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To realize high-precision and high-efficiency machine fault diagnosis, a novel deep learning framework that combines transfer
learning and transposed convolution is proposed. Compared with existing methods, this method has faster training speed, fewer
training samples per time, and higher accuracy. First, the raw data collected by multiple sensors are combined into a graph and
normalized to facilitate model training. Next, the transposed convolution is utilized to expand the image resolution, and then the
images are treated as the input of the transfer learning model for training and fine-tuning. (e proposed method adopts 512 time
series to conduct experiments on twomain mechanical datasets of bearings and gears in the variable-speed gearbox, which verifies
the effectiveness and versatility of the method. We have obtained advanced results on both datasets of the gearbox dataset. (e
dataset shows that the test accuracy is 99.99%, achieving a significant improvement from 98.07% to 99.99%.

1. Introduction

Fault diagnosis refers to the status monitoring of equipment,
which has reached the prediction of its fault time and the
classification of faults. With the continuous development of
intelligent fault diagnosis, a series of fault diagnosis methods
such as expert system [1], artificial neural network [2], fuzzy
control [3], and fault tree [4] have appeared.

However, the above models are based on manual feature
extraction for fault diagnosis. When feature extraction does
not meet themodel requirements, the diagnosis effect will no
longer be excellent. Second, manual features are used for
different classification tasks. (is means that the features
used for accurate predictions are not suitable for other
scenarios in some cases. It is difficult to design a set of
functions that can generate reliable predictions under all
conditions.

As a new algorithm based on artificial neural networks,
deep learning [5, 6] solves the problems of gradient dis-
appearance in the BP neural network [7, 8]. (e deep

architecture has multiple hidden layers, which is able to
learn hierarchical representations directly from the original
data. (rough model training, the deep architecture can
automatically choose proper representations based on the
training data to help make accurate predictions in subse-
quent classification stages. Due to the above advantages,
deep learning is widely used in image processing [9, 10],
medical image analysis [11], speech recognition [12, 13],
target detection [14, 15], text detection [16, 17], natural
language processing [18, 19], and other fields.

Since the deep belief network (DBN) was first applied to
fault diagnosis in 2013 [20], the application of deep learning
in the field of fault diagnosis in rotating machinery has
entered a stage of rapid development. Today, in addition to
the deep belief network (DBN), there are also automatic
encoders (AE) and its variants [21, 22], recurrent neural
networks (RNN) [23, 24], deep neural networks (DNN)
[25, 26], generative adversarial networks (GAN) [27, 28],
and other models that all have been applied in the field of
fault diagnosis in rotating machinery. Because the above
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models have good feature extraction capabilities for large
amounts of data, they can produce good results when they
are applied in the field of redundant data and various types
of fault diagnosis. After training the current model, fast and
high-precision fault classification and life prediction can be
achieved, thereby monitoring the health of the machine.

However, in order to achieve the desired performance,
deep learning models require a large amount of data to train
the weights of its nodes in the training stage of the model,
which leads to too much training time, and the data re-
quirement for model training is also strict in a complex
network training. If the amount of data is not enough or the
model size is too large, the required accuracy rate cannot be
achieved.

Transfer learning as an algorithm model was proposed
by Sinno Jialin Pan and Qiang Yang in early 2009 [29]. Its
purpose is to use the trained model parameters for other new
model training to reduce the training time of the new model
and reduce the amount of training data required. Transfer
learning is widely used in training newmodels having a large
number of sources that are not related to the new training
model, but are similar and have sparse target data related to
the new model. Migrating parameters to a new model re-
duces training time and gets higher accuracy by using
limited target data to train models. Based on these advan-
tages, transfer learning is used to solve the above problems in
deep learning.

