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Multisensor snow data assimilation at the continental scale:
The value of Gravity Recovery and Climate Experiment
terrestrial water storage information
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[1] This investigation establishes a multisensor snow data assimilation system over North
America (from January 2002 to June 2007), toward the goal of better estimation of
snowpack (in particular, snow water equivalent and snow depth) via incorporating both
Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage (TWS) and
Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF)
information into the Community Land Model. The different properties associated with the
SCF and TWS observations are accommodated through a unified approach using the
ensemble Kalman filter and smoother. Results show that this multisensor approach can
provide significant improvements over a MODIS‐only approach, for example, in the Saint
Lawrence, Fraser, Mackenzie, Churchill & Nelson, and Yukon river basins and the
southwestern rim of Hudson Bay. At middle latitudes, for example, the North Central and
Missouri river basins, the inclusion of GRACE information preserves the advantages
(compared with the open loop) shown in the MODIS‐only run. However, in some high‐
latitude areas and given months the open loop run shows a comparable or even better
performance, implying considerable room for refinements of the multisensor algorithm. In
addition, ensemble‐based metrics are calculated and interpreted domainwide. They
indicate the potential importance of accurate representation of snow water equivalent
autocovariance in assimilating TWS observations and the regional and/or seasonal
dependence of GRACE’s capability to reduce ensemble variance. These analyses
contribute to clarifying the effects of GRACE’s special features (e.g., a vertical integral of
different land water changes, coarse spatial and temporal resolution) in the snow data
assimilation system.

Citation: Su, H., Z.‐L. Yang, R. E. Dickinson, C. R. Wilson, and G.‐Y. Niu (2010), Multisensor snow data assimilation at the
continental scale: The value of Gravity Recovery and Climate Experiment terrestrial water storage information, J. Geophys. Res.,
115, D10104, doi:10.1029/2009JD013035.

1. Introduction

[2] Snow is a very important component of the Earth’s
climate system. At the continental and interannual scales,
snow cover fraction (SCF) and snow water equivalent (SWE)
show large variations, depending on atmospheric circulation
patterns. The high albedo and low thermal conductivity of
snow significantly affect the land surface energy and water
budgets. Consequently, accurate estimation of snowpack
properties at a large scale is important for various research
areas, for example, (1) hydrological prediction and water
resources management, especially for regions in which fresh-
water availability is heavily dependent on snowmelt [Barnett
et al., 2005]; (2) evaluation of coupled general circulation

models in terms of their ability to represent observed snow
dynamics [e.g., Frei and Gong, 2005]; (3) climate trend
quantification in cold regions; and (4) land‐atmosphere‐
ocean interaction associated with snow cover [e.g., Gong et
al., 2003].
[3] In recent years derivation of high‐quality snow data

sets, SWE, in particular, has relied increasingly on data
assimilation technology, which optimally blends numerical
model results and remotely sensed information to generate
more accurate and physically consistent products. Compared
with ground observations, which are scattered and often do
not represent regional averages, satellite observations effec-
tively expand the spatial coverage to the regional and conti-
nental scale. Among satellite observations, SCF products are
unique in their estimation of SWE distribution compared with
other products, such as microwave‐based estimates. Snow
has distinct reflectance effects in visible and infrared bands
[Hall et al., 2002], which can be measured at relatively high
spatial resolutions [Hall et al., 2002; Hall and Riggs, 2007].
Further, SCF retrieval with these algorithms does not require
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information about the microscale internal properties of
snowpack, for example, density, grain size, and liquid water
content, although an implicit relation may be involved.
Consequently, remotely sensed SCF information has been
increasingly used to correct SWE estimates from land surface
models, via the ensemble Kalman filter (EnKF) technology
[e.g., Andreadis and Lettenmaier, 2006; Clark et al., 2006;
Su et al., 2008]. However, a number of limitations degrade
the quality of assimilated SWE products, or hamper appli-
cation in specific climatic and geographic environments,
including the following:
[4] 1. A low correlation between SCF and SWE when the

model grid averaged SWE exceeds a threshold. In this situ-
ation small changes in SCF lead to a wide range of SWE for a
given location. Several studies [Clark et al., 2006; Su et al.,
2008] have found that SCF assimilation performs best with
partial snow cover (e.g., ephemeral snow in mountains and
grasslands) but performs poorly when the SCF signal is sat-
urated (near 100% SCF) and insensitive to further SWE
increments (e.g., during the accumulation season over boreal
forest and tundra).
[5] 2. Parameter errors in the observational operator. A

key component of the SCF approach is a parameterized
relationship (observation operator or function) between SCF
and SWE at each model grid. Various observation functions
have been utilized in the literature [e.g., Andreadis and
Lettenmaier, 2006; Clark et al., 2006; Su et al., 2008], each
having some key parameters characterizing geographic and
scale effects. These distributed parameters are usually diffi-
cult to measure (since they rely on intensive calibration) and
their errors can degrade SWE retrievals.
[6] 3. Errors in satellite‐derived SCF data. Although the

EnKF algorithm can account for observational noise, SCF
error magnitude (variance) can be difficult to quantify in
certain environments like mountains [Hall and Riggs, 2007]
or when obscured by cloud cover and vegetation [Hall and
Riggs, 2007]. These environments can also lead to system-
atic errors not accommodated by current data assimilation
systems.
[7] These three types of errors tend to be magnified when

present simultaneously. For example, if the SCF signal is
saturated during a boreal forest winter, a small amount of
bias in SCF data or uncertainty in parameters may lead to
significant errors in the observation operator and hence the
SWE update.
[8] All these limitations motivate us to develop a new

methodology for improving continental‐scale SWE and
relevant estimates, using additional information from other
satellites. Since SCF observations mainly characterize the
spatial distribution of snowpack, the inclusion of further
model constraints such as mass and energy terms should be
complementary. An analogous approach has been applied
in estimating soil moisture, evapotranspiration, and other
hydrological states and fluxes [e.g., Renzullo et al., 2008],
where multiple data resources are shown to improve esti-
mates. Nevertheless, there has been little research devoted to
exploring the nature of multisensor or multifrequency (for
radiometer) snow data assimilation. Among the first studies
were those of Durand and Margulis [2006, 2007], but their
synthetic experiments are confined to point‐ and river‐basin‐
scale snowpack and they focus on radiometric observations.

