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Abstract 

Pervasiveness of ubiquitous computing advances the manufacturing scheme into a ubiquitous 

manufacturing era which poses significant challenges on sensing technology and system 

reliability. To improve manufacturing system reliability, this paper presents a new virtual tool 

wear sensing technique based on multisensory data fusion and artificial intelligence model for 

tool condition monitoring. It infers the difficult-to-measure tool wear parameters (e.g. tool wear 

width) by fusing in-process multisensory data (e.g. force, vibration, etc.) with dimension 

reduction technique and support vector regression model. Different state-of-the-art dimension 

reduction techniques including kernel principal component analysis, locally linear embedding, 

isometric feature mapping, and minimum redundancy maximum relevant method have been 

investigated for feature fusion in a virtual sensing model, and the kernel principal component 

analysis performs best in terms of sensing accuracy. The effectiveness of the developed virtual 

tool wear sensing technique is experimentally validated in a set of machining tool run-to-failure 

tests on a computer numerical control milling machine. The results show that the estimated tool 

wear width through virtual sensing is comparable to that measured offline by a microscope 

instrument in terms of accuracy, moreover, in a more cost-effective manner. 
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1 INTRODUCTION 

Ubiquitous computing enables a variety of information technologies and communication 

services connect with the distributed computational resources via internet [1]. With the 

advancement of ubiquitous computing and radio frequency identification technology (RFID), it 

promotes product design and manufacturing into a new paradigm, named UbiDM (design and 

manufacture via ubiquitous computing technology) [2, 3]. It changes the manufacturing scheme 

from mass-production/consumption to a new customized and sustainable manufacturing mode. 

To achieve this, advanced sensing techniques and computing intelligence are needed to improve 

system flexibility and inventory turnover, minimise wastage, improve product quality and 

enhance on-time delivery [4, 5]. However, such benefits highly rely on the reliability of a 

manufacturing system, thus system reliability becomes a crucial important aspect in ubiquitous 

manufacturing.  

Machining tool is a major element in a manufacturing system and its failure (e.g. typically 

tool wear and breakage) can attribute up to 20% of machine downtime [6]. To enhance the 

system reliability, much research effort has been put on machining tool condition monitoring 

which mainly incorporates sensing data acquisition, signal denoising and processing, feature 

extraction and selection, fault diagnosis and prognosis, and maintenance decision making [7]. 

Increasing demand for system reliability has accelerated the integration of sensors into 

manufacturing system for timely acquisition of working status of machinery. With the 

advancement of ubiquitous computing, ubiquitous sensing emerges as an active research area. It 

has been investigated in real-time shop-floor scheduling [8], environment monitoring [9], 

electrical household appliance [10], and human healthcare [11].  

In the context of tool condition monitoring, a variety of sensing techniques have been 

instrumented to acquire machining tool conditions. According to the correlation between sensing 
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parameters and tool conditions [7], these sensing techniques can be categorized into direct 

sensing and indirect sensing methods. Direct sensing techniques measure actual quantities that 

directly indicate tool conditions, e.g. tool wear width. Traditionally, tool wear was measured 

using a tool-maker’s microscope under laboratory conditions. This requires a human inspector to 

determine the worn region based on the textural difference between the worn and unworn 

surfaces [12]. In-situ direct sensing techniques, such as CCD cameras, radioactive isotopes, laser 

beams, and electrical resistances, have been investigated with high degree of accuracy in 

laboratory settings to observe fundamental measurable phenomena during machining processes 

[13-15]. However, such direct sensing techniques usually involve high cost, and present some 

practical limitations caused by accessing problems during machining, inference with chips, and 

the usage of cutting fluid. Thus they are mainly for intermittent operations. 

On the contrary, indirect sensing techniques measure the auxiliary in-process quantities (e.g., 

force, vibration, and acoustic emission, etc.) that indirectly indicate tool conditions. Tool wear 

causes the increases of friction and heat generation, thus consequently causes the changes of in-

process parameters, such as cutting force [16], vibration [17], acoustic emission [18], strain [19], 

eddy-current displacement [20], and spindle motor current [21], etc. Comparing to direct sensing, 

indirect sensing methods are less costly and enables continuous detection of all changes (e.g. tool 

breakage, tool wear, etc.) to signal measurements. The Pros and Cons of direct sensing and 

indirect sensing methods are summarized in Table 1.  

To sum up, direct sensing measures direct indicators of tool conditions, but it is usually 

performed offline and thus interrupts normal machine operations. On the other hand, indirect 

sensing can continuously measure in-process parameters, but the obtained information is indirect 

indicators of tool conditions. To bridge the gap between direct sensing and indirect sensing, 

virtual sensing, as a complement to physical sensing, has emerged as a viable, noninvasive, and 

cost effective method to infer difficult-to-measure or expensive-to-measure parameters in 
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dynamic systems based on computational models [22]. It has been investigated for active noise 

and vibration control [23], industrial process control [24], building operation optimization [25], 

lead-through robot programming [26], product quality of semiconductor industry [27], and tool 

condition monitoring [28, 29]. 