At the same time, transposed convolution as an
upsampling technique can expand the image from a smaller
resolution to a higher resolution to achieve more excellent
feature extraction. Transposed convolution [30] is currently
widely used in the field of image recognition. In fault di-
agnosis, when the target data is too small, upsampling
technology can be used to expand the data, and it can also
specifically increase the proportion of useful features, clean
up some redundant features, and rationally allocate and use
data to improve model training efficiency. With the excellent
feature extraction ability of convolutional neural networks,
fewer target data can be used to achieve ideal fault diagnosis
accuracy.

(erefore, this paper proposes a framework utilizing the
transfer learning model VGG19 to reduce training time and
transposed convolution feature enhancement features to
reduce the sample size. Based on the idea of the sensor array,
the paper proposes a method of multisensor signal detection,
which processes the sensor signals under multiple channels
at the same time to improve the diagnostic accuracy of the
model. At the same time, on the basis of the inverse con-
volutional neural network, the original input signal is
upsampled, and the size of the input signal is expanded so
that the feature map input to the model can better match the
input requirements of the model. Finally, the paper adopts
the concept of transfer learning and uses VGG19 as the
backbone network to realize the rapid diagnosis of rotating
machinery faults by designing the corresponding input
signal preprocessing module and classifier module.

(e rest of the paper is organized as follows. Section 2
introduces the theoretical background of the proposed ap-
proach, including deep convolutional neural networks,

transposed convolution, and transfer learning. In Section 3,
the overall mechanical fault diagnosis system is illustrated in
detail. In Section 4, experimental studies on the datasets are
carried out to verify the effectiveness of the proposed model,
together with performance comparisons to other methods.
Conclusions and future work are presented in Section 5.

2. Methodology

2.1. Convolutional Neural Network. Convolutional neural
networks (CNNs) have a wide range of applications in image
processing. Deep convolutional neural networks can auto-
matically learn hierarchical features from input images,
where features from higher levels are more abstract than
those from lower levels. Generally speaking, convolutional
neural networks contain three layers: convolutional layer,
pooling layer, and fully connected layer. (e convolution
layer and the pooling layer are combined to form a con-
volution block, and several such blocks are stacked to build a
deep-level architecture. Usually, a fully connected layer is
used as the last layer to perform classification or regression.
Figure 1 shows a representative CNNs architecture. CNN is a
typical supervised feed forward neural network [31, 32]. Its
training goal is to learn abstract features by alternating and
superimposing convolution kernels and pooling operations.
(e structure mainly includes three parts: convolutional
layer, pooling layer, and fully connected layer, as shown in
Figure 1.

(e convolution layer uses multiple convolution kernels
to extract multiple features. (e output of each layer is to
convolve multiple input features. (e mathematical model
shows as follows:

Clj � ϕ ∑Ml−1

i�1

Cl−1i ∗ k
l
ij + b

l−1
j

 , (1)

where ∗ indicates the convolution operation, which indicates
the connection weights of the feature maps i and j of the
layers l-1 and l. bj is the offset value, and φ is the nonlinear
activation function.

(e role of the pooling layer is to reduce the size of the
feature space by half through the pooling operation, thereby
reducing the feature dimension while ensuring the feature
invariance. Common pooling operations are maximum
pooling and mean pooling.

Finally, after multiple convolution operations and
pooling, the input data is passed to one or more fully
connected (FC) layers, and the results will be used as the
input of the top-level classifier (for example, soft-max).

2.2. Convolution and Transposed Convolution. In the con-
volutional neural network, convolution is the operation of
the input image, the convolution kernel, and the mapping
relationship corresponding to the convolution kernel to
make the output image size reduced but the features are
more concentrated. In the convolution operation, the size
of input and output satisfies the following relationship
[29]:
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o �
i + 2p − k

s
[ ] + 1, (2)

where o represents the feature size of the output image, i
represents the feature size of the input, k represents the size
of the convolution kernel, s represents the step size of each
operation, p represents padding, and [x] represents
rounding down.

For the convolution processing of the two-dimensional
image, the paper can treat it as a matrix by multiplying it into

another matrix of different scales. Let us take a square matrix
as an example to illustrate the relationship between the
matrix and the convolution operation.

