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An engineered artificial lateral-line system has been recently developed, consisting of a 16-element array of finely spaced MEMS
hot-wire flow sensors. This represents a new class of underwater flow sensing instruments and necessitates the development of
rapid, efficient, and robust signal processing algorithms. In this paper, we report on the development and implementation of a set
of algorithms that assist in the localization and tracking of vibrational dipole sources underwater. Using these algorithms, accurate
tracking of the trajectory of a moving dipole source has been demonstrated successfully.
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1. MOTIVATION

In nature, almost all species of fish use arrays of cilium-like
haircell sensors in a lateral-line configuration for flow sensing
and near-field hydrodynamic imaging [1]. Each haircell sen-
sor in the lateral line is capable of measuring local fluid flow
velocity. Fish utilize the lateral-line organ for a rich set of be-
haviors including schooling, navigation, predator avoidance,
and prey capture.

Manmade underwater vehicles currently use technolo-
gies such as sonar or optical systems for navigation and imag-
ing. However, these established methods have limitations.
Active sonar, for example, may reveal the location of the
source. Furthermore, many sonar systems rely on pulse-echo
width analysis. This method has limited resolution and does
not work well in close range. Optical systems cannot operate
in deep or murky waters.

In light of these limitations, a biomimetic flow sensing
system inspired by the fish lateral line could augment or com-
plement current technologies. Potential applications would
include imaging and maneuvering control for autonomous
underwater vehicles (AUVs), intrusion detection (ID) sys-
tems, and hydro-robotics. For example, underwater vehicles
and platforms equipped with artificial lateral lines could de-
tect intruders (e.g., a swimmer) based on the hydrodynamic
signature, thereby allowing unprecedented methods of threat
monitoring.

An engineering equivalent of the biological lateral-line
organ, an artificial lateral line, has never been developed.
This is primarily due to the fact that commercially available
flow sensors are typically bulky and therefore not amenable
for high-density array integration.

However, recent advancement in micromachining and
MEMS makes it possible to mimic functions and structures
of biological sensors such as lateral lines [2, 3]. MEMS sen-
sors can offer high sensitivity and high-resolution capabil-
ities with low power consumption, small footprint, and at
low cost (due to integrated-circuit-style batch production).
Researchers have made MEMS sensors based on many trans-
duction principles and for many applications, including tem-
perature sensors, accelerometers [4, 5], gyroscopes, pressure
sensors, tactile sensors [6–9], flow sensors [10–13], and mul-
timodal sensors [6, 14]. MEMS flow sensors based on prin-
ciples such as hot-wire anemometry and biomimetic haircell
sensing have also been developed [10, 13, 15–23].

Recently, our group invented an engineered artificial
lateral-line system, consisting of a 16-element array of finely
spaced hot-wire flow sensors. Fast and efficient algorithms
are needed to analyze complex spatial-temporal input from
the sensor array for perception of hydrodynamic activities.
Here, we report on our progress with the design and imple-
mentation of algorithms complementing the artificial lateral-
line system for a complete biomimetic hardware-software so-
lution.
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Figure 1: (a) An optical micrograph of an artificial lateral line, con-
sisting of a linear array of hot-wire anemometers. (b) Schematic di-
agram of a single raised hot-wire sensor. (c) An SEM micrograph of
the same array.

2. SENSOR DESCRIPTION

The artificial lateral line consists of a linear array of hot-wire
anemometers (HWAs) [12, 15, 16, 19, 20]. In Figure 1, an ar-
ray of 16 HWA sensors with 1 mm spacing between each is
shown. An individual HWA consists of a thermal resistive el-
ement (hot wire) and operates on the principle of convective
heat loss. During operation, the hot-wire element is heated
above the ambient temperature using an electrical current.
When it is exposed to a flow medium, the fluid convectively
removes heat from the hot wire and causes its temperature to
drop and its resistance value to change.

The density of the sensors approaches that of the biolog-
ical lateral line in some fish. Through the use of microma-
chining technology such high-density arrays can be made,
together with analog integrated circuits [15] for local signal
conditioning.

The HWA sensor offers high performance in terms of
sensitivity. The fabricated MEMS HWA can sense flow at the
order of 10 mm/s. Another advantage of the MEMS HWA
sensor is the desired frequency range. The micromachined
hot-wire anemometer has a viable frequency range from
0 (DC) to∼10 kHz, thus spanning the entire frequency range
for hydrodynamic events of interest [12].