Table 1. Comparison between direct sensing and indirect sensing techniques. 

Category Sensing techniques Pros Cons 
Direct sensing Microscope, 

CCD camera, 
Electrical resistances, 
Radioactive isotopes 

Accurate, direct 
indicators of tool 
conditions 

High cost, limited by 
operating environment, 
mainly for offline or 
intermittent monitoring 

Indirect sensing Cutting force, 
vibration, sound, 
acoustic emission, 
temperature, spindle 
power, displacement 

Less complex, low cost, 
suitable for continuous 
monitoring in practical 
applications 

Indirect indicators of 
tool conditions  

 

There is an extensive literature on developing virtual sensing models with a focus of artificial 

intelligence models. In [28], an artificial neural network model is investigated to infer the state of 

insert wear from translational vibration measurements on a milling machine. Bayesian network is 

studied for tool breakage detection utilizing the in-process electrical power signal [29]. A 

classifying artificial neural network ensemble approach is investigated to estimate simulation 

workload in cloud manufacturing [30]. Given the high cost and practical constraints to obtain 

data samples in practice, support vector regression with good generalization capability attracts 

much research interest. It requires less data samples comparing with artificial neural network, 

and has been investigated for tool wear estimation in [31-33].  

Due to the interference of complex operating conditions and the limited applicability of a 

single sensor, multiple modalities of sensors have been instrumented to measure different aspects 

of tool conditions. However, the increased amount of data samples inevitably brings data 

redundancy and model overfitting problems. To address these issues, this paper presents a 

multisensory fusion based virtual tool wear sensing method on a support vector regression basis. 
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Different dimension reduction methods including kernel principal component analysis (KPCA), 

locally linear embedding (LLE), isometric feature mapping (ISOMAP), minimum redundancy 

maximum relevance (mRMR) have been investigated for feature selection and fusion. The fused 

features from force and vibration in-process measurements are then fed into support vector 

regression model to infer the actual quantities of tool conditions. The performance of different 

feature fusion methods is compared using experimental studies on a computer numerical control 

(CNC) milling machine.  

The main contribution of this study rests on the following: 1) a multisensory fusion based 

virtual tool wear sensing framework is presented to bridge the gap between direct sensing and 

indirect sensing methods; and 2) different dimension reduction techniques are evaluated for 

virtual tool wear sensing, and the technique of KPCA with the best performance is identified by 

an experimental study. The rest of the paper is constructed as follows. After introducing the 

theoretical background of sensing fusion techniques and support vector regression in Section 2, 

details of the multisensory fusion based virtual sensing method is discussed in Section 3. The 

effectiveness of the presented technique is experimentally demonstrated in Section 4 based on 

direct and indirect sensing data acquired using a ball nose tungsten carbide cutter on a CNC 

milling machine. Finally, conclusions are drawn in Section 5. 

 

2 THEORETICAL FRAMEWORK 

2.1 Data Fusion Techniques  

2.1.1 Kernel Principal Component Analysis  

Kernel principal component analysis (KPCA) is a nonlinear version of principal component 

analysis (PCA) and has been widely used for feature selection and fusion applications. The key 

idea of KPCA is to define a nonlinear mapping function φ (•) which transforms the sample data 

into a high-dimensional data space, and the transformed sample data is then analyzed using 
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traditional principal component analysis [34]. It transforms a set of observations of possible 

correlated variables into a set of uncorrelated variables called principal components. The first 

principal component has the largest variance, and each succeeding principal component has 

comparative lower variance orthogonal to the preceding principal components. The first several 

principal components can represent the original data with minimal mean squared approximation 

error, and thus KPCA can be used in dimensionality reduction. 

Mathematically, given a set of input vectors (Xi(1), Xi(2), …, Xi(m))T, i =1, 2, …, p, the 

sample data Xi is mapped into ϕ(Xi) via the nonlinear kernel function φ (•), i.e. ( )i iX Xφ→ . 

With the assumption of centered data ( )
p

i
i=1

1 X =0
p

φ∑ , the principal components are obtained by 

solving eigenvalue problem in KPCA. 

i i iu Cuλ =                                                                (1) 

where C is the sample covariance matrix of ϕ(Xi), λi is one of the eigenvalues of covariance 

matrix C, and ui is the corresponding eigenvector. The covariance matrix is constructed as: 

( ) ( )
1

1 p
T

i i
i

C X X
p

φ φ
=

= ∑                                                      (2) 

Define a Gram matrix K with its elements as 

            kij = ϕ(Xi)Tϕ(Xj) = ϕ(Xi)•ϕ(Xj)                                               (3) 

where xi and xj are the sample vectors. Assuming k(•) is a symmetric kernel function, the dot 

production in Eq. (3) can be replaced by a kernel function k(•) based on the Mercer’s theorem. 