[9] Monthly global terrestrial water storage (TWS) esti-
mates have been available from the Gravity Recovery and
Climate Experiment (GRACE) satellite system since 2002.
GRACE provides estimates of total surface mass change
from month to month using changes in the Earth’s gravity
field, with a spatial resolution comparable to satellite alti-
tude, about 400 km. Thus, unlike visible band instruments,
GRACE operate under all‐weather conditions (as do micro-
wave radiometers) and measures integrated total land water
change from canopy to deep groundwater. Much research
has focused on extracting from GRACE meaningful trends
and variabilities of individual TWS components (e.g., soil
moisture, snow, groundwater) [e.g., Rodell et al., 2004; Niu
et al., 2007b; Syed et al., 2008]. More recently Zaitchik et al.
[2008] incorporated GRACE TWS data into a land surface
model using a Kalman smoother (EnKS) to improve water
storage and flux estimates in the Mississippi River basin
(where snowpack was simply updated without direct calcu-
lation of SWE increments from its ensemble statistics).
[10] In this study we propose to use GRACE TWS mea-

surements to complement Moderate Resolution Imaging
Spectroradiometer (MODIS) SCF data assimilation overNorth
America. Integration of radiometer (at visible and infrared
bands) and gravity measurements into a land surface model
over such a large domain has received little attention.
Accordingly, we focus on the following questions: How
can we jointly assimilate the two types of snow information
that have distinct physical and geographic features? Can the
GRACE data assimilation improve SWE and snow depth
retrieval, relative to MODIS‐only data assimilation? How
do these improvements (multisensor versus single sensor),
if any, vary geographically, and with what underlying
mechanisms? Specific attention is given to the special prop-
erties of GRACE TWS data (e.g., its spatial and temporal
resolution). The performance of GRACE data regarding the
controlling factor for TWS assimilation and the capability of
reducing ensemble variance is interpreted quantitatively. The
central purpose is to develop observational and algorithmic
techniques for accurately characterizing SWE and other cold‐
region hydrological variables.
[11] Section 2 introduces data and methods applied in the

data assimilation experiments. Section 3 describes in detail
how these experiments were implemented. The results are
analyzed in section 4, and section 5 provides interpretations
and comments on specific features of the multisensor data
assimilation. Concluding remarks are given in section 6.

2. Data and Methodology

2.1. Moderate Resolution Imaging Spectroradiometer
(MODIS) and Gravity Recovery and Climate
Experiment (GRACE) Satellite Data Sets

[12] Daily MODIS SCF data at 0.05° resolution
(MOD10C1) are used in this study. MODIS uses seven
spectral bands to retrieve land surface properties. Its snow
mapping algorithm estimates SCF using a normalized dif-
ference snow index (NDSI) [Hall et al., 2002] and is able to
distinguish between snow and cloud [Hall et al., 2002]. Su
et al. [2008] described the MODIS data processing used
here, including spatial upscaling of raw data and cloud
parameter selection for quality control.
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[13] GRACE monthly gravity fields are represented as
spherical harmonics to degree and order 60, with most
time‐variable atmospheric and oceanic gravitational effects
removed during data processing. Remaining gravity changes
are interpreted as monthly changes in vertically integrated
water storage components, for example, snow, soil moisture,
and groundwater storage. GRACE estimates are smoothed
with a Gaussian averaging kernel with a 500 km radius and
filtered to remove longitudinal stripes that are a recognized
noise component in current solutions [Chen et al., 2008].
GRACE estimates are then represented on 4° × 4° tiles
using bilinear interpolation for compatibility with the model
grid configuration (1° × 1° over North America). These time
series span the period from November 2002 to May 2007,
with missing values in December 2002 and June 2003. Here
the TWS data are in their multiyear anomaly form, in which
the long‐term mean TWS is subtracted from each monthly
value. In practice, GRACE time series values are computed
from observations taken from about one‐half month before
to one‐half month after the date assigned to the sample.
[14] According to their physical features, MODIS and

GRACE contain different information relevant to SWE
retrieval. MODIS measures SCF at a high spatial resolution
compared to bothGRACEand the numerical model, observing
both accumulation and ablation with approximately the same
level of accuracy. GRACE measures total column water
change at a far coarser spatial and temporal scale and does not
include information about the individual components con-
tributing to water storage change. However, SWE is expected
to be the dominant variable component of TWS in winter
in cold regions [Niu et al., 2007b]. Its relative contribution
diminishes during melting, when MODIS is thought to be
more closely correlated with SWE. GRACE estimates are not
affected by vegetation (except as its mass changes), topog-
raphy, or cloud cover, and GRACE is useful under conditions
where the value of MODIS is limited by these influences.

2.2. Observation‐Based Climatologic Snow Water
Equivalent (SWE) and Snow Depth Data Sets

[15] The Canadian Meteorological Center (CMC) snow
depth and SWE climatology data (1969–1997) [Brown et al.,
2003] are used for validation purpose. These provide the daily
snow depth and SWE at a 0.25° resolution. The snow esti-
mates were obtained by combining abundant station observa-
tions in the United States and Canada with model simulations
by an optimum interpolation scheme [Brown et al., 2003].
These observationally based data sets are regarded as the
best available reference for this research.

