
Multisensory Embedded Pose Estimation

Eyrun Eyjolfsdottir Matthew Turk

Computer Science Department, UC Santa Barbara

eyrun@cs.ucsb.edu, mturk@cs.ucsb.edu

Abstract

We present a multisensory method for estimating the

transformation of a mobile phone between two images taken

from its camera. Pose estimation is a necessary step for

applications such as 3D reconstruction and panorama con-

struction, but detecting and matching robust features can

be computationally expensive. In this paper we propose a

method for combining the inertial sensors (accelerometers

and gyroscopes) of a mobile phone with its camera to pro-

vide a fast and accurate pose estimation.We use the inertial

based pose to warp two images into the same perspective

frame. We then employ an adaptive FAST feature detec-

tor and image patches, normalized with respect to illumina-

tion, as feature descriptors. After the warping the images

are approximately aligned with each other so the search

for matching key-points also becomes faster and in certain

cases more reliable. Our results show that by incorporat-

ing the inertial sensors we can considerably speed up the

process of detecting and matching key-points between two

images, which is the most time consuming step of the pose

estimation.

1. Introduction and related work

The mobile phone has become an ideal platform for aug-

mented reality applications, with its growing computational

power and camera quality as well as the availability of sen-

sors such as accelerometers, gyroscopes, magnetometers

and GPS receivers. Many augmented reality applications

rely on computer vision algorithms, some of which can be

extremely computationally expensive. The processors in the

mobile phones are not as powerful as those of PCs, however

the benefit of having the additional sensors can be greater

than the disadvantage of having less processing power. We

aim to demonstrate that in this work.

We focus on the problem of estimating the position and

orientation (pose) of a phone at the time images are taken

on its camera. This involves finding the transformation of

the phone as it moves from its pose corresponding to one

image, to its pose corresponding to a second image. It is the

core of applications such as image stitching and 3D recon-

struction. We show how the combination of accelerometers

and gyroscopes, can simplify and speed up the process of

finding this transformation.

We use accelerometers and gyroscopes to track the po-

sition of the phone as it moves in space. Using such sen-

sors to track an object is not new: inertial navigation sys-

tems (INS) were originally designed for rockets and have

since been used in vehicles such as aircraft, submarines,

ships and automobiles. Now that very small and afford-

able accelerometers and gyroscopes have become available,

the same techniques can be used for mobile devices. These

sensors have been used for gesture and handwriting recog-

nition [1], as well as for motion capture [2]. They have also

been used in combination with computer vision; Aron- et
al [3] use a combination of inertial sensors and camera for

motion tracking in an AR application. They use vision as

their primary method, but when it does not give reliable re-

sults they fall back on they inertial based estimation. This

provides them with more freedom and more accuracy than

using only one technique or the other. Other kinds of fu-

sions have also been explored, such as using the inertial

sensors for short time pose prediction [4], or full integra-

tion [5]. Bleser and Stricker [6] provide a comparison of

the different models with special investigation of the effects

of using accelerometers on the tracking performance. Their

results show that fully exploiting all information given by

the accelerometer measurements has clear benefits: better

tracking quality and reduced demand for vision measure-

ments.

The inertial tracker can be used to estimate the transfor-

mation of the phone as it is rotated and translated between

taking images. The estimate can then be used to warp the

images such that they appear to have been taken from the

same position. This allows the use of less computationally

heavy feature descriptors. A similar idea has been imple-

mented by Pulli- et al [7] for their Panorama application.

They track the phone’s orientation using low resolution im-

ages captured in real time, and then use that estimate as

input to an algorithm which uses higher resolution images

to find a more precise rotation estimation.



To detect features we have implemented an algorithm

that uses FAST [8, 9] and is adaptive such that the num-

ber of features detected lie in a desired range and are well

distributed across the image. Brown- et al [10] introduced

an adaptive non-maximal suppression algorithm to ensure

the same properties and they stress the importance of hav-

ing those for fast, yet robust keypoint matching. Once we

have detected the keypoints we use very low cost descrip-

tors, namely image patches, to match the keypoints between

two images.