Take the following simple convolution layer operation as
an example, its parameters are i� 4, k� 3, s� 1, and p� 0.
(e process is shown in Figure 2. After the convolution
operation, the output is 2.

For the above convolution operation, we expand the
3× 3 convolution kernel shown in Figure 2 to a sparse matrix
of [4, 15] as shown below, whose name is matrix C.

C �

w0,0 w1,0 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0 0 0 0 0

0 w0,0 w0,1 w0,2 0 w1,0 w1,2 w1,2 0 w2,0 w2,1 w2,2 0 0 0 0

0 0 0 0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0

0 0 0 0 0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2


, (3)

where the nonzero element wi, j represents the i-th row and
j-th column of the convolution kernel.

Expanding the 4× 4 input features into a matrix X of [1,
16], the final output matrix is Y�CX. Y is the output matrix
whose size is 4∗1. (en, rearranging the 2× 2 output fea-
tures will get the final result. From the above analysis, we can
see that the calculation of the convolutional layer can ac-
tually be converted into matrix multiplication.

It can be seen that the forward propagation process of the
convolution layer is actually the reverse propagation process
of the deconvolution layer, and the backward propagation
process of the convolution layer is the forward propagation
process of the deconvolution layer. Because the forward and
backward calculations of the convolutional layer are mul-
tiplied by C and CT, respectively, and the forward and
backward calculations of the deconvolution layer are mul-
tiplied by CT and (CT) T, respectively, their forward
propagation and backpropagation are just swapped. Figure 3
shows a deconvolution operation corresponding to the
convolution calculation of Figure 2, where their input and
output relationships are exactly opposite. Among them, the
parameters of transposed convolution are i′� 2, k′� 3, s′� 1,
and p � 2.

(rough the schematic diagram, the relationship be-
tween the input and output of the deconvolution layer when
s� s′� 1 is

o′ � i′ + k′ − 1( ) − 2p′. (4)

(erefore, the paper can think of transposed convolution
as the inverse process of convolution operation, but it is
worth noting that transposed convolution can only restore
the size of the output matrix or graph, but not their
parameters.

2.3. Transfer Learning. Transfer learning is a term in ma-
chine learning, which refers to the influence of one kind of
learning on another kind of learning, or the influence of
learned experience on the completion of other activities.
Migration widely exists in the learning of various knowledge,
skills, and social norms. Simply speaking, given a source
domain named Ds and a target domain Dt, transfer learning
attempts to apply the knowledge previously learned from Ds
to the target domain Dt. Transfer learning methods can be
divided into four categories: case-based, feature-based, pa-
rameter-based, and-relationship based. Here, transfer
learning can help train the target model by initializing the
target model with parameters transferred from the pre-
trained model. (e paper adopts the method of parameter
transfer.

In short, transfer learning refers to training data as
domains. (is paper adopts only one source domain Ds and
one target domain Dt. Each domain is composed of

Feature
map

Input
image

ConvolutionConvolution Pooling

Full-collected

Output

Figure 1: (e representative CNN architecture.
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characteristic space X and marginal probability distribution
P (X), where X� x1, x2, x3, . . . , xn{ }. Based on parameter
transfer learning, the deep learning model will be pretrained
in the source domain, then the parameters will be trans-
ferred, and the target domain will be used for retraining and
fine-tuning to achieve the goal of identifying unknown label
samples in target domain. (e cross domain reuse of pa-
rameters can improve the effect of model reconstruction and
the efficiency of new data preprocessing. [33].

Training a deep architecture from scratch is difficult in
practice. A large deep neural network contains a large
number of weights, which are initialized randomly before
training and iteratively updated according to the labelled
data and the loss function. Iteratively updating the own-
ership weight is very time-consuming, and because of the
limited training data, the deep architecture may present
overfitting data by training.