2.3. Land Surface Model

[16] The Community Land Model (CLM) [e.g., Bonan et
al., 2002; Oleson et al., 2004] is used as the land surface
model to assimilate GRACE andMODIS data. It numerically
simulates energy, momentum, and water exchanges between
the land surface and the overlying atmosphere. Its snow
model has multilayers (one to five layers), depending on its
thickness, and accounts for processes such as liquid water
retention, diurnal cycling of thawing‐freezing, snowpack
densification, snowmelt, and surface frost and sublimation.
[17] The CLM used in our experiments includes an

enhanced frozen soil hydrology scheme and a new aquifer
dynamical scheme, among other modifications [Niu and

Yang, 2006; Niu et al., 2007a]. The aquifer model, by
explicitly simulating groundwater dynamics, facilitates
assimilation of TWS observations. Water storage in the sat-
urated zone is a prognostic variable and directly represented
in the calculation of TWS in each grid, facilitating the com-
bination of GRACE data with model estimates [Zaitchik et
al., 2008]. In addition, CLM’s sophisticated representation
of frozen soil hydrology has improved its ability to charac-
terize soil moisture and runoff variability in cold regions, thus
reducing the systematic error in TWS estimation. These
enhancements reduce model biases (for more discussion see
Niu and Yang [2006] and Niu et al. [2007b]). The negative
effects of model biases cannot be eliminated by updating state
variables alone, and model bias can have complex effects
on the data assimilation system; for example, De Lannoy
et al. [2007].

2.4. Ensemble Kalman Filter and Smoother

[18] The EnKF [Evensen, 1994, 2003] and EnKS are used
to incorporate MODIS and GRACE data into the CLM,
respectively. The choice of algorithms, that is, the EnKF for
MODIS SCF assimilation and the EnKS for GRACE TWS
assimilation, depends on the nature of satellite data sets, as
explained here.
[19] The EnKF was first introduced by Evensen [1994] as

a Monte Carlo–based approximation to the Kalman filter in
a numerical modeling system. More recently, it has been
applied in numerous land data assimilation studies [e.g.,
McLaughlin, 2002; Reichle et al., 2002;Crow, 2003]. It treats
some crucial model inputs, such as forcing data, model
parameters, and model initial conditions, as random vari-
ables, and ensembles of these inputs are generated to repre-
sent their distributions. Each ensemble member is propagated
forward using the model until a measurement becomes
available. The measurement is assimilated into the model
simulation by using the ensemble of state variables to rep-
resent a low‐rank approximation of the joint probability
density function between state variables and measurements.
Meanwhile the EnKF update is optimal only when certain
assumptions are met: (1) unbiased measurements and back-
ground (model simulated) variables, (2) Gaussian‐type random
inputs (e.g., the forcing errors), and (3) linear relationships
between states and measurements. Given the preceding
properties, the EnKF is able to characterize highly nonlinear
land hydrological processes and their associated uncertainties.
Such sequential data assimilation accounts for the temporal
sampling discrepancy between CLM (3 h) and MODIS data
(daily), as discussed by Su et al. [2008], who provide addi-
tional details.
[20] The EnKS [Dunne and Entekhabi, 2005, 2006] is

theoretically similar to the EnKF but allows for (1) observa-
tions that are defined at different times than the model state
and (2) observations that span multiple periods of time,
comprising, for example, both current and historical model
states. Because the GRACE data are at monthly intervals and
the CLM runs at 3 h, the EnKS is used to compare model
estimates of TWS with those of GRACE and derive updates
for state variables. The update of the EnKS is

X a
i;t ¼ X b

i;t þ Kt;T1½YT1 � HT1ðX b
i;tÞ þ v iT1�; ð1Þ
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where Xi,t
a represents the updated ith ensemble member of

the state vector, and Xi,t
b represents the corresponding

ensemble member simulated by the model. The ensemble
state vector is defined at time t, which can be a daily average
value and differs from the GRACE observation YT1 (monthly
TWS anomaly with respect to a multiyear mean) defined for
a month T1. HT1(Xi,t

b ) is the observation function for the
month T1, as obtained by integration of model TWS com-
ponents over all grids within the GRACE tile (4° × 4° in
this study) and over all days within month T1. The noise
term vT1

i is randomly drawn from a Gaussian distribution
(with zero mean and variance equal to that of the observation
error) to ensure an adequate spread of the analysis ensemble
members [Burgers et al., 1998]. The Kalman gain Kt,T1 is
obtained with the same ensemble approach as used in the
EnKF,

Kt;T1 ¼ Cov
�
X b
t ;HT1ðX b

t Þ
�
CovðHT1ðXb

t Þ;HT1ðXb
t ÞÞ þ RT1

� ��1
;

ð2Þ

where RT1 is the autocovariance of the observation error.
The autocovariance of the model simulated observation,
Cov[HT1(Xt

b), HT1(Xt
b)], and the cross‐covariance, Cov[Xt

b,
HT1(Xt

b)], are estimated from the inner products of the corre-
sponding ensemble [Xi,t

b and HT1(Xi,t
b )] anomalies, that is, the

ensemble minus their mean.
[21] The EnKS provides a reasonable way tomatch GRACE

estimates of changes in TWS for eachmodel simulated day. In
reality the GRACE estimates incorporate varied information
about any particular geographical location because orbits do
not repeat. Thus it is difficult to set a uniform frequency and
associated time accurately characterizing the satellite track in
each grid. Our approach appears to be justifiable because,
with slow temporal variation at large spatial scales, the
monthly samples should adequately describe the TWS.