In our evaluation we compare our method with another

which uses computationally heavy, robust features, and our

results show that our approach produces very similar re-

sults, when successful, but is more than ten times faster.

The paper is organized in the following manner. First we

give a brief overview of system components and the tools

we used to build the system. In Section 3 we discuss the

process of tracking the position and orientation of the phone

using the inertial sensors; in Section 4 we describe our key-

point detector and descriptor and discuss how we use the

inertial based pose estimation to assist our vision based ap-

proach. Finally we describe our experiments and results.

2. System overview

Our system consists of the following main components:

(1) an interface thread which streams the camera output to

the screen as well as thumbnails of the images taken, (2) a

camera thread which processes the raw camera output, (3) a

sensor thread which continuously reads data from the sen-

sors and marks the time of each image taken, and finally

(4) a computation thread which as soon as two images have

been processed by the camera thread, starts estimating the

pose. At the end of this pipeline there could be a viewer for

3D models, or for panoramas. We implemented a viewer

which lets us visualize the sparse 3D point cloud extracted

from the image pairs during the process.

For this project we used a Nokia N900 phone which runs

on Maemo, a Linux-based operating system. It has 256 MB

RAM and 32 GB storage, an ARM Cortex A8 600 MHz

processor as well as a PowerVR SGZ530 graphics card and

a 5 MP camera. The phone has built in accelerometers,

but in order to make use of gyroscopes as well we have at-

tached an external sensor box to the phone. The sensor box

includes three gyroscopes that measure the angular veloc-

ity around each axis, and three accelerometers that measure

the acceleration along each axis. To access the data from

the sensor box, the phone connects to it via Bluetooth.

We implemented the system in C++. We use Qt for the

graphical user interface and to handle the multiple threads

of our system, OpenGL ES 2 for 3D visualization, and

for some of the computer vision algorithms we have used

OpenCV. To access and control the camera we used FCam,

which is an API that was recently developed by Stanford

Figure 1. The inertial coordinate frame, N-E-D, where N stands for

north, E for east and D for down, and the local coordinate frame

of the phone.

and Nokia [11].

3. Inertial based tracking

The inspiration for this project came from the desire to

make effective use of the inertial sensors of a mobile phone.

With the right combination of inertial sensors we are able to

track both the 3D position and orientation of the phone. We

will first discuss what can be extracted from the accelerome-

ters alone, and then present the benefit of adding gyroscopes

to the equation. We will also present some of the challenges

involved and how we handled them.

3.1. Accelerometers

A linear accelerometer measures the acceleration along

the axis with which it is aligned. Integrating the accelera-

tion over time gives the velocity, assuming that the initial

velocity is known. By double integrating we are able to ob-

tain the position at each time point, given that we also know

the initial position. We assume that the sensor is initially lo-

cated at the origin and that it has zero velocity; we then have

the following equations, using Simpson’s trapezoid rule for

integration:

v0 = 0

p0 = 0

vi = vi−1 + ∆t(ai + ai−1)/2

pi = pi−1 + ∆t(vi + vi−1)/2

(1)

where ai is the measured acceleration at time step i.
The N900 (and the sensor box) has three accelerome-

ters, one aligned with each of the phone’s axes. We can

therefore measure the acceleration of the phone in the three

dimensions of its local coordinate frame. Figure 1 shows

the two coordinate frames to which we will refer. The one

on the left is the inertial coordinate system, where N stands

for north, E for east and D for down. The one on the right

is the phone’s local coordinate system. If we assume that

the phone’s coordinate frame is perfectly aligned with the

inertial frame and that it does not rotate with respect to the

inertial frame over time, we can use the above equations to



calculate the 3D position of the phone at any given time. Of

course it is necessary to first subtract gravity from the accel-

eration measured with the y-axis accelerometer. In practice

it is not this simple because the no-orientation assumption

fails. Even if users try not to rotate the phone they inevitably

do, and for our purposes we want users to be able to move

the phone freely. Gravity then no longer affects only the ac-

celeration measured by the y-axis sensor but also the x-axis

sensor (if the phone is rotated around the N -axis) and the

z-axis sensor (if the phone is rotated around the E-axis).