Transfer learning provides a very effective idea to solve
the above problems of deep learning. It uses a pretrained
deep convolutional neural network that has been trained on
another dataset. As mentioned before, CNNs can learn
hierarchical representations from images, and the knowl-
edge embedded in the pretrained model’s weights can be
transferred to new tasks. (e low-level convolutional layer
extracts low-level features such as edges and curves and is
suitable for general image classification tasks, while the

operation of the later layer can learn more abstract rep-
resentations for different application fields. (erefore,
lower-level representations can be transmitted, and only
higher-level representations need to be learned from the
new dataset. (e process of updating the weights of higher
hidden layers is called fine-tuning, and its success depends
on a certain extent on the “distance” between the source
dataset and the target dataset. Training a deep convolu-
tional neural network with pretrained weights has been
successfully applied to many different tasks, and most
existing pretrained models are trained from enough natural
image data. For example, in speech recognition, although
there are large gaps between various languages, some
studies have demonstrated the effectiveness of applying
pretrained models to speech recognition tasks in different
languages. Inspired by these achievements in other fields
such as speech recognition and image recognition, we
studied the knowledge transfer of multichannel mechanical
datasets to natural images. [29].

3. Machine Fault Diagnosis by Deep Transfer
Learning Based on Multichannel Datasets

In order to achieve high-precision mechanical system state
detection, we propose a fault detection model based on a
deep convolutional neural system. For multichannel fault
datasets, it discards the traditional time-frequency pro-
cessing of single-channel data into a graph for feature ex-
traction, but directly uses multichannel data information to
form an array graph, which is the input to the convolutional
nerve after normalization. (e graph trains the network and
uses the excellent feature extraction capabilities of the neural
network to achieve high-precision classification of faults. In
order to reduce the training time, the model adopts the
method of transfer learning, using similar data for training,
and the dataset about fault diagnosis for fine-tuning to
improve the accuracy of the experiment.

(e paper proposes a framework that can learn fault
features from multichannel mechanical signals and deter-
mine the type of fault through training. (e flow of the
proposed mechanical fault diagnosis model is shown in
Figure 4, which includes data preparation, multichannel
combined imaging, fine-tuning pretrained model estab-
lishment, and model application. First, sample and combine
data from 8 channels. During the process, 512 data points are
collected each time. (en, they are combined into an 8∗ 512
array image and converted into a 64∗ 64 format. After that,
the paper uses transposed convolution to expand the image
into a 256∗ 256 array image. Finally, the image is inputted
into a pretrained model for training and fine-tuning to
achieve high-precision classification of faults.(e pretrained
model used in this paper is VGG19 with a depth of 19 layers
[34]. It was proposed by the Visual Geometry Group of
Oxford University in 2014 and obtained accurate classifi-
cation performance on the ImageNet dataset. Figure 5 il-
lustrates the details of VGG19.

(e pretrained model used in this paper is trained using
the dataset on ImageNet. (e target dataset is a picture
formed by the array signal of the multichannel mechanical

Original image

Feature image

Convolution

Figure 2: (e process of convolution.

Feature image

Original image

Deconvolution

Figure 3: (e process of deconvolution.
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dataset. (e pretrained model used in this paper is trained
through the dataset on ImageNet. Because the natural
picture is not similar to the array signal but rather similar to
an image, more convolutional blocks are needed to be fine-
tuned for mechanical datasets.

3.1. Data Preparation. During operation, the vibration
signals are collected by 8 sensors installed on the me-
chanical equipment. In order to train and fine-tune the
internal structure of the pretraining, the model requires a
specific size of RGB image. (e purpose of this operation is
to maintain the aspect ratio of the feature map input to the
convolutional layer, which is a fixed 1 : 1 for operation with
convolutional network. At the same time, another im-
portant factor is that VGG16 is used as the backbone
network, which makes the model’s input image match the
final output feature map. (e paper adopts the following
method: select 512 signal data from each of the 8 channels
for array combination and convert them into 64 ∗ 64 ∗1
images. Since the converted image is a grayscale image
with only one channel, it will need to expand the image to a
2D image with a size of 256 ∗ 256 ∗ 3. (e training dataset
is used to train the pretraining model and adjust its
weights, while the test dataset is only used to verify the
performance of the deep model, not to participate in the
training process.