3. FLUID THEORY OVERVIEW

Using the lateral-line sensing organ, fish can detect water
flow disturbances underwater. One of the simplest and most
commonly encountered forms of disturbance is an acoustic
dipole [12]. Biologists have studied fish lateral-line response
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Figure 2: Schematic of analytical model (dipole at origin and ob-
servation point at r, θ, γ) [25].

to acoustic dipoles extensively and found that fish can locate
the source of a dipole and track its movement [1]. There-
fore, we choose to investigate the performance of our arti-
ficial lateral-line sensor in response to an oscillating dipole
source.

The acoustic dipole model has been well established
[1, 22, 24, 25]. The pressure and velocity distributions, re-
spectively, can be described according to an abridged version
of the model as

p(r, θ) = −
ρωa3Uo cos(θ)

2r2
, (1)

vflow(r, θ) =

(
a3Uo

cos(θ)

r3

)
êr +

(
a3Uo

2

sin(θ)

r3

)
êθ . (2)

Equation (1) relates the scalar pressure field of a dipole in the
local flow region to the dipole diameter a, the density ρ, the
observation distance r and angle θ, the angular frequency ω,
as well as the dipole’s initial vibrational velocity amplitude
Uo. Equation (2) describes the local fluid flow velocity (vec-
tor field) as a function of the initial velocity, position, and
dipole diameter. The position of the observation point, as
well as the coordinate description, is shown in Figure 2.

The root-mean-square (rms) velocity distribution in re-
sponse to an oscillating dipole, as per the analytical model
presented in (1)-(2), is shown in Figure 3(a). Figure 3(b)
shows the experimental response of an HWA to a dipole
stimulus. The experimental output of the sensor matches
pertinent profile information predicted by the theoretical
model. The difference between the two profiles can be at-
tributed to the directional sensitivity of the sensor. A detailed
explanation of this phenomenon is beyond the scope of this
paper.

4. EXPERIMENTAL SETUP

Hydrodynamic experiments were conducted in a custom-de-
signed water tank. Figure 4 shows the detailed experimental
setup. It consists of a stage system (made by Standa Ltd.) for
translation control, a minishaker for vibration generation, a
sphere to function as a dipole source, and a micro-fabricated
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Figure 3: (a) Velocity distribution in response to a dipole (repre-
sented as a filled-in circle) as a function of distance away from the
dipole (x-axis—along the receiver array) and derived from the an-
alytical model. (b) Velocity distribution of an HWA response to a
dipole (represented as a filled-in circle) as a function of distance
away from the dipole. In both figures, the oscillating direction of
the dipole is shown.

HWA sensor array for sensing and detection. A B&K min-
ishaker (model 4010) was mounted to the stage system. It
can generate sinusoidal vibration along its axis within a fre-
quency range from 2 Hz to 11000 Hz. A PCB accelerometer
(model 352B10) was attached to the rod to measure acceler-
ation of vibration. The sphere vibrated in a direction parallel
to the axis of the sensor array, at a fixed frequency of 75 Hz
and displacement amplitude of 0.4 mm.

5. SIGNAL PROCESSING ALGORITHMS

We investigated and implemented two approaches to suc-
cessfully predict the dipole location. These approaches con-
sisted of the template training approach and the model-
ing approach, both of which operate on empirical data col-
lected using the systems described in Section 4. A minimum
mean-squared error (MMSE) algorithm was used in both
approaches. As shown in [26], for independent, identically

(a)

(b)

Figure 4: (a) Overview of the experimental setup. (b) Local details
of a dipole source (vibrating sphere) and the HWA sensor array.

distributed Gaussian noise at each sensor (a reasonable as-
sumption for electronic noise), this is also a maximum like-
lihood estimator (MLE). We describe these approaches and
their implementation in detail in the following sections.

The template training approach compared experimental
data to a series of templates to make a decision. Two data
sets were collected and used. The first data set was called the
training data set, or the template set. The second data set was
called the experimental data set. Systematic measurements
were made with the dipole source traveling step by step in a
grid scanning two body lengths of the sensor array along its
axis and one body length away from it. Distance away from
the array (normal to the array) was designated as the y-axis,
whereas distance along (parallel to) the array was designated
as the x-axis. A spatial distribution of the magnitude of flow
velocity fluctuation was collected from the lateral line for the
dipole source located at each grid point (vertex), with in-
dividual grid points 1 mm apart (Figure 5). Four runs were
taken at each specified grid point. For each run, time traces
of signal outputs from 16 channels (sensors) were recorded
through a computer-controlled data acquisition system via
Labview interface, with a sample rate of 2048 samples/s and
a total length of 1024 samples for each channel. Later, experi-
mental runs were recorded as the dipole source was mechani-
cally swept along various paths. Three experimental paths are
shown—one parallel to the direction of the lateral line (i.e.,
along x-axis), one perpendicular to the lateral line (i.e., along
y-axis), and one being a zigzagged, inclined path.
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Figure 5: The training grid used for recording template and experimental data. The y-axis is the distance away from the sensor array (repre-
sented by filled-in circles at the bottom). The x-axis is the distance along the sensor array. As mentioned, there were three experimental data
sets. One experimental data set is along the x-axis (horizontal sweep). Another is along the y-axis (vertical sweep). The third experimental
data set was a zigzagged path.