Let us consider what else can be obtained from the ac-

celerometers alone. If the phone is not undergoing any lin-

ear movement we can use the measured acceleration due to

gravity to calculate the roll (orientation around the N -axis)

and pitch (orientation around the E-axis) of the phone. If

the phone is neither rolled nor pitched, the acceleration vec-

tor a equals the gravity vector g. If the phone is oriented 90◦

clockwise around the N -axis, a = [‖g‖ 0 0]T . If it is ori-

ented 45◦ clockwise around the N -axis, a = [‖g‖√
2

‖g‖√
2

0]T .

To calculate the roll and pitch in general we have the fol-

lowing equations:

φ = arctan(
−ax

ay

)

θ = arctan(
az

ay

)
(2)

These equations can be used to estimate the orientation

of the phone at each point of time and to subtract gravity

from the acceleration vector accordingly. That is done by

calculating the roll and pitch each time the phone is not ac-

celerating and interpolating the angles between each two

calculated points in time. However, this does not handle

yaw (orientation around the D-axis) and most critically this

assumes that the angle changes linearly, when in fact the

phone can be rotated x◦ and then back within one motion,

so gravity change during that motion is never accounted for.

In order to more accurately measure the position and orien-

tation of the phone we have incorporated gyroscopes.

3.2. Gyroscopes

We added an external sensor box to the phone which con-

tains three gyroscopes1, one measuring the angular velocity

around each axis of the phone. The gyroscopes allow us to

calculate the 3D orientation of the phone’s coordinate frame

with respect to the inertial frame. The angular velocity with

respect to the inertial frame can be calculated from the local

angular velocity, ω, using the equations below. The actual

angles are then obtained by integrating the inertial angu-

lar velocity and assuming the initial orientation to be zero.

With these angles we can rotate the acceleration vector to

1Several phones already come with gyroscopes, such as iPhone 4, Mo-

torola Droid and Nokia N95.

get a new acceleration vector, aI , which represents the ac-

celeration of the device in the inertial frame. (We will refer

to the acceleration in the local coordinate frame as aL.) We

can then use Eq. 2 to measure the velocity and 3D position

of the phone in the inertial frame. The following equations

are used to calculate the orientation and to rotate the accel-

eration vector:

θ’ = ωy cosφ− ωxsinφ

φ’ = ωz + (ωy sinφ + ωx cosφ) * tanθ

ψ’ = (ωy sinφ + ωx cosφ) / cosθ

(3)

CI
L =





cosψ cosθ sinψ cosθ −sinθ
c1,0 c1,1 cosθ sinφ
c2,0 c2,1 cosθ cosφ



 (4)

c1,0 = −sinψ cosφ+ cosψ sinθ sinφ

c1,1 = cosψ cosφ+ sinψ sinθ sinφ

c2,0 = sinψ sinθ + cosψ sinθ cosφ

c2,1 = −cosψ sinφ+ sinψ sinθ sinφ

aI = CI
LaL − g (5)

where θ, φ and ψ represent the pitch, roll and yaw
respectively, and CI

L is the rotation matrix used to rotate the

local acceleration vector to the global acceleration vector.

3.3. Challenges

Adding the gyroscopes is not enough to get a good

pose estimation. Both sensors, the gyroscopes and the ac-

celerometers, have small measurement errors, and due to

the double integration step of acceleration and single in-

tegration of angular velocity these errors accumulate over

time. Additionally, the error in orientation will affect the

position estimation which is dependent on the orientation.

Many types of errors can affect the measurement, for exam-

ple bias error, bias instability error, white noise and tem-

perature effects [12]. The bias is a constant offset from

what the real measured value should be. It can easily be

accounted for by averaging the recorded values of the sen-

sors while the device is in static state and then subtracting

this error from future measurements. Handling the other

errors is more difficult.