3. Implementation of Data Assimilation
Experiments

[22] Three experiments are designed to address the ques-
tions stated in section 1. One is the open loop (OL) simulation,
where the CLM alone is used to estimate SWE and other land
variables. The second is a MODIS‐only (MOD) data assim-
ilation experiment similar to that used by Su et al. [2008]. The
third is the joint MODIS‐GRACE (MOD_GR) data assimi-
lation experiment.
[23] All simulations are driven by themeteorological forcing

data set from the Global Land Data Assimilation System
(GLDAS) at a 1° × 1° resolution. The GLDAS forcing data
are observationally derived fields including precipitation, air
temperature, air pressure, specific humidity, and short‐wave
and long‐wave radiation. The forcing data (e.g., precipitation)
biases are not explicitly accounted for in this data assimi-
lation approach, because of the lack of such information. The
CLM is run from January 2002 to June 2007. The ensemble
runs do not assimilate observations until November 2002. In
MOD_GR, the relative error in the lognormal perturbation of
precipitation is 65%, and the e‐folding scale of horizontal
error correlations is 3° (in both latitude and longitude) for
precipitation and temperature. A temporal correlation of
3 days is assumed for the forcing perturbation. The selection

of these forcing parameters is based on previous research on
GRACE data assimilation (e.g., Andreadis and Lettenmaier,
2006; Zaitchik et al., 2008). These parameters are also
applied in MOD. Additional experiments show that the
change of forcing error parameters by Su et al. [2008] to the
preceding values did not influence the MOD run signifi-
cantly, and the main purpose here is to keep them the same
in both MOD and MOD_GR. All other ensemble parameters
in MOD and MOD_GR are the same as those of Su et al.
[2008]. We recognize that a more comprehensive descrip-
tion of forcing error (e.g., only errors in precipitation and
temperature are considered in this research; also bias is not
considered) needs to be included in further research. The
ensemble size is 25, which has been demonstrated to be
suitable for large‐scale snow data assimilation by Su et al.
[2008]. Here we focus on describing the implementation of
MOD_GR with EnKS.
[24] On each day in a given month the MODIS SCF is

integrated into the ensemble simulation at every 1° × 1°
model grid as performed in the MOD experiment. Here a
“fixed interval state inflation” is applied, which periodically
augments the ensemble spread of SWE at all tiles in every
CLM grid. Specifically, the SWE simulation takes the form

xSWE;t ¼ f ðxSWE;t�1; ptÞ þ !t ðt ¼ every q daysÞ ð3Þ

every q days. Here f represents the CLM, wt represents the
perturbation on the state variable xSWE,t with variance of
Q, and pt represents the perturbed forcing. At other steps
the SWE is simulated by the function f without any state
inflation:

xSWE;t ¼ f ðxSWE;t�1; ptÞ ðt ¼ other time stepsÞ: ð4Þ

Note that if SWE is ≤0 after inflation, then the inflation is
not given.
[25] This inflation scheme is tailored to the needs of

ensemble simulation of SWE. The absence of inflation
may lead to too small a spread of the ensemble, degrading
EnKF and EnKS performance. On the contrary, too fre-
quent an inflation can cause excessive ensemble spread and
unrealistic updates. Augmenting the state at each time step is
not necessary since the main source of SWE uncertainties,
the forcing uncertainty, has been dealt with elsewhere. For
this reason, the selection of q and Q is largely application
specific, and here q = 6 and Q = 36 mm2 (which are repre-
sentative in both MOD and MOD_GR, as demonstrated
later) are taken as domainwide values for both MOD and
MOD_GR. This study does not address the development of
more objective ways to select these parameters, such as the
adaptive filter algorithm [Reichle et al., 2008]. Our initial
tests found that for a MOD run, this state inflation using
parameters q1 and Q1 within a reasonable range (q1 ≥ 3 and
Q1 ≤ 60mm2, which includes the case of no inflation) affected
(relative to CMC observation data) the data assimilation
results only slightly; for a MOD_GR run, a similar range
(3 ≤ q2 ≤ 8 and 20 mm2 ≤ Q2 ≤ 100 mm2) exists in which
the changes in q2 andQ2 also barely affected (relative to CMC
observation data) the data assimilation results. Parameters
that are significantly outside the preceding ranges would
dramatically alter the results in two experiments by degrading
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the quality of the SWE estimates compared with the CMC
observation data set (detailed results are not presented here).
[26] At the end of the month when all the MODIS data

have been assimilated, the GRACE TWS information (on
4° × 4° tiles) is distributed into the archived state vector
(on 1° × 1° grids) consisting of the daily averaged SWE,
snow depth, canopy snow, soil moisture, and aquifer storage,
according to the ensemble calculated error statistics for each
water storage component and the TWS variable. This spatial
and temporal disaggregation is accomplished by using the
EnKS (equation (1)) with the GRACE observation errorffiffiffiffiffiffiffi
RT1

p
set to 20 mm, consistent with previous studies [e.g.,

Zaitchik et al., 2008]. Because the observation YT1 in
equation (1) is an anomaly value (with respect to a mean
over the GRACE observation period), HT1(Xi,t

b ) takes into
account the model TWS climatology at each GRACE tile.
The state vector at the last step of each month is updated with
equation (1), then propagated by the model to the next
month to repeat the above data assimilation cycle.
[27] The method presented utilizes each daily ensemble of

state variables (Xi,t
b in equation (1)) to calculate the corre-

sponding Kalman gain to give a theoretically robust estimate
of data assimilation increments, although these updates are
not involved in the model propagation. The memory of state

variables update is represented by reinitializing the simula-
tion (with the updated state vector) at the last step of each
month. Our adaptation of the EnKS could be improved, given
the complexity resulting from the temporal scale difference
between GRACE data and the model.

4. Results

[28] We focus on evaluating the estimates of SWE and
other snow variables, even though other updated land surface
states and fluxes are also provided by the MOD_GR simu-
lation. An extensive assessment of the improvement in all
the other hydrological variables from the multisensor snow
data assimilation should be addressed in future research (our
initial analyses find that the impacts of MOD and MOD_GR
on estimation of water and energy fluxes, e.g., latent and
sensible heat and runoff, are small at the monthly scale).