For each integer position on the y-axis (within the rel-
evant scope), a training matrix was created with rows being
the horizontal integer positions (31 positions along the ar-
ray) and with columns being the sensor outputs (16 sen-
sors) averaged over four dipole measurement runs. Effec-
tively, there were 9 positions (5–13 mm inclusive) vertically,
leading to nine training matrices. These were coalesced into a
combined three-dimensional matrix, indexed by vertical po-
sition first, called the training data set as mentioned above.
Each of the experimental data sets consisted of an m-by-n
matrix, wherem is the number of experimental positions and
n is the number of sensor outputs.

A minimum mean-squared error (MMSE) estimator was
used. We assume that we have a calibrated data training set
as well as an experimental data set taken using hardware cal-
ibrated in the same manner. For a set of sensor readings cor-
responding to a particular position (k) in the experimental
data set, a search is then performed through the template x-y
grid. When the error between the experimental data set un-
der consideration and a particular template is minimal, the
x and y coordinates corresponding to that template consti-
tutes the predictive solution. The algorithm is presented in
pseudocode in Algorithm 1.

The modeling approach was used in an effort to improve
the performance of the training algorithm. A model was em-
pirically developed for the MEMS HWA for this study. Due
to the visual form of the data, we speculated that a Gaus-
sian mixture model might work well as an empirical model.
Gaussian mixtures of the form of (3) were tried.

f (x) =
k∑

n=1

ane
((−(x−bn)/

√
2cn)2). (3)

From (3), the variable k is hereto referred to as the order of
the fit. The first-order fit suitably approximates the sensor
data, while higher-order fits fine-tune the approximation and
increase the goodness of fit. Figure 6 shows the approxima-

Let

x be the distance along the array
y be the distance away from the array
s(x, y) be the position of the dipole relative to the array
d be the experimental data set with k positions of the dipole
t be the template data set
Soptimal(x, y) be the predicted position of the dipole
ε be the error

for X = 1 to x, (horizontal search space){
for Y = 1 to y, (vertical search space){

A =
tTx,y,k · d

tTx,y,k · tx,y,k

ε =
N∑
1

(A · tx,y,k − d)2

if (ε < minimumerror)
minimumerror = ε}}

Soptimal, k = minx,y(ε)

Algorithm 1: (Top) Definition of variables used. (Bottom) MMSE
algorithm in pseudocode. A is the correlation factor between the
template and data sets for the MMSE algorithm, ε is the error, while
S is the predictive solution.

tion of the data collected by a single MEMS HWA sensor by
Gaussian fits of the first and second orders. The first order
fit yielded an R2 value of 0.985 while the second (and succes-
sive high-order) fit yielded a 0.997 R2 value. Polynomial fits
were also attempted, but were not used due to the complex-
ity of the high-order curves needed for a good fit. Often, as
shown in Figure 6, a ninth-order or higher polynomial curve
was needed to achieve a fit with an R2 value of .95, less than
even a first-order Gaussian curve.
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Figure 6: (a) Curve fitting comparison of MEMS sensor data with Gaussian curves. (b) Curve fitting comparison of MEMS sensor data
between candidate Gaussian and high-order polynomial curve.

Once the applicable curve was chosen (two-mixture Gau-
ssian), the curve was fit to all 16 columns of sensor training
data. Then, the fitted model was used as a template for the
MMSE algorithm. The algorithm was designed to predict the
position of the dipole to within a millimeter using the Gaus-
sian fit. However, to achieve a greater accuracy (nearest tenth
of a millimeter), simple linear interpolation was used be-
tween the points of the fit curve. As with training with the
sensory data, the MMSE algorithm was used and three ex-
perimental runs were conducted as a test of this approach.