To account for the other errors we globally manipulate

the data in a post-processing step. We note that for linear

movement, the area under the acceleration curve on each

side of a = 0 should be equal, otherwise there will be resid-

ual velocity and the position will drift. After rotating the

acceleration vectors at each time step, according to the mea-

sured orientation, the trendline of the curve should therefore

ideally be a = 0. In our experience the slope of it was usu-

ally close to zero, but it was still shifted from from a = 0.



Figure 2. Trajectories calculated from a single recorded IMU se-

quence using: only acceleration (top row), acceleration and angu-

lar velocity (second row), acceleration, angular velocity post pro-

cessing (third row), acceleration and post processing (bottom row).

Each column shows a distinct view of the trajectories as they rotate

in 3D space.

We therefore manipulate the acceleration curves by shift-

ing them down (or up) such that their trendline aligns with

a = 0.

This has a big impact on the final output as can be seen

in Figure 2. The figure shows the comparison of four dif-

ferent methods applied to the same data to estimate the tra-

jectory of the movement from which the data was recorded.

In this case the movement was in the shape of a star in the

D-E plane. The trajectory shown in the top row was ob-

tained by using only the acceleration, the one in the second

row included the angular velocity and rotating the acceler-

ation vector, and the third row shows the result when the

post-processing step has been applied to the data. Since this

has such a great effect on the final output we also tried ap-

plying that step to the acceleration data alone, yielding the

trajectory shown in row four. This shows that even though

this movement was recorded while trying not to rotate the

phone, the unintended rotation has a significant impact on

the estimate.

Figure 3 shows the results of our tracker after tracing the

alphabet and digits in the air while holding the phone. The

trajectories were recorded all in one take.

4. Vision based pose estimation

We can now use this inertial tracker to estimate the trans-

formation of the camera as it moves between two different

views. We label the time when each image is taken and use

the sequence of IMUs (inertial measurement units) recorded

in that time interval to calculate the pose at the final point.

The assumption that the phone is steady at the beginning

and end of the sequence holds in this case since the user

Figure 3. Trajectories generated by writing out the alphabet and

numbers in the air while holding the phone by hand. The posi-

tion of the phone at each point of time is calculated by our inertial

tracker. These 35 shapes were recorded one after another in a sin-

gle try.

usually tries to hold the camera steady in order not to pro-

duce a blurry image.

For a more accurate estimation we use a vision based

algorithm, with this initial estimate from the inertial sensors

as input to speed up the process. We use 860x652 images.

4.1. Warping

When matching keypoints between two images that were

taken from different angles, the keypoints’ descriptors need

to be robust to variations in scale, rotation, translation and

illumination. Calculating descriptors with these properties

can be very time consuming.

However, since we already have an estimate of the ro-

tation, R, and the translation, t, between the two images

we can warp one of them into the perspective frame of the

other, such that they approximately align with each other.

Then the feature descriptors need not be as robust to some

of the factors mentioned above.

The perspective projection is given by:

P = KHK−1 (6)

where K is the camera matrix containing the intrinsic pa-

rameters of the camera, and H is the homography for a

plane with normal n (in the camera’s frame) and located

at a distance d from the camera’s principal point, given by:

H = R−
tnT

d
(7)

In the case where there is no translation between the im-

ages, it can be easily seen that P will be the same for each



point in the image, since the homography will be the same

for each plane. However if there is translation, the perspec-

tive projection is different for each plane. In our approach

we choose a plane which is parallel to the camera’s image

plane and at a distance d. For our evaluation we used the

assumption that the distance is 3 meters. A better (but more

intrusive) way would be to have the user input an estimate

of the distance to the points of interest. If the motion of the

camera is primarily rotation, this distance estimation has lit-

tle as no effect, but if the phone was translated, an underes-

timate of the distance results in too much translation of the

image, and vise versa.

By warping the corners of each image onto the other im-

age we obtain bounding boxes that define regions of interest

which contain features common to both images. This means

that fewer features need to be calculated per image.