4.1. Monthly SWE Difference Between MODIS‐Only
(MOD) and Joint MODIS‐GRACE (MOD_GR)
Experiments

[29] The spatial distribution of SWE differences between
single‐sensor (MOD) and multisensor (MOD_GR) experi-
ments illustrates the incremental value of GRACE infor-
mation. Figure 1 shows that this monthly averaged field

Figure 1. Difference in monthly snow water equivalent (SWE; mm) between joint Moderate Resolution
Imaging Spectroradiometer (MODIS)–Gravity Recovery and Climate Experiment (GRACE; MOD_GR)
and MODIS‐only (MOD) data assimilation experiments in the cold season of 2003.
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has considerable spatial heterogeneity in the cold season
(January–April). Large changes in the SWE estimate of the
MOD_GR run (compared to MOD) are concentrated in
high‐latitude regions. In particular, SWE estimates are found
to be lower in boreal forests, with the difference ranging
from 20 mm in January to 100 mm in April. In the tundra
region of the Arctic, SWE estimates are higher by up to
30 mm (in April) after assimilating GRACE data. All of
these differences correlate well with the period of snow
accumulation, which starts around January and peaks in
April. In contrast, the northern Great Plains and Midwest
mountainous area show little change.
[30] Monthly difference fields in other years demonstrate

similar patterns, although the sign of the difference may
vary from year to year. A detailed investigation of the sign
and its spatial and temporal variation would involve quan-
titative analyses of several complicated factors, including the
SCF parameterization curve, MODIS data bias, and others.
The interaction of these components may be complex as
demonstrated in section 1, and it is not a focus here.
[31] Generally, the distinct patterns of differences shown

in Figure 1 are consistent with the remarks about strengths
and limitations of SCF data assimilation presented in
section 1. In regions where the SCF signal is saturated

Figure 2. The eight North American river basins analyzed.

Figure 3. Monthly terrestrial water storage (TWS) anomaly (November 2002 to May 2007) from the
simulations, open loop (OL), MOD, and MOD_GR, and the GRACE observation, averaged over four
of the North American river basins shown in Figure 2. For OL the TWS anomaly in other months in the
years 2002 and 2007 are also shown for reference.
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(boreal forest and tundra) and the correlation between SCF
and SWE is low, the TWS signal is still sensitive to SWE
variation and so the EnKS algorithm corrects the MOD
estimate. For areas where MOD is expected to achieve its
best performance (e.g., the northern Great Plains), the impact
of GRACE is less evident. The large change in northwest
Pacific coastal regions may reflect the potential of GRACE
(1) to alleviate MODIS errors in mountainous regions, (2) to
correct parameters error in the observational function, and
(3) to reduce the influence of forcing bias in that area.
However, it is difficult to identify the relative contribution
of these factors given the lack of evaluation tools (e.g.,
abundant station measurements).
[32] SWE differences alone do not verify the MOD_GR

approach, so it is important to directly evaluate the
MOD_GR along with other simulations.

4.2. Terrestrial Water Storage Anomaly

[33] The long‐term (November 2002 to May 2007)
monthly TWS anomaly averaged over eight large river
basins (Figure 2) in North America, as simulated by OL,
MOD, and MOD_GR and observed by GRACE, is shown
in Figures 3 and 4. For those basins where boreal forests
dominate, for example, the Mackenzie River basin and the

Churchill & Nelson River basin, winter TWS is generally
overestimated by MOD and OL relative to GRACE in the
first 2 years (November 2002 to April 2004). The MOD_GR
run agrees better with GRACE. Since the winter TWS
anomaly is mainly attributed to SWE in those regions [Niu
et al., 2007b], these results correspond well to the SWE
difference depicted in Figure 1. In the following winters,
the difference between GRACE and OL‐MOD may vary,
but as expected, MOD_GR agrees better with GRACE
than the other two simulations.
[34] In the Saint Lawrence and Fraser River basins, where

the snow classes [Sturm, 1995] are maritime and alpine,
respectively, results are comparable to those just presented.
Overestimation of TWS (especially in Fraser) by MOD in
most winters reveals the deficiency of MODIS updates in
these geographic environments (related to vegetation cover
and/or mountains). The poor performance of MOD in the
Fraser River basin may be due to forcing or parameters
errors, since the SCF signal should be responsive to SWE
variations in that mountainous area.
[35] In the Yukon River basin, all estimates agree rea-

sonably well with each other except for a closer match
between MOD_GR and GRACE in the winter of 2007.
Spatial heterogeneity of the SWE differences shown in

Figure 4. Same as Figure 3, but for another four river basins in North America.
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Figure 1 may explain this agreement; that is, overestimation
of MOD relative to MOD_GR in the northern part is offset
by underestimation in the south. The agreement in the
Columbia River basin may have different causes, such as
high‐quality forcing, a reliable connection between SCF
and SWE as described by the observation function, and
accurate treatment ofMODIS error in the ensemble approach.
The hydroclimatologic conditions in this river basin have
been studied intensively, and our analyses of the reliability of
the forcing data and SCF parameterization in this region
support the above attribution. Details are not presented here.
[36] In the North Central and Missouri river basins, where

MOD has been found to perform well in this region of flat
topography, low vegetation and unsaturated SCF [Su et al.,
2008], MOD, and MOD_GR TWS estimates are similar to
each other and to GRACE. In particular, Figure 3 shows an
increase in TWS in the first two winters over the Missouri
River basin in MOD and MOD_GR relative to OL, pre-
sumably from the increase in the SWE estimate as validated
by Su et al. [2008] with independent satellite data sets.
Overall, these results imply that the MODIS data have well
constrained the SWE simulation in these two basins, while

GRACE has had little impact, though it does not degrade the
SWE and TWS estimates.

