number of matched vertical edg-

es is moderate. A cycle time stands for one localization it-

eration under full CPU load and sensor data acquisition.

5.3 Discussion

Even carefully derived uncertainty bounds do not necessar-

ily permit inference about the sought first moments, since

the estimation error could be arbitrarily big without being

noticed (estimator inconsistency). We argue that the simple

fact that the robot always succeeded in returning to its start

Figure 3: Pygmalion, the

robot which was used in

the experiments. It is a

VME based system carry-

ing currently a PowerPC

card at 300 MHz. Besides

wheel encoders and bump-

ers, the sensory system

includes a 360° laser range

finder and a gray-level

CCD camera discussed in

the second chapter. During

the experiments it ran in a

fully autonomous mode.
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Figure 4: Averaged 2 –error bounds of global (a),

(b) and (c) a posteriori uncertainty during the test tra-

jectory (showing only each 5th step). In each mode, five

runs have been made. Solid lines: laser range finder only,

dashed lines: laser and vision. In some cases the uncer-

tainty in the multisensor mode is greater than for the sin-

gle-sensor setup. This is possible since the values are

averaged over five runs containing noise on the level of

matched features.

σ x y

θ

(a)

(b)

(c)

laser laser and vision

1.31 cm 1.07 cm

1.35 cm 1.05 cm

0.92° 0.56°

2.73 / – 2.66 / 2.00

64 ms 411 ms

Table 1: Overall mean values of the error bounds, the

number of matched line segments and matched vertical

edges , and the average localization cycle time

under full CPU load.
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point is compelling evidence for the correctness of these

bounds. In fact, they are even conservative estimates since

the true bounds could be better. Otherwise the robot would

have gone lost due to a lack of matches caused by first mo-

ments drifted away from the true values. Ground truth in-

formation like in [10] would be preferable but is

impractical and expensive to obtain for experiments of this

kind and extent. Positioning accuracy of the vehicle in the

endpoint has been determined and further confirms the val-

ues in Table 1.

Matching vertical edges is, due to their lack of depth in-

formation and their frequent appearance in compact

groups, particularly error-prone. For example, door frames

commonly have multiple vertical borders which, depend-

ent on the illumination conditions, produce evidence for

several closely situated vertical edges. In the matching

stage, they might be confronted with a large validation re-

gion, position bias from odometry or time stamp uncertain-

ty making the predicted model edge difficult to identify. In

such an ambiguous matching situations, incorrect pairings

are likely to occur and, in fact, have been occasionally pro-

duced in the multisensor experiments. But their effect re-

mains weak since these groups are typically very compact.

However, this lack of discriminance in the presence of

time stamp uncertainty is the main cause of reproducible

failure of vision-only navigation. With the frame grabber in

use, it is difficult to identify the precise (i.e. down to a few

ms) instant when the image is taken. Also odometry quan-

tization (in our case 5 ms), furthermore bounding time

stamp accuracy, became noticeable particularly during fast

turns. (the camera of Pygmalion is not mounted on a turret

which maintains a constant orientation). Modeling time

stamp imprecision would yield larger validation gates

around the predictions. But this does not solve the problem

if matching situations are already found to be ambiguous.

6. Conclusions and Outlook

In this paper a multisensor setup for localization consisting

of a 360° laser range finder and a monocular vision system

is presented. It combines infinite horizontal lines from the

laser and vertical edges from the camera. Its practicability

under conditions of on-the-fly localization is investigated

in large-scale experiments. Very high localization preci-

sion is achieved with an extremely compact environment

description provided by the employed features. The vision

information has been found to further increase this preci-

sion, particular in the orientation, already with a moderate

number of matched edges. By having performed extensive

tests with a fully autonomous system on an overall length

of more than 1.4 km and 9,500 localization cycles we dem-

onstrated the relevance of the localization setup for real-

world applications.

Vision-only navigation failed in our experiments. This is

due to the modest mutual discriminance of vertical edges,

making them difficult to match, in combination with non-

negligible time stamp uncertainties. This motivates the use

of constraint-based matching schemes with this type of fea-

ture particularly for vision-only navigation. Future work

will focus on such matching techniques by introducing

unary or binary constraints. Besides, more complex vision

features shall be employed for semantically richer environ-

ment models.
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