3.2. PretrainedModel Creation and Fine-Tuning. In order to
reduce the model training time and have no or low influence
in the accuracy rate, this experiment adopted a phased
training method: In the first step, the experiment migrates
the parameters of the VGG19 model and trains the

transposed convolution block so that it can better extract the
features of the input image. (e first step of training the
transposed convolution block will cover the entire experi-
ment. When the accuracy of the model reaches 98%, the
second step of the experiment will be carried out. In order to
reduce the training time, the experiment only fine-tunes the
parameters of the fifth convolution block of the VGG19
model, allowing it to achieve accurate classification of fault
types, thereby improving the accuracy of the experiment. In
order to further improve the accuracy of the model, in the
third step, the paper adjusts the parameters of the fourth and
fifth convolution blocks of VGG19 so that the features
extracted through the convolution operation can more ac-
curately describe the fault and achieve a highmodel accuracy
classification. (e transfer learning training and fine-tuning
process is shown in Figure 6.

3.3. Model Application. (e test dataset is used to test the
accuracy of the designed model in the mechanical fault
diagnosis task, and the pretrained deep learning model that
has been debugged is applied to the diagnosis of the machine
working state.

4. Experimental Verification

In order to test the performance of the proposed fault di-
agnosis system and verify its effectiveness, the paper adopts
gear and bearing datasets to conduct experiments and
compares with traditional feature-based classification
methods and deep learning-based classification methods. In
addition, the model proposed in the paper is also compared
with three different models, including the VGG16 fault

Input

Deconvolution layers Pretraining net (VGG19) Densely connected
neural network

Part of initial fine tuning

Part of fine-tuning

512

256

5

ReshapeSampling

Multichannel
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512 × 8

256 × 256 × 3 256 × 256 × 64

128 × 128 × 3

128 × 128 × 128

64 × 64 × 1

64 × 64 × 256

32 × 32 × 512

16 × 16 × 512

Figure 4: (e flow of the proposed mechanical fault diagnosis.
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diagnosis model trained with a single-channel signal, a
convolutional neural networks model with three convolu-
tional blocks and a three-layer symmetric autoencoder
model.

4.1. Gearbox Dataset and Bearing Dataset. (e gearbox
dataset was collected from the drivetrain dynamic simulator
(DDS) shown in Figure 7 [34]. (is dataset contains 2
subdatasets, including bearing data and gear data, which are
both acquired on DDS. (ere are two kinds of working
conditions with rotating speed-load configuration set to be
20-0 and 30-2. Within each file, there are 8 rows of signals
which represent 1-motor vibration, 2, 3, 4-vibration of
planetary gearbox in three directions x, y, and z, 5-motor
torque, and 6, 7, 8-vibration of parallel gear box in three
directions x, y, and z. Signals of rows 2, 3, and 4 are all
effective. [34] Different fault types of bearings and gearboxes
are shown in Table 1.

(e bearing dataset contains two different loads and five
different working conditions, which include four types of
faults and one state of health. (erefore, the fault diagnosis
of the powertrain dynamic simulation system is a ten-level
classification task. Each failure type contains 1800 training
samples, and the entire gear and bearing training dataset is
18000 images, and there are 496 sets of data between the test
set data and the training set data. So, there are a total of 247
test sets. (e specific experimental data grouping situation is
shown in Table 2. (e entire gear and bearing test sets are
2470 images. In order to verify the effectiveness of the
method in dealing with the mixed faults, the faults and
working conditions are combined to form a mixed dataset
containing 4 gear failures, 1 health state, and two working
states. Each working state contains 1800 training samples
and 247 test samples, and the training and test dataset
contains 2047 samples. (e entire dataset is divided into
three parts: training, test, and unused data. In order to
correspond to the fault types in 10, the output layer of the
pretrained VGG19model is replaced with the output layer of
10 neurons to predict the corresponding label.