Since the data points need to be centered in the feature space, the centered kernel matrix K is 

defined as [35]: 

p p p pK K A K KA A KA= − − +                                                  (4) 
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where Ap is a p×p matrix with (Ap)ij = 1/p. The eigenvalue equation (1) can be rewritten as 

i i ip u Kuλ =                                                                 (5) 

Then the nth kernel principal component is readily obtained by projecting the observations in the 

direction of the nth eigenvector [34]. 

i
1

( ) ( , )
p

n n j i
j

u X u k X Xφ
=

=∑ , i = 1, 2, …, p                                       (6) 

Since the number of eigenvectors is the same as the sample size in KPCA, it can deal with 

nonlinear problems which cannot be solved by PCA. By calculating the accumulated 

contribution rate (e.g., 95%), the number of the most significant principal components can be 

selected for dimensionality reduction.  

1 1
/ 95%

q p

k k
k k
λ λ

= =

≥∑ ∑                                                        (7) 

2.1.2 Locally Linear Embedding Algorithm 

Locally linear embedding (LLE) is a nonlinear dimension reduction method by computing the 

low dimensional, neighborhood preserving embedding of high dimensional data. It attempts to 

discover the underlying nonlinear structure (nonlinear manifold) in high dimensional data by 

exploiting the local symmetries of linear reconstructions [36].  

Suppose that the data consists of N real-valued vectors Xi which are sampled from an 

underlying manifold as illustrated in Fig. 1. With sufficient data samples (such that the manifold 

is well-sampled), each data point and its neighbors are expected to lie on or close to a locally 

linear patch of the manifold. Thus, the local geometry of these patches is characterized by linear 

coefficients and each data point can be reconstructed.  
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(a) (b)  

Fig. 1. Illustration of locally linear embedding algorithm, a) data points sampled from underlying 
3-dimensional manifold, b) 2-dimensional neighborhood-preserving mapping by LLE. 

First, the number of the nearest neighbors per data point is identified by calculating the 

Euclidean distances between neighbor points and the data point of interest.  Next, the weights 

matrix is computed by minimizing the reconstruction error of the data point from its neighbors. 

The cost function is formulated by adding up the squared distances between all data points and 

their corresponding constructions as [36]: 

2

(W) i j ij j
i

X W Xε = −∑ ∑ ,  1ijj
W =∑                                       (8) 

where Wij represents the contribution weights of jth neighbor data points Xj to the ith reconstructed 

data point Xi. The weights Wij are optimized by solving a least squares problem. Finally, each 

high dimensional observation Xi is mapped to a low dimensional vector Yi representing the global 

internal coordinates on the manifold. This is achieved by selecting a d-dimensional vector Yi to 

minimizing the cost function as [36]: 

      ( )
2

i ij j
i j

Y Y W YΦ = −∑ ∑                                                   (9) 
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It is defined as a quadratic form of vector Yi. It is constructed similarly to Eq. (8). The difference 

is that the weights Wij is fixed in Eq. (9) to optimize the coordinates Yi. The cost function is 

minimized by solving an eigenvector problem subject to constraints that make the problem well-

posed. Therefore, it is pretty straightforward to implement the locally linear embedding 

algorithm as only one free parameter needs to be optimized. The number of neighbors per data 

point K is determined firstly. Once the neighbors are chosen, the optimal weights Wij and 

coordinates Yi are computed by standard methods in linear algebra.  

2.1.3 ISOMAP 

As a representative manifold learning technique, ISOMAP is commonly used for nonlinear 

dimensionality reduction by mapping high-dimensional data to a lower dimensional space. 

ISOMAP extends metric multidimensional scaling (MDS) by incorporating the geodesic 

distances instead of pairwise Euclidean distances in the computation of graph shortest path 

distances [37]. The mathematical formulation of the ISOMAP algorithm is briefly discussed as 

follows.  

First, a neighborhood graph G is constructed by determining which points are neighbors on 

the manifold M based on the distances dX(i,j) between pairs of points i, j in the input space X. 

Two simple methods of ε-ISOMAP and K-ISOMAP can be used to determine the neighborhood 

points. The data points j within a fixed radius ε of point i are considered as neighbors in ε-

ISOMAP while the K nearest neighbors points j are selected in  K-ISOMAP.  

Next, the geodesic distances dM(i,j) between all pairs of points on the manifold M are 

estimated by computing the shortest path distances dG(i,j) in the graph G.  

dG(i,j) = dG(i,k) + dG(k,j), k = 1, 2, …N                                         (10) 
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This could be calculated by Dijkstra's algorithm ( )( )nlogkno 2  and Floyd's algorithm ( )( )3no . A set 

of data pair path distances dG(i,j) are calculated and used to construct graph distances matrix 

DG={dG(i,j)}, which  contains the shortest path distances between all pairs of points in graph G.  

Finally, the classical MDS is applied to the matrix DG, constructing an embedding of the data 

in a d-dimensional space Y which best preserves the manifold’s estimated intrinsic geometry. 