6. RESULTS AND DISCUSSIONS

The template training approach was used to track the loca-
tion of the dipole source as it moves through the three repre-
sentative pathways as described earlier. As shown in Figure 7,
the MMSE algorithm accurately predicts the dipole’s local-
ization along the array (in the x-axis) as well as away from
the array (y-axis) in all three experimental cases. For the
horizontal sweep, the maximum error in predicting the loca-
tion of the dipole source is 0.9 mm in the x-axis and 0.5 mm
in the y-axis. The average error is 0.1 mm along either axis.
The percentage error of most individual measurements is less
than 5%. For the vertical sweep, the maximum error in pre-
dicting the location of the dipole source is 0.2 mm along the
x-axis and 1.5 mm in the y-axis (vertical axis). The aver-
age error is 0.0 mm in the x-axis and 0.4 mm in the y-axis.
The percentage error for most of the experimental points is
less than 5% in the x-axis and less than 10% in the y-axis.
For the zigzag inclined path, the maximum error along the
x-axis is 0.9 mm and the maximum error along the y-axis
is 3.7 mm. The average errors, 0.1 mm along the x-axis and
0.3 mm along the y-axis, are significantly smaller. This is be-
cause, statistically, the accuracy for predicting the location of
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Figure 7: Prediction of experimental runs using MMSE algorithm
and template training approach.

the dipole decreases as the distance between the dipole and
the lateral line increases in both the x-axis and y-axis. Since
a few points on the inclined path are a combination in this
regard, the accuracy at the fringe is often limited.

The modeling approach was also used in predicting the
location of the dipole source and tracking its movement. Re-
sults obtained using this approach are shown in Figure 8.
For the horizontal sweep, the maximum error of predicting
the dipole source location is 15.6 mm along the x-axis and
7.0 mm along the y-axis. However, these figures are distorted
by performance at the fringes. The average error, which holds
for most of the points in range of the sensor array, is 0.5 mm
along the x-axis and 0.7 mm along the y-axis. For the vertical
sweep, the maximum error in predicting the dipole source
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Figure 8: Prediction of experimental runs using MMSE algorithm
and Gaussian-modeled data.

location is 0.1 mm along the x-axis and 1.1 mm along the y-
axis. Once again, outliers distort the performance. The av-
erage error is 0.04 mm along the x-axis and 0.3 mm along
the y-axis. For the zigzag inclined run, the maximum pre-
dictive error along the x-axis is 15.1 mm and 8.0 mm along
the y-axis (primarily due to outliers). The average error is
0.9 mm along the x-axis and 0.4 mm along the y-axis. The
performance of the modeling approach is similar to the per-
formance of the training approach, but slightly worse due to
the inaccuracies of the model. Like the training approach, ac-
curacy at the fringes is low and distorts the overall perfor-
mance of points within the scope of the array.

We have shown the ability to localize a dipole source us-
ing an array of MEMS sensors and bioinspired approaches.
The training approach produced accurate results using the
MMSE algorithm. Furthermore, the approach can be imple-
mented in a straightforward manner on both static and real-
time systems. However, this approach does have its limita-
tions. The computational power and the raw data set (sen-
sory data) need to be significantly large when this approach is
applied to complex scenarios. The introduction of variables
such as dipole orientation, vibrational frequency and size or
a complicated environment involving multiple dipoles would
necessitate the use of a much more complex raw data set. Fur-
thermore, the speed and effort of a real-time implementation
of the training algorithm would be proportional to the size of
the underlying data set.

In contrast, the modeling approach is more flexible. The
accuracy of the model can place its performance and lim-
itations anywhere between the formal training to informal
heuristics. For our purposes, we used a very accurate model
(R2 value > 0.99). At this accuracy, the model closely resem-
bles the underlying data set. Therefore, the model achieves
comparable accuracy. The main disadvantage to using a
model (Gaussian for the MEMS HWA sensors or analyti-
cal model for an ideal dipole) is the difficulty and cost of a
system-level implementation. This is due to the fact that the
raw data sets must be prefitted to a particular model for the

particular array (which requires additional system-level stor-
age) as well as the fact that calibration needs to be done be-
fore the approach is initially used.

In a real-world system, such as unmanned underwater
vehicle (UUV) guidance or intrusion detection, a hybrid mix
of both approaches would be possibly warranted depending
on the application goal and engineering constraints. Differ-
ent applications such as monitoring and targeting for sub-
marines and ships, port and harbor defense, intrusion detec-
tion, and hydro-robotics, as well as different environmental
conditions might call for a fusion of both approaches.
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