4.3. Climatologic Monthly SWE and Snow Depth

[37] SWE and snow depth estimates generated by different
simulations are directly evaluated through their comparison
with the CMC monthly climatology. Our experiments esti-
mate a climatology of SWE for five consecutive winters, as
limited by the relatively short length of satellite data.
[38] Figure 5 shows the difference of (multiyear) average

April SWE (mm) between simulation results (MOD_GR,
MOD and OL) and CMC. In the central northern areas the
CMC SWE is systematically lower than model or data
assimilation values. However, in many places (especially at
high latitudes), the difference between CMC and MOD_GR
is significantly smaller than that between CMC and MOD.
Those improvements over MOD across the boreal forest are
consistent with those shown in the TWS anomaly comparison
(Figures 3 and 4). These effects are most prominent in the
southern Mackenzie River basin, the southwest rim of
Hudson Bay, the center of the Churchill & Nelson River
basin, and north of the Rocky Mountains. The OL has a

Figure 5. The climatological monthly average SWE (mm) for April derived from the Canadian Meter-
ological Center (CMC) long term observation data, and SWE difference in April between MOD_GR and
CMC, between MOD and CMC, and between OL and CMC.
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performance comparable to or even better thanMOD_GR in a
significant portion of the (central) high‐latitude areas as dis-
played in Figures 3 and 4. In the midlatitude part of the
domain the differences among OL, MOD, and MOD_GR
are much less significant, for example, the Columbia River
basin, where the results agree with the pattern shown in
Figure 4. Similar to what was shown by Su et al. [2008],
in some boreal forest regions MOD SWE differs from CMC
by a much larger magnitude than the difference between OL
and CMC, indicating that in some locations theMODIS snow
data assimilation system may degrade results relative to OL,
probably owing to structural problems in the observation
function (e.g., negligible correlation between SCF and SWE,
parameter error) or other components. Similar effects brought
by model deficiencies have been documented previously
[Zaitchik et al., 2008].
[39] Table 1 lists the mean absolute error (MAE) of

monthly SWE (millimeters) from January to June at eight
river basins (at middle and high latitudes) in North America.
The MAE is calculated in each river basin and month by

averaging the absolute difference between simulation results
and CMC (monthly) over grids in that river basin. A sig-
nificance test of the MAE is performed and the superscripts
show that MOD_GR and OL have significantly lower MAEs
(t test, p < 0.01) than some of their counterparts in associated
river basins and month. In the Columbia River basin the
errors of three experiments are not distinguishable at p < 0.01
level for all months (January to June). In the North Central,
Missouri, and Saint Lawrence river basins, MOD_GR (also
MOD; not shown here) shows a significantly lower MAE
than does OL. Also, MOD_GR shows a consistently lower
error than MOD in the Saint Lawrence river basin. MAE
results between MOD and MOD_GR in high‐latitude areas
are similar to that in Figure 5, indicating consistently better
performance of MOD_GR over MOD there. In some high‐
latitude river basins (e.g., Mackenzie, Churchill & Nelson,
and Yukon) and given months, OL can show a performance
either indistinguishable from or better than that of MOD_GR,
and in most of these areas OL also performs better than
MOD. Together with Figure 5, these results indicate potential

Table 1. Mean Absolute Error of Monthly Snow Water Equivalent From January to June at Eight River Basins in North America for
Three Experimentsa

Jan Feb Mar Apr May Jun

Columbia
MOD_GR 34.2 48.6 48.1 36.2 27.4 2.4
MOD 36.9 46.1 47.0 32.8 24.8 4.0
Open_Loop 38.6 50.0 53.2 38.3 26.0 2.5

Fraser
MOD_GR 53.3 (b) 68.8 (b) 89.3 (a) 116.2 (b) 62.1 (a) 12.6 (a)
MOD 62.4 86.5 104.1 137.2 68.2 30.9
Open_Loop 50.7 (e) 74.9 103.0 126.8 86.0 21.6

Saint Lawrence
MOD_GR 12.6 (a) 18.2 (a) 23.8 (a) 32.8 (a) 12.1 (a) 2.2
MOD 23.1 29.1 36.5 47.2 21.8 4.1
Open_Loop 37.8 35.3 50.8 68.2 22.6 2.0

Mackenzie
MOD_GR 27.7 (a) 23.3 (a) 26.5 (a) 67.8 (b) 36.3 (b) 8.8 (b)
MOD 39.1 39.6 53.5 86.6 46.2 22.0
Open_Loop 46.5 37.8 41.7 58.89 (e) 26.2 (d) 4.7 (e)

Churchill and Nelson
MOD_GR 21.6 (b) 26.9 (b) 42.1 (b) 58.1 (b) 6.2 1.9
MOD 36.2 36.9 69.2 82.6 6.2 2.6
Open_Loop 29.1 21.3 (e) 36.1 (e) 48.6 (d) 6.3 1.3

Yukon
MOD_GR 52.8 (c) 46.2 (a) 52.1 (a) 58.6 (b) 33.9 (a) 26.1 (b)
MOD 51.2 57.1 62.6 70.1 52.1 36.8
Open_Loop 63.1 62.4 68.3 56.2 (e) 59.8 18.5 (e)

Missouri
MOD_GR 18.0 (c) 20.9 (c) 12.9 (c) 11.0 2.7 0.1
MOD 19.3 21.2 12.1 11.7 3.6 1.0
Open_Loop 27.6 29.6 21.3 10.2 2.7 0.1

North Central
MOD_GR 19.8 (c) 21.1 (c) 15.6 (c) 4.1 0.1 0.0
MOD 16.2 18.2 12.1 3.7 1.5 1.2
Open_Loop 26.2 26.4 21.8 3.3 0.1 0.0

aValues are inmm.MOD_GR, jointModerate Resolution Imaging Spectroradiometer (MODIS)–Gravity Recovery and Climate Experiment (GRACE);MOD,
MODIS only. Letters in parentheses indicate that a specific experiment has a significantly lowerMean absolute error (MAE) (t test, p < 0.01) in the associated river
basin and month than some of its counterparts; significant values are bold. In particular, a, the MOD_GRMAE is significantly lower than that of both MOD and
open loop; b, MOD_GR MAE is only significantly lower than MODMAE; c, the MOD_GR MAE is only significantly lower than that of the open loop; d, the
open loop MAE is significantly lower than that of both MOD and MOD_GR; e, open loop MAE is only significantly lower than MOD MAE.