(e accuracy of the gear and bearing fault classification is
shown in Figures 8 and 9. In addition, in order to verify the
proposed generalization ability of the model and whether
there is overfitting in the classification experiment, this
article also conducted ten-fold cross-validation experiments
and listed the loss function of the two sets of data. For the
experiment, the detailed results are shown in Figures 10 and
11 and Figures 12 and 13. At the same time, in order to verify
the effectiveness of the proposed model, the paper also lists
the literature [34–36] for the accuracy of the failure clas-
sification experiments shown in Table 3. (e paper also
compares the accuracy of the VGG16 model. (e com-
parison of the accuracy of the two models is shown in
Figure 14.

(e results show that the VGG19 pretrained model that
uses multichannel array signals to generate images is su-
perior to other machine learning models based on single-
channel signal processing in terms of classification accuracy,
and the performance is improved by about 6%, and the
failure rate of the gearbox dataset reaches 99.99% accuracy.

In conclusion, the paper proposes a framework that
adopts the concept of transfer learning for training.
(erefore, theoretically speaking, as long as the corre-
sponding form of one-dimensional sensing signal is satisfied,
the framework proposed in this paper is adaptable.
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Figure 7: Experimental setup for gearbox dataset [34].

Table 1: Bearing and gearbox fault types description.

Location Type Description

Gearbox

Chipped Crack occurs in the gear feet

Miss Missing one of feet in the gear
Root Crack occurs in the root of gear feet

Surface Wear occurs in the surface of gear

Bearing

Ball Crack occurs in the ball
Inner Crack occurs in the inner ring

Outer Crack occurs in the outer ring
Combination Crack occurs in the both inner and outer rings

Shock and Vibration 7



Table 2: (e experimental data grouping situation.

Load Fault types Label
(e number of experiment groups

Training/testing

0 and 2 Health 0 1800/247
0 and 2 Chipped/ball 1 1800/247
0 and 2 Miss/inner 2 1800/247
0 and 2 Root/outer 3 1800/247
0 and 2 Surface/combination 4 1800/247
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(erefore, even though we recommend using similar sensors
for data and collection, the data source is not limited.

5. Conclusion

In summary, we have developed a deep transfer learning
framework for machine fault diagnosis and classification.
According to our comparative analysis, the new model using
the transposed convolution and VGG19 framework has
achieved good results in the experiments of the gearbox
which include bearing and gear two datasets, and not only
reduce the training time and the number of samples for a
single training but also made significant progress in

classification accuracy. It is foreseeable that deep learning
will make great achievements in other fields, such as fault
detection and classification of different types of mechanical
systems and control engineering.

Data Availability

(edata used to support the findings of this study are available
at https://github.com/cathysiyu/Mechanical-datasets.
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Figure 13: Ten-fold cross-validation result of bearing dataset.

Table 3: Classification results for the gearbox dataset.

Fault diagnosis method Time window Channel Bearing (20-0) Bearing (30-2) Gearset (20-0) (%) Gearset (30-2) (%)

[35] Premodel (VGG16) 1024 1 98.90% 98.84% 98.70 98.07

[36]

SAE-DNN 20000 1 87.50% 92.10% 92.70 91.90
GRU 20000 1 91.20% 92.40% 93.80 90.70
BiGRU 20000 1 93.00% 93.60% 93.80 90.70
LFGRU 20000 1 93.20% 94.00% 94.80 95.80

[38]
DSR 1024 1 ∗ ∗ 99.59 99.78

SACNN 1024 1 ∗ ∗ 99.86 99.88

CNN trained from scratch 512 1 98.08% 98.08% 97.80 97.80
DNN 512 1 97.56% 97.56% 93.68 93.68

Premodel (VGG19) 512 8 99.78% 99.78% 99.99 99.99
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Figure 14: Classification accuracy of VGG16 and VGG19 on the gearbox dataset.
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