4.2. Keypoint detection

After warping the images we search for keypoints in each

image. In order to quickly detect the interest points we use

an adaptive algorithm which has the FAST feature point de-

tector at its core. We found that using FAST alone was in-

deed very fast, but the number of points detected depends

greatly on the parameter b (the threshold used to detect

whether the intensity difference between two points is great

enough to be considered a corner). In our experience, im-

ages with high contrast produced a high number of feature

points, but ones with lower contrast did not, which means

that lower contrast images need a lower value of b. The

same applies within a single image: if there is a very bright

area in one part of the image (for example a window seen

form the inside of a house), most of the keypoints detected

are concentrated on that area.

In order to ensure that all images, no matter what their

contrast, will get an adequate number of feature points

(without the high contrast images getting too many), as well

as making sure that the points are well distributed within the

image, we have implemented the following algorithm. We

split each image into overlapping patches. For each patch

we calculate the standard deviation of its pixel intensity val-

ues, and use that value as an initial input to FAST. We then

iteratively adjust that value and call FAST again until the

number of feature points is with in our desired range, or

until a maximum number of iterations has been reached.

Figure 4 shows the result of using our adaptive algorithm

versus using FAST alone. It can be seen that using FAST

with b = 30 results in too many keypoints in the left image

and too few in the right image, while our method detects an

adequate number of keypoints in both images.

This is of course more time consuming than the pure

FAST algorithm, since the overlapping areas are examined

more than once, and each patch may be examined more than

once, but the performance of the pose estimation algorithm

Figure 4. Keypoints in the upper two images were detected by the

FAST feature detector, with b = 30. The ones in the lower two

used our adaptive method.

is greatly improved in terms of accuracy.

4.3. Keypoint descriptors

Once the images have been warped to represent the same

perspective view, the descriptors used to match keypoints do

not need to be invariant to rotation and scale (given that our

inertial based estimation is reasonable). We can therefore

use descriptors as simple as image patches. We have chosen

to use an image patch of size 17x17, which we normalize

with respect to intensity values of the pixels such that the

highest value of each patch is the maximum intensity value.

This way the descriptor becomes more robust to changes in

illumination. We also store the average intensity value of

each normalized patch.

4.4. Keypoint matching

To match the keypoints between images we use a nearest

neighbor search. For each keypoint in the first image we

loop though each keypoint in the second image and select

the point with the least squared sum of difference in image

patch intensity values, to be the match.

We use two methods for pruning the search. First, we

compare the average intensity values of the two descrip-

tors, and if the difference is greater than 20 (on a 0-255

scale), we discard that candidate as a match. Second, we

check whether the location of the candidate keypoint is

close enough to the warped position of the keypoint un-

der examination; if not then we continue. Not only does

this speed up the algorithm but it also helps eliminate out-

liers, which eventually makes finding the fundamental ma-

trix faster and more robust.



Figure 5. Results of warping the second image onto the first image, based on transformation estimates of our method. Shown are four of

the image pairs between which the camera was primarily rotated. The black borders represent the seams between the two images.

4.5. Pose estimation

Once we have all the candidates for keypoint correspon-

dences we use the eight point algorithm [13] and RANSAC

to find the fundamental matrix which has the highest num-

ber of inliers. Candidates that do not support the chosen

matrix are discarded. We then calculate the essential matrix

and use singular value decomposition to find four possible

rotation matrices and two possible translation vectors [14].

The [R|t] combination is selected that deems the 3D points

of the inliers correspondences to be at a positive depth as

seen from both cameras, and with the lowest reprojection

error.

5. Experimental results

In order to evaluate how effective using the inertial sen-

sors is in improving the pose estimation process, we com-

pare the four following approaches:

i) Our proposed method

ii) Our proposed method without inertial assistance

iii) Hessian detector + SURF descriptor

iv) Hessian detector + SURF descriptor with inertial based

warping.

The Hessian detector finds keypoints at different scales

and the SURF features are robust to scale, orientation, affine

distortion and illumination changes [15]. Therefore this

combination is often used in applications that deal with im-

ages that are temporally far apart. For our evaluation we

used OpenCV’s implementation, with the default values of

3 octaves and 4 layers per octave.