The coordinate vectors yi for points in the space Y are chosen to minimise the cost function [37].  

2G(D ) (D )Y L
E τ τ= −                                                        (11) 

where DY represents the matrix of Euclidean distances { (i, j)Y i jd y y= − }. 2L
A  denotes the L2 

matrix norm 2
, iji j

A∑ . τ(•) is an operator of converting distances to inner products. The top d 

eigenvectors of the matrix τ(DG) are used to set the coordinates yi to optimise the above cost 

function. 

The basic feature of ISOMAP is to find a low dimensional embedding of data points. It is a 

nonlinear and global optimal method since only one free parameter (e.g. ε or K) needs to be 

optimised. The typical shortcoming of ISOMAP rests on its computational complexity, 

characterized by full matrix eigenvector decomposition [37]. 

2.1.4 Minimum Redundancy Maximum Relevance Algorithm 

The minimum redundancy maximum relevance (mRMR) algorithm is a well-known and 

practical dimensionality reduction method of feature selection and fusion. It is achieved by 

selecting p  indexes which have the minimum redundancy with each other and the maximum 

relevance with different target classes { }Khhhh ,...,, 21=  in m original indexes of N sample 

data.  
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The key idea of minimum redundancy is to select the indexes such that they are mutually 

maximally dissimilar which could be described by mutual information of two variables. Mutual 

information of two variables x and y involves the joint distribution p(x, y) and their respective 

marginal probabilities p(x) and p(y) as defined by [38]: 

( ) ( ) ( )
( ) ( )ji

ji

j,i
ji ypxp

y,xp
logy,xpy,xI ∑=                                          (12) 

Suppose S is the selected feature index space, the minimum redundancy condition is given by 

[38]: 

,Wmin I  ( )∑
∈

=
Sj,i

I j,iI
S

W 2

1
                                                 (13) 

where ( )j,iI  represents ( )ji g,gI  for notational simplicity, and gi is the feature index. S  denotes 

the number of feature index space S.  

The idea of maximum relevance is to select the feature indexes that maximise the total 

relevance of selected feature indexes gi and target classes h = {h1, h2, …, hK}. The maximum 

relevance condition is also formulated by the mutual information as [38]: 

,Vmax I   2
,

1 ( , )I
i j S

V I i
S ∈

= ∑ h                                                 (14) 

where I(h,i) represents I(h,gi).  

Thus, the feature selection of the mRMR algorithm can be achieved by optimising the 

conditions in Eqs. (13) - (14) simultaneously. These two conditions can be incorporated into a 

single criterion function (e.g. mutual information difference or mutual information quotient) by 

[38]:  

Mutual information difference: max(VI-WI)                                    (15) 

Mutual information quotient: max(VI/WI)                                      (16) 
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As discussed above, these four data fusion techniques are based on different measures (e.g., 

variance-based, distance-based, and entropy-based, etc.). The advantages and disadvantages of 

these techniques are compared in Table 2.       

Table 2. Performance comparison of different data fusion techniques 

Methods Advantages  Disadvantages 
KPCA Nonlinear transform, computational 

efficient in a non-iterative way  
Performance affected by the selection of 
kernel functions and reduced feature 
dimension 

LLE Nonlinear manifold learning, non-
iterative way to seek underlying high 
dimensional structure 

Sensitive to noise, ill-conditioned Eigen 
issue, parameter optimisation required 

ISOMAP Nonlinear manifold learning, global 
optimisation method in a non-iterative 
way 

High computational cost, overestimated 
geodesic distance caused by graph 
discreteness 

mRMR Computationally efficient, reliable 
estimation of relevance and 
redundancy of features 

Only the feature subset selected, which 
may not be the optimal representation of 
data.  

 

2.2 Support Vector Regression Model 

Support vector regression (SVR) is based on statistical learning theory for regression analysis 

[39]. Comparing with other data mining techniques such as artificial neural networks (ANN), it 

reveals good generalization capability and needs less training samples [40]. SVR transforms the 

original feature space into a higher dimensional space to determine an optimal hyperplane by 

maximising the separation distances among the classes. Given an input training data set z ϵ χ, the 

transformed higher dimensional feature space can be obtained as: 

' ( )φ=z z                                                                 (17) 

where ϕ is the transformation function. A hyperplane f(z’) = 0 can be formulated as [40]:  

'

1
( ') ' 0

j

n
T

j
j

f b z bτ
=

= + = + =∑z zτ                                               (18) 
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where τ is a n-dimensional vector and b is a scalar. The vector τ and scalar b are used to define 

the position of the separating hyperplane. The hyperplane is built to maximise the distance D 

among the closest classes through the following optimisation. 