SU ET AL.: MULTISENSOR SNOW DATA ASSIMILATION D10104D10104

9 of 14



deficiencies in the MOD_GR experiment. In particular, the
bias and variance magnitude of GRACE observational error
could be important. As indicated by Wahr et al. [2006]
GRACE error variance is probably latitude dependent,
diminishing at high latitudes where the satellite track density
increases. A spatially uniform error variance was assumed for
GRACE TWS in this research. Other problems associated
with GRACE estimates, such as bias and spatial leakage,
including leakage of tide model errors from adjacent oceans,
may be important. Another recognized error source is the
diminished variance introduced by smoothing GRACE data
to suppress noisy spherical harmonics to a great degree. Such
problems may contribute to the poor performance relative to
OL. Further improvement ofGRACE estimates, including bias
correction and regional error magnitude (variance) description,
is appropriate but outside the scope of this paper. Another
important thing to note is that, in contrast to the above spa-
tially averaged error statistics comparison, ensemble results
(at the daily temporal scale) from different simulations at
grid scale show a much more complex pattern. The relative
magnitude of ensemble spreads of OL, MOD, and MOD_GR

can vary significantly across grids in different river basins
or even within the same basin. This lack of evaluation of
ensemble results needs to be mitigated in further research.
[40] Seasonal variations (from November to June) of SWE

and snow depth (climatological values) for selected rectan-
gular areas are shown in Figures 6 and 7. Figure 6 (top) shows
an area located south of Hudson Bay, comparing the perfor-
mance of MOD and MOD_GR for a northern densely vege-
tated region. From mid December, MOD simulated SWE
and snow depth are larger than those for MOD_GR and OL,
with the difference peaking in March or April and then
gradually decreasing. The benchmark CMC curves are well
mimicked by the MOD_GR run. MOD estimates tend to be
closer to CMC than to OL during the melting season (May),
demonstrating that the recovery of MODIS capability for
monitoring snowpack mass variation as the SCF falls far
below 100%. Figure 6 (bottom) shows an area located in the
central prairies region. OL significantly underestimates snow-
pack, as shown by Su et al. [2008], and MOD_GR uniformly
agrees better with CMC than does MOD, suggesting that the
contribution of GRACE in midlatitudes may be location and

Figure 6. Climatological monthly mean SWE (mm) and snow depth (m) from November to June in two
rectangular regions for the simulations (MOD, MOD_GR, and OL) and the CMC long‐term observation
data. Locations are (top) 51°–55°N, 94°–85°W (box B in Figure 8) and (bottom) 46°–49°N, 98°–94°W
(box A in Figure 8).
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scale dependent. Even at the large basin scale, there is a
need for a more comprehensive assessment of the GRACE
contribution when MODIS performance is adequate. We
discuss this issue in section 5.2.
[41] Figure 7 shows another comparison in two different

places: 62°N–68°N, 120°W–130°W (Figure 7, top) and 55°
N–60°N, 100°W–110°W (Figure 7, bottom). Similar patterns
are shown in these two places, in which MOD_GR and OL
are both better than MOD and are close to each other. The
OL could be slightly better in February, March, and April.
These features are consistent with those analyzed in Table 1,
reflecting considerable room for refinement of MOD_GR
in those areas.

5. Discussion

5.1. Role of the Autocovariance of the SWE Ensemble

[42] It has been shown that GRACE TWS data can have a
substantial influence on snowpack estimates over many
high‐latitude and some midlatitude regions. The key ele-

ments that affect how GRACE contributes in an ensemble
context include its fundamental nature as a measure of total
column water and its coarse spatial and temporal resolution.
According to equations (1) and (2) the covariance between
the analyzed variable, SWE, and the simulated TWS largely
controls the magnitude of the EnKS increments given the
unit innovation. We can explicitly expand this covariance
(in scalar form) as

Cov Xt;l;SWE;XT1;L1;TWS

� � ¼ Cov Xt;l;SWE;
XN
ti¼1

XM
li¼1

Xti;li;SWE

 !

þ Cov Xt;l;SWE;
XN
ti¼1

XM
li¼1

Xti;li;SM

 !

þ Cov Xt;l;SWE;
XN
ti¼1

XM
li¼1

Xti;li;wa

 !
; ð5Þ

where Xti,li,SWE, Xti,li,SM, and Xti,li,wa represent SWE, total
soil moisture, and aquifer water storage at day ti, land tile li,

Figure 7. Same as Figure 6 but for different locations. Locations are (top) 62°N–68°N, 120°W–130°W
(box C in Figure 8) and (bottom) 55°N–60°N, 100°W–110°W (box D in Figure 8).
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in month T1 (with N days), and GRACE footprint L1 (with
M model grids), respectively. XT1,L1,TWS represents the
monthly (T1) average TWS over L1. The symbol

PP
represents spatial and temporal averaging. The other sym-
bols have the same meaning as before. Here the decompo-
sition of TWS neglects canopy snow for simplicity. If we
further simplify equation (5) by considering only zero‐lag
covariance parts of the second and third terms on the right
side, it becomes

CovðXt;l;SWE;XT1;L1;TWSÞ � Cov Xt;l;SWE;
XN
ti¼1

XM
li¼1

Xti;li;SWE

 !