Our experiments consist of 29 image pairs and the IMU

sequences associated with each pair. The actual transforma-

tions of the experiments include rotation about each axis,

translation along each axis, and a combination of the two.

The images are of both indoors and outdoors scenes.

Figure 6 shows a breakdown of the time it takes each

approach to obtain the pose estimation. It shows that for

robust features, detecting the keypoints and calculating the

descriptors is by far the most time consuming part. By first

Figure 6. Average time (in msec) that it took each method to esti-

mate the pose.

Figure 7. Total time that it took each method to estimate the pose

for each experiment. The yellow graph represents the SURF based

approach, and the green one the assisted SURF based approach.

The two lower lines represent our method, with and with out warp-

ing.

warping the images according to the inertial based pose

estimation, that process is sped up by almost 30%. This

is because with knowing approximately how the images

overlap we can limit the image area in which we search for

features. Figure 7 shows the average time per experiment

for each approach. The top two graphs represent the

assisted and unassisted SURF based approaches and the

bottom two the patch based approaches. In the cases where

the time for iii) and iv) is the same, the transformation

between images was either small or it was a rotation about

the camera’s z-axis, in which case the bounding box we



Figure 8. Transformation between cameras estimated by our algorithm, the SURF based algorithm and the inertial sensors.

used to mark the regions of interest still covers the entire

images. In order to speed the process up considerably and

reliably, simpler features need to be used. As can be seen

in Figure 6, the patch based feature extraction is more than

ten times faster than the SURF based one.

However, not all methods were successful for each ex-

periment. We classify an experiment as unsuccessful if it

fails to find a fundamental matrix or if the point matches

deemed as inliers by the fundamental matrix are obvious

outliers. In four cases, neither the patch based nor the SURF

based approaches were successful. In three additional cases,

which involved a big translation between the two images,

our approach was unsuccessful. This is due to the scale

dependency of our feature descriptor. As we mentioned be-

fore, we use the assumption that the plane on which the

points of interest in the scene lie is parallel to the image

plane and that the distance from the phone to that plane is

three meters. If the distance assumption is bad the warped

images will have different scales. And even if the assump-

tions are good, objects not lying on that plane will have dif-

ferent scales in the warped image.

For five additional cases, our method without the inertial

assistance failed. These cases include image pairs between

which the transformation is rotation about he camera’s

z-axis, translation along the z-axis, and images where there

are few distinct features. The benefit of having an initial

pose estimation in cases like these is that by warping the

images, the rotation and scale is, ideally, closer to being the

same in both images. By pruning the search for keypoint

Figure 9. The rotation angle of our method (blue) compared with

the SURF based method (red) and the inertial sensor based esti-

mate (yellow).

matches we also decrease the chance of outliers.

Next we compare the pose estimation of our method,

with that of the SURF based method and the inertial based

estimation. Figure 8 shows the output for the three methods

on all the experiments, excluding the four that were unsuc-

cessful by all methods. The left three columns contain unit

vectors which represent the rotation axes, the next column

represents the rotation angles, and the final three the transla-

tions. Since the fundamental matrix can only be determined

up to scale, the translation vectors are normalized. In order

to get a better comparison with the inertial based estima-

tion, we have scaled the translation vectors of the vision



based methods to have the same scale as the inertial based

one.

In Figure 9 we have plotted the rotation angles for the 22

experiments that were successful by both methods. We do

not have a ground truth to compare with, but these graphs

are obtained by two completely different means (purely vi-

sual based and purely inertial based) as well as a combina-

tion of the two, and the fact that they are so similar sug-

gests that these are close to the truth. It can be seen that our

method and the SURF based one agree on the angle in 14

cases, in the other 8 they are still close. Those eight exper-

iments contain images with very few distinct features (such

as close-ups of silver spoons on a table), and image-pairs

for which translation was a big contributing factor.

Using the results from our method, we again warped im-

age 2 onto image 1. For the experiments where the transfor-

mation primarily consisted of rotation, the images aligned

well. Figure 5 shows results for four of our experiments.

6. Conclusion

We have introduced a multisensor method for estimating

the transformation of a camera between two images taken.