( )'

,
max ,  subject to ,  

n

T
i i

R b R
D y z b D i

∈ ∈
+ ≥ ∀

v
τ                                      (19) 

where yi is the class labeler. For example, it is labeled as {-1, 1} for two classes. Taking into 

account the noise with slack variables ξi and error penalty C, Eq. (19) can be rewritten as [40]:  

( )

2

, , 1

1min
2

subject to 0,  ( ) 1 ,  

n

N

iR b R i

T
i i i i

C

y z b i

ξ

ξ φ ξ

∈ ∈ =

 
+ 

 

≥ + ≥ − ∀

∑
v ξ

τ

τ
                              (20) 

The hyperplane can be determined as the following sign function (sgn(t) = 1 for t ≥ 0, and 

sgn(t) = -1 for t < 0). The linear decision function is given by: 

( ) ( )
, 1

sgn ( ( ))
N

T
i i i j

i j
f y z z bα φ φ

=

 
= + 

 
∑z                                             (21) 

where α is the Lagrange multiplier. The hyperplane function can be determined by kernel 

function K(zi,zj) = ϕT(zi)ϕ(zj) by computing the inner products without specifying the explicit 

form of the transformation function. Different kernels can be formulated such as linear, 

polynomial, Gaussian RBF, and Sigmoid kernel functions. Accordingly, the associated decision 

function for regression analysis is expressed as [41]:  

 ( )
, 1

sgn ( , )
N

i i i j
i j

f y K z z bα
=

 
= + 

 
∑z                                               (22) 

The theoretical background of feature fusion techniques and support vector regression 

discussed here forms the basis of virtual tool wear sensing model formulated in the next section. 
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3 VIRTUAL TOOL WEAR SENSING FRAMEWORK 

It is recognized that indirect sensing techniques (e.g. force, vibration, and acoustic emission, 

etc.) measure in-process auxiliary parameters during machining operations. The indirect sensing 

parameters are less accurate to indicate tool conditions, but the rugged senor design makes them 

more suitable for practical applications. On the other hand, direct sensing techniques (e.g. 

microscope, CCD camera, etc.) measure actual quantities of tool conditions and have a high 

degree of accuracy. Due to the practical limitations caused by access problems during machining, 

illumination and the use of cutting fluid, direct sensing techniques are commonly used for offline 

measurement or as laboratory techniques.  

Utilizing the advantage of indirect sensing, virtual sensing can model the nonlinear 

dependencies between in-process measurements and actual quantities of tool conditions based on 

computational models. The accuracy of virtual sensing is expected to be comparable to direct 

sensing. The rationale of virtual sensing to bridge the gap between indirect sensing and direct 

sensing is described in Fig. 2. 

Online Measurement
(Force, Vibration, etc.)

Virtual Tool Wear Sensing

Offline Measurement
(Microscope, surface profiler etc.)

Easy to measure, indirect 
indicator of tool condition

Difficult to measure, direct 
indicator of tool condition

Easy to measure, in-process, direct indicator of tool condition

Signal 
Preprocessing

Feature 
Extraction

Feature 
Selection 

and Fusion

Artificial 
Intelligence 

Model

In
pu

t

Co
m

pa
re

 

Fig. 2. The rationale of developing virtual tool wear sensing model. 
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The developed virtual sensing model in this work mainly consists of four modules: (i) a data 

acquisition system capable of measuring multi-sensory data from machining processes, (ii) a 

feature extraction module to extract tool health indicators by preprocessing raw noisy 

measurements, (iii) a feature fusion module to select and fuse the extracted features for 

dimension reduction, and (iv) a support vector regression based artificial intelligence model to 

infer tool wear conditions from the fused features, as illustrated in Fig. 3. The developed virtual 

sensing model is a complement to physical sensing, and can be used for tool wear monitoring 

and maintenance actions guidance. The deduced virtual sensing parameters are compared to 

actual quantities of tool wear for performance comparison. 
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Fig. 3. Diagram of developed virtual tool wear sensing model. 

3.1 Multi-Sensory Data Acquisition 

During a machining process the action of machining tool removes materials, and meanwhile it 

causes cutting force variation and machine vibration. Therefore, the sensing parameters 

including cutting force, vibration, etc. could be used for monitoring machining tool conditions. 

However, the signals acquired from a manufacturing system in an industrial environment usually 
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contain high level mechanical, electrical and acoustic noises. On the other hand, strong 

interference of operating conditions limits the applicability of a single sensor, making it not 

always fully reflect tool conditions. Thus different modalities of sensors are instrumented.   

A multi-sensory data acquisition system is used to identify the dependency between sensing 

data and tool wear states in machining operations. During the experimental testing, the forces 

and vibrations in three directions of tangential (main, z-axis), axial (feed, longitudinal, x-axis), 

and radial (normal, passive, thrust, y-axis) components are measured and stored on a PC for post 

processing. 

3.2 Multi-Domain Feature Extraction  

During the tool wear process, online measurement can acquire in-process parameters such as 

cutting forces and vibrations as indirect indicators for tool wear states. Due to the low signal to 

noise ratio (SNR) of sensing measurement, it is difficult to model the relationship between raw 

online measurement and tool wear states. To tackle the problem, effective feature extraction and 

representation techniques are performed to reduce data dimension without losing tool wear 

signature.  