þ CovðXt;l;SWE;Xt;l;SMÞ
þ CovðXt;l;SWE;Xt;l;waÞ: ð6Þ

Although incomplete, this expression provides a first‐order
estimate of the covariance between the daily SWE at any
grid and the GRACE data, in particular, for the accumula-
tion season. It assumes that soil moisture and groundwater
anomalies are temporally and spatially not well connected to
the SWE anomaly before snowmelts (a separate calculation
of the lagged correlation between the SWE and the other

two TWS components supports this assumption, but it is not
shown here).
[43] Figure 8 provides a monthly composite description of

the cross‐correlation between SWE and the other two TWS
components (the second and third terms on the right‐hand
side of equation (6)) in February 2003; other months before
strong melting show similar results. Only in the colored areas
is there a significant correlation (p < 5%) for more than
2 days in February. It is shown that, over most of the domain,
neither correlation field is significant for a majority of days
within that month. This implies that the autocorrelation of
SWE (the first term on the right‐hand side of equation (6))
largely determines the magnitude of GRACE information
that can be utilized by the CLM.

5.2. Ensemble Variance Reduction by Assimilation
of GRACE

[44] By design, the EnKS reduces ensemble error by
combining observations with model estimates. Thus it is
valuable to analyze error reduction (or a related quantity) by
GRACE in the multisensor data assimilation framework. In
addition, the relevant metric can contribute to understanding
the GRACE effects in regions where MODIS alone provides
considerable improvement. The TWS anomaly shown in
Figure 4 (the Missouri River basin and North Central River
basin) may be inconclusive for this purpose.
[45] Here we use the following statistic, effectiveness

ratio r, to define the ensemble variance reduction capability
(in scalar form) of GRACE:

� ¼ VarðX b
SWEÞ � VarðX a

SWEÞ
VarðX b

SWEÞ
; ð7Þ

where XSWE
b and XSWE

a are background and analysis SWE
ensembles in the EnKS. Also, note thatXSWE

b =XSWE
a (EnKF).

Note that here we cannot directly calculate the ensemble
error because the ensemble may have bias. Also, we do not
have high‐quality observations to quantify ensemble error.
So equation (7) provides a purely ensemble‐based statistic,
which may, to some extent, be an indicator of uncertainty

Figure 8. In the colored grids, the number of days in which
the corresponding daily correlation (zero temporal and
spatial lag) between (top) SWE and soil moisture and
(bottom) SWE and groundwater is significant (p < 5%) is
≥2 in February 2003. Using a lower standard in the p value
test (e.g., p < 10%) did not change these two colored maps
significantly (they remained almost the same). Boxes A–D
in Figure 8 (top) show the locations in Figures 6 and 7.

Figure 9. Daily river basin averaged r (equation (7)), from
January to June 2003, for the Mackenzie River basin and the
North Central River basin.
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reduction from the EnKS. With this in mind, the normalized
index facilitates intercomparison of GRACE’s ensemble
variance reduction capability (to the SWE ensemble) among
different regions. Its theoretical value ranges from 0 (no
reduction of ensemble variance) to 1 (strongest capability for
reduction of ensemble variance). To minimize the influence
of sampling error in calculating r with equation (7), we have
derived daily river basin averaged values of r. Figure 9
provides the results for two river basins, the Mackenzie and
North Central, from January 2002 to June 2002. In the
Mackenzie River basin r is systematically larger than that at
midlatitudes, and its average effectiveness ratio can reach
25% in April but decreases in the melting season when the
MODIS capability returns. In the North Central River basin
this ratio is consistently below 10% and without evident
seasonal variation. Other boreal forest, tundra (compared to
the Mackenzie River basin), and midlatitude flat regions
(compared to the North Central River basin) have patterns
similar to those shown here. However, results in mountainous
regions are less consistent. It is argued that r (for a large basin
average) is also a function of the spatial correlation structure
of the MODIS updated ensemble within the GRACE foot-
print, considering the spatial aggregation nature of GRACE.
Further explanation of spatial and seasonal variations of r is
the subject of continued research.

6. Concluding Remarks

[46] This study has developed a continental‐scale multi-
sensor snow data assimilation system, which assimilates
both GRACE TWS and MODIS SCF information into the
CLM with the EnKS and EnKF, respectively. Through
this new framework various deficiencies associated with
MODIS‐only data assimilation are effectively accounted
for domainwide. Especially, the degraded performance of the
MODIS‐only approach shown in boreal forest in both this
paper and that by Su et al. [2008, Figure 5] is significantly
enhanced after using GRACE TWS information. These
improvements result from the unique information provided
by GRACE, which provides complementary constraints on
the ensemble simulation for various climatic and geographical
locations. In addition, in regions where MODIS performs
adequately, the inclusion of GRACE TWS information does
not degrade the estimates, further indicating robustness of
this joint assimilation system. Comparison of MOD_GR and
OL reveals more complex patterns. In the North Central,
Missouri, and Saint Lawrence river basins, MOD_GR is
consistently better than OL. In the Fraser and Yukon river
basins, MOD_GR is better than or comparable to OL. In the
Mackenzie and the Churchill & Nelson river basins, OL can
show a performance comparable to or better than that of
MOD_GR. These features demonstrate a need to improve on
the GRACE data assimilation approach, including better
characterization of GRACE bias and error variance.
[47] We have also found that the measurement of the total

column water (integrating several water storage components)
and the coarse spatial and temporal resolution of GRACE
may both benefit and complicate the task of estimating SWE.
The impacts of these characteristics on the EnKS update
deserve further investigation. Advantages of the finer reso-
lution of MODIS data in the multisensor system may require
more detailed analyses, to better characterize the different

features associated with each data type and their interaction
in the multisensor data assimilation framework.
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