We have shown that we can use the inertial sensors of the

phone to track its position as it moves between the viewing

angles of the two images, and use the pose estimation based

on the tracking to enhance the process of finding a visual

based pose estimation. We showed that by warping the im-

ages based on that estimation we are able to use simpler,

and hence less time consuming, feature descriptors.

For transformations that mainly consist of rotation, our

method was able to find a pose estimation as good as that

of an algorithm which uses features robust to scale and ro-

tation, in less than tenth of the time. However if there is a

large transformation, and our estimate of linear movement

is not good, or our assumption about the distance to the

scene does not hold, the descriptor’s lack of invariance to

scale can lead to bad results.

It can be concluded that for applications which assume

that the camera is only rotated, such as image stitching, us-

ing the inertial sensors can be extremely beneficial. For

applications such as 3D reconstruction, feature descriptors

invariant to scale are necessary, because even when the im-

ages are warped based on an accurate pose estimation, ob-

jects in the images will have different scales, due to paral-

lax. The transformation from the sensors, however, can still

be used to determine epipolar lines, which can be used to

limit the search for matching features.

In our approach we have used the inertial based pose es-

timation mainly to assist the process of matching feature

points. In future work, we would also like to use it as an

initial guess in the search for the actual pose.

7. Aknowledgements

We would like to thank Nokia Resesarch Center for pro-

viding us with a mobile phone and an external sensor box

for our research.

References

[1] S.-J. Cho et al. Magic wand: A hand-drawn gesture input

device in 3-d space with inertial sensors. 9th Int’l Workshop

on Frontiers in Handwriting Recognition, 2004.

[2] D. Vlasic et al. Practical motion capture in everyday sur-

roundings. ACM Transactions on Graphics, Volume 26, No.

3, Article 35, 2007.

[3] M. Aron et al. Use of inertial sensors to support video track-

ing. Computer Animation and Virtual Worlds, Volume 18,

Issue 1, pp. 57–68, 2007.

[4] G. Klein and T. Drummond. Tightly integrated sensor fu-

sion for robust visual tracking. Image and Vision Computing,

22(10), pp. 769–776, 2004.

[5] J.D. Hol et al. Robust real-time tracking by fusing measure-

ments from inertial and vision sensors. Journal of Real-Time

Image Processing, Volume 2, Numbers 2-3, 2007.

[6] G. Bleser and D. Stricker. Advanced tracking through ef-

ficient image processing and visual-inertial sensor fusion.

Computers and Graphics, Volume 33, Issue 1, 2009.

[7] K. Pulli, M. Tico, and Yingen Xiong. Mobile panoramic

imaging system. 6th IEEE Workshop on Embedded Com-

puter Vision, 2010.

[8] E. Rosten and T. Drummond. Fusing points and lines for

high performance tracking. Intl. Conf. on Computer Vision,

Volume 2, pp. 1508–1515, 2005.

[9] E. Rosten and T. Drummond. Machine learning for high-

speed corner detection. Euro. Conf. on Computer Vision,

2006.

[10] M. Brown, R. Szeliski, and S. Winder. Multi-image match-

ing using multi-scale oriented patches. Conf. on Comp. Vi-

sion and Patt. Rec., pp. 510–517, 2005.

[11] A. Adams et al. The Frankencamera: An experimental plat-

form for computational photography. SIGGRAPH, 2010.

[12] O.J. Woodman. An introduction to inertial navigation. Tech.

Rep. UCAMCL-TR-696, University of Cambridge, 2007.

[13] R. I. Hartley. In defense of the eight-point algorithm. IEEE

Trans. Pattern Anal. Machine Intell., Volume 19, pp. 580–

593, 1997.

[14] W. Wang and H.T. Tsui. An SVD decomposition of essential

matrix with eight solutions for the relative positions of two

perspective cameras. ICPR vol. 1, pp. 13–62, 15th Interna-

tional Conference on Pattern Recognition, 2000.

[15] H. Bay et al. SURF: Speeded up robust features. Computer

Vision and Image Understanding, Volume 110, No. 3, pp.

346–359, 2008.