Different features from statistical, frequency, and time-frequency domains are extracted as 

shown in Table 3. Six typical statistical features are extracted in statistical domain, including root 

mean square (RMS), variance, maximum value, skewness, Kurtosis and peak-to-peak. RMS is a 

measure for the magnitude of a varying quantity. It is also related to the energy of a signal. 

Kurtosis indicates the spikiness of a signal. Features from the frequency domain provide another 

perspective of tool wear conditions, and reveal information that are not included in the statistical 

domain. In frequency domain, spectral skewness and spectral kurtosis are extracted, where S(fi) 

is the power spectrum density obtained using the Welch method. In time-frequency domain, 
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wavelet transform can be used for signal denoising and feature extraction. The wavelet 

coefficient with higher energy is selected which is related to the characteristic frequency of the 

machining tool (the number of flutes times the spindle rotating frequency). Thus, the energy of 

the selected wavelet coefficient is extracted as a feature. 

Table 3. List of extracted features. 

Domain  Features Expression 
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1 2
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3.3 Feature Selection and Fusion  

There are an overwhelming number of features extracted from the raw multi-sensory data. In 

general, multi-sensory features can be viewed as a high-dimensional multivariate matrix 

composed of several vectors which are formed by different sensory signals. It is not feasible to 

input the above matrix to a virtual sensing model without dimension reduction because of the 

curse of dimensionality and the high correlation between vectors. For improved computational 
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efficiency in virtual tool wear sensing, a proper feature selection and fusion strategy is needed to 

lower the dimension of a feature space.  

By implementing feature selection and fusion algorithm, the complexity of modeling process 

could be reduced and new feature vectors are reconstructed. Different representative dimensional 

reduction techniques are investigated for feature selection and fusion, including KPCA, LLE, 

ISOMAP, and mRMR algorithms. Generally, it is difficult to determine which feature is more 

sensitive to tool conditions. The goal of feature selection and fusion is to preserve as much of the 

relevant information as possible by removing redundant or irrelevant information in acquired 

sensory signals. The top ranked features of these four schemes (e.g. KPCA, LLE, ISOMAP, 

mRMR, etc.) are then selected and fused into the computational model to infer the actual 

quantities of tool conditions. Their performance is then evaluated by comparing the estimated 

tool conditions with actual tool conditions in terms of estimation accuracy.  

3.4 SVR based Virtual Sensing Model 

Given the complex relationship between fused features and actual quantities of tool conditions, 

it is difficult to describe it in an explicit analytic form. By exploiting the underlying structure of 

data measurements, artificial neural network based data driven approach has been investigated to 

model the nonlinear mapping of signal features of tool wear on artificial intelligence basis. 

However, virtual sensing based on data driven approaches is limited by several factors: 1) the 

large amount of training data used to build data-driven models is difficult to collect, since it is 

costly to obtain labeled data; 2) the lackness of generality or adaptability to extrapolate the 

conditions beyond the range in which the model was trained leads to model errors. The 

constraints are amplified by the fact that tools are required to operate under various operating 

conditions (e.g. varying load and speed).   
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The recently developed support vector regression model is a novel machine-learning tool 

which can be used to relieve the above constraints. It is motivated by statistical learning theory 

and is characterized by the use of non-linear kernels, high generalization ability and the 

sparseness of the solution with small training sample size. Thus, the support vector regression 

model is used to investigate the dependency between fused features and tool conditions. The 

support vector regression model is built and trained, in which two hyper-parameters, the cost 

parameter C and the Gaussian kernel parameter γ, are selected using the grid search method in 

the cross validation process to prevent overfitting. The best hyper-parameters are determined in 

terms of model accuracy through an exhaustive searching over different pairs of these two 

parameters, which are called grids. The performance of the developed SVR based virtual tool 

wear sensing model is evaluated based on leave-one-out cross-validation, in which one dataset is 

chosen for testing while the rest datasets are for model training. Model training and testing are 

performed repeatedly and different testing dataset is selected each time.     

 

4 EXPERIMENTAL STUDIES 

4.1 Experimental Setup 

To experimentally analyze the performance of the presented virtual tool wear sensing method, 

a set of experimental data measured from a high speed CNC machine under dry milling 

operations was used [42]. A three-flute ball nose tungsten carbide cutter was tested to mill a 

workpiece (material: stainless steel, HRC52) in a down milling operation. The workpiece had 

been preprocessed to remove the original skin layer containing hard particles. The speed of the 

spindle was running at 10,400 rpm while the feed rate was set as 1,555 mm/min in x direction. 

The depth of cut (radial) was 0.125 mm in y direction while the depth of cut (axial) in z direction 

was 0.2 mm.  
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A Kistler quartz 3-component platform dynamometer was mounted between the workpiece 

and the machining table to measure cutting forces. Three Kistler Piezo accelerometers were 

mounted on the workpiece to measure the machine tool vibration in x, y, z directions, 

respectively [42]. During the tool wear test, in-process measurements including force and 

vibration in three directions (x, y, z) were continuously recorded at the sampling frequency of 50 

kHz using DAQ NI PCI1200, and were stored in a computer. The flank wear of each individual 

flute was measured offline using a LEICA MZ12 microscope after finishing each surface which 

is considered to be one cut number in the following data analysis. The diagram of the 

experimental setup is shown in Fig. 4. 
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Fig. 4. Schematic diagram of experimental setup. 

4.2 Data Processing 

A total of around 300 data files (one data file corresponds to one cut number) were collected 

during the tool life test. The sample measurements of force and vibration under different tool 

wear conditions are illustrated in Fig. 5. It is obvious that the amplitudes of vibration and force 

measurements increase as the progressive tool wear conditions. The features discussed in Table 3 

are extracted from three dimensional force and vibration measurements and 54 features sets are 
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obtained. Take the force signal measurements in y direction as an example, the extracted 

normalized features and actual flank wear measurements are shown in Fig. 6. It is found that 

some of the extracted features (e.g. RMS, variance, and wavelet energy, etc.) follow the trend of 

actual tool wear measurements while others (e.g. skewness and spectral kurtosis, etc.) deviate 

from the trend. The extracted features inevitably  present high correlation and redundancy among 

them. Thus, it is necessary to perform dimension reduction to select dominant features for the 

subsequent tool wear sensing model.  
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Fig. 5. The sample measurements of force and vibration under different tool conditions. 
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Fig. 6. Extracted features of force signal in y-direction. 
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The extracted features of multi-sensory measurements are constructed as a matrix. Whitening 

and eigenvalue decomposition (EVD) are then performed to estimate the number of dominant 

features, and the results are shown in Fig. 7. It is obvious that the first 11 features with high 

variances preserve almost 95% of the cumulative variances and thus the 11 features with high 

variances are selected. Next, the dimensional reduction techniques including KPCA, LLE, 

ISOMAP, and mRMR are performed to exploit the 11 features by fusing the extracted 54 

features.  
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Fig. 7. Dimension reduction through eigenvalue decomposition.  

 
4.3 Performance Evaluation 

The selected and fused features obtained by KPCA, LLE, ISOMAP, and mRMR are fed into 

the support vector regression model to infer the tool wear conditions from the in-process multi-

sensory signals. Firstly, the support vector regression model is built and trained in which two 

parameters, the cost parameter C and the Gaussian kernel parameter γ, are selected using grid 

search method. A predefined set of these two parameters forms a grid. The best hyper-parameters 

are determined (C = 2 and γ = 0.11) in terms of model accuracy through an exhaustive searching 
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in the leave-one-out cross validation process to prevent overfitting. A total of three sets of tool 

life test data (e.g. C1, C4, and C6, etc.) are available. The predicted tool wear using different 

virtual sensing schemes including no feature selection, KPCA, LLE, ISOMAP, and mRMR 

algorithms with the support vector regression model are illustrated in Figs. 8 and 9, respectively. 

To compare their performance, the actual tool wear condition (flank wear width) measured 

offline with a microscope is also included. It is found that the predicted tool wear by the virtual 

sensing model follows the trend of the truth data well.   
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Fig. 8. Performance comparison of different virtual tool wear sensing model using dataset C1.  
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Fig. 9. Performance comparison of different virtual tool wear sensing model using dataset C4.  

To quantitatively evaluate the performance of the developed virtual sensing model, different 

criteria are investigated including Pearson Correlation coefficient (PCC), Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). 

PCC is a statistical measure of independence of two or more random variables which is defined 

as: 

2 2

( )( )

( ) ( )

i i
i

i i
i i

x x x x
PCC

x x x x

− −
=

− −

∑

∑ ∑

 

                                           (23) 

where x is the actual tool wear width, and x  is the predicted tool wear width using the virtual 

sensing model. The model with the highest correlation coefficient is considered as the one of the 
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best. RMSE is defined as the square root of the average of the square of all difference between 

estimated tool wear width x̂ and actual tool wear width x.  

2
1

1 ˆ( )N
i ii

RMSE x x
N =

= −∑                                                  (24) 

MAE is defined as the mean of all absolute difference between estimated tool wear width x̂  and 

actual tool wear width x.  

1

1 ˆN
i ii

MAE x x
N =

= −∑                                                  (25) 

MAPE is defined as the mean of all absolute percentage differences between estimated tool wear 

width x̂  and actual tool wear width x. 
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Next, five different virtual sensing schemes (NO-SEL, KPCA, LLE, ISOMAP, and mRMR) 

are quantitatively evaluated according to different criteria including PCC, RMSE, MAE, and 

MAPE. The performance of these five virtual sensing schemes is compared as shown in Fig. 10. 

The larger the PCC value, the better the model performance, while the less the 

RMSE/MAE/MAPE value, the better the model performance. In the NO_SEL scheme all 

features are fed into the support regression model without feature selection, which may cause the 

overfitting issue, leading to unsatisfactory performance. With the feature fusion techniques, the 

original features are reduced to alleviate the overfitting issue of the support vector regression 

model, and the virtual sensing schemes with feature fusion present improved performance. With 

different test datasets, the performance of the virtual sensing model varies, which may be caused 

by the varying quality of training datasets and the possible distribution discrepancy between the 

training and testing domains. The performance of these different virtual sensing schemes is 
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summarized and compared in Table 4. Overall, the KPCA-SVR virtual sensing model shows the 

best performance.  

  

  

(a) (b)

(c) (d)

 

 

Fig. 10. Performance comparison of five virtual sensing schemes using different criteria. 

Table 4. Performance comparison of different virtual sensing schemes 

Methods PCC RMSE MAE MAPE 
NO-SEL 0.9541±0.0292 11.9681±3.3337 9.3770±2.0422 0.0845±0.0215 
KPCA 0.9843±0.0054 5.4428±1.5894 3.9583±0.9371   0.037±0.01 
LLE 0.9616±0.0261 10.2520±1.939 8.311±0.7533 0.0786±0.0052 

ISOMAP 0.9485±0.0019 10.6625±0.5869 8.2567±0.3113 0.073±0.0046 
mRMR 0.9618±0.0126 8.6348±0.6754 6.8742±0.0839 0.0643±0.003 

 

5 DISCUSSIONS 

The developed virtual sensing method takes the extracted features of online measurements as 

input while the offline measurements are used for performance evaluation. The virtual sensing 
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method involves data preprocessing, feature extraction, feature fusion, and artificial intelligence 

model construction. The raw signals acquired in an industrial environment usually present high 

levels of mechanical, electrical and acoustic noises. On the other hand, the machinery may run 

under intermittent operating conditions. The signals measured when the cutting tools are in 

contact with the workpiece carry useful information of cutting conditions. Therefore, appropriate 

signal preprocessing is needed for signal segmentation to exact signal lobes reflecting material 

removal. A detailed discussion on signal preprocessing techniques can be found in [43]. 

The selection of reduced dimensions in feature fusion techniques is another issue. The 

reduced dimension is selected based on the accumulated contribute rate of feature variances. The 

threshold is set to be 95% and 11 features are selected since it is believed that the most 

significant variance can be preserved. Sensitivity analysis on the selection of reduced dimension 

is further conducted and the results are shown in Fig. 11. It is found that the reduced dimension 

of 11 features shows the maximum PCC value and the minimum MAE/MAPE value. Although 

the reduced dimension of 11 features does not perform the best in terms of the RMSE measure, it 

shows comparable performance. Thus the 11 features are selected by the following feature fusion 

methods in this paper. 

Finally, there exist various artificial intelligence models, such as artificial neural network and 

support vector regression. Neural network has been extensively used to model the correlation 

between online sensory signals and tool wear conditions. However, it also suffers from some 

disadvantages, such as low convergence rate, overfitting issue, poor generalization when few 

samples are available and the tricky network structure determination.  On the other hand, support 

vector regression is characterized by high generalization ability and the sparseness of the 

solution with small training sample size. Given the high cost and practical constraints to obtain 
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data samples in practice, the support vector regression method is used and investigated in this 

paper. A fair comparison of artificial neural network and support vector regression for virtual 

sensing model is necessary and will be investigated in future work.  
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Fig. 11.  Sensitive analysis on selection of reduced dimensions for performance evaluation.  

 

6 CONCLUSIONS 

To improve the reliability of ubiquitous manufacturing, advanced sensing and signal 

processing methods are critically needed for effective and efficient fault identification and 

diagnosis. The developed virtual tool wear sensing framework utilizes in-process multi-sensory 

measurements to infer the actual tool wear conditions on a support vector regression model basis. 

Different dimension reduction techniques are investigated for feature selection and fusion to 

improve the computational efficiency and model accuracy. The following conclusions can be 

drawn: 
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1) The multi-sensory fusion based virtual tool wear sensing model bridges the gap between 

indirect sensing and direct sensing for tool condition monitoring and prediction.  

2) A variety of dimension reduction techniques including KPCA, LLE, ISOMAP, and 

mRMR algorithms have been investigated for multisensory feature and fusion, and 

experimental results show that KPCA performs best.  

3) The effectiveness of the developed virtual tool wear sensing model is validated using a 

set of experimental machining tool life tests, and its performance is comparable to the 

costly offline instrumentation (e.g. microscope).  

For future work, a variety of experimental tests under different operating conditions will be 

performed to evaluate the robustness of the presented virtual sensing model. The developed 

virtual sensing model will be incorporated in a CNC machine control system to improve control 

accuracy and machine reliability.  
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