E,	С,
Er,	С,

—173,

Multisite, multifrequency tensor decomposition of magnetotelluric data

Gary W. McNeice* and Alan G. Jones \ddagger

i

у

Extended MT Tensor Decomposition

Regional strike estimation

$$\alpha_1 = Z_{xy} + Z_{yx}$$

$$\alpha_2 = Z_{yx} - Z_{xy}$$

$$\alpha_3 = Z_{xx} - Z_{yy}.$$
(4)

$$\alpha_{0} = t\sigma + e\delta$$

$$\alpha_{1} = (\delta - et\sigma) \quad \bullet 2\theta - (t\delta + e\sigma) \bullet \theta$$

$$\alpha_{2} = -\sigma + et\delta \qquad (5)$$

$$\alpha_{3} = -(t\delta + e\sigma) \quad \bullet 2\theta - (\delta - et\sigma) \bullet \theta,$$

şı i

$$\sigma = A + B$$

$$\delta = A - B$$

łł i G u 🖿 y-**9**U s i h wi i ì 1 . u nn yi u wi g h 9 ļi **m** g um yi ų∙,∙ y g h

$$minimize|Z_{xx} - Z_{yy}|^2$$

(7) In

(wi

mi

$$\theta' = \theta_{regional} + \frac{1}{2} \quad \mathbf{m}^{-1} \left(\frac{t\delta + e\sigma}{\delta - et\sigma} \right). \tag{8}$$

Eui
ng
$$\theta'$$

in ha do na o so
(1987),
o nd in ha na na so ha i
si
na na so na na i
o dui i
o dui i

na se la la majo se in

$$\begin{aligned} \mathbf{y} & \mathbf{y} & \mathbf{y} \\ \mathbf{EXTENSION OF GB DECOMPOSITION FOR MULTIPLE FREQUENCIES} \\ \mathbf{STES AND MULTIPLE FREQUENCIES} & \mathbf{y} \\ \mathbf{z}^{2}(\mathbf{a}) = \gamma^{2}(\mathbf{P}) + \sum_{i} \frac{\partial \gamma^{2}}{\partial a_{i}} a_{i} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} \gamma^{2}}{\partial a_{i} \partial a_{j}} a_{i} a_{j} + \cdots \\ \approx c + \mathbf{J} \cdot \mathbf{a} + \frac{1}{2} \mathbf{a} \cdot \mathbf{I} \cdot \mathbf{a}, \quad (10) \\ \mathbf{z}^{2}(\mathbf{a}) = \mathbf{y}^{2}(\mathbf{N}) + \sum_{i} \frac{\partial \gamma^{2}}{\partial a_{i}} a_{i} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} \gamma^{2}}{\partial a_{i} \partial a_{j}} a_{i} a_{j} + \cdots \\ \approx c + \mathbf{J} \cdot \mathbf{a} + \frac{1}{2} \mathbf{a} \cdot \mathbf{I} \cdot \mathbf{a}, \quad (10) \\ \mathbf{z}^{2}(\mathbf{a}) = \mathbf{y}^{2}(\mathbf{N}) + \sum_{i} \frac{\partial \gamma^{2}}{\partial a_{i}} a_{i} + \mathbf{z}, \quad (11) \\ \mathbf{z}^{2}(\mathbf{a}) = \sum_{k=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N}$$

i

100

186

.

9

.

_

$$N \times 8 \times [S \times (N \times 4 + 2) + 1 \mathbf{m} \quad \mathbf{\dot{i}}$$

$$\frac{\partial \gamma_i(a)}{\partial a_j} = \frac{-1}{\sigma_{\alpha_i}} \frac{\partial \alpha_i^{model}(a)}{\partial a_j} \quad i = 1, 2, \dots, S \times N \times 8$$

$$j = 1, 2, \dots, S \times (N \times 4 + 2) + 1. \quad (17)$$

$$\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{j=1}^{N-N} \gamma_j(a) \frac{\partial \gamma_j(a)}{\partial a_i}$$

$$i = 1, 2, \dots, S \times (N \times 4 + 2) + 1.$$
(18)

i
$$S \times (N \times 4 + 2) + 1 \times [S \times (N \times 4 + 2) + 1]$$
 i

$$\frac{\partial^2 \gamma^2}{\partial a_i \partial a_j} = 2 \sum_{k=1}^{SN8} \frac{1}{\sigma_{\alpha_k}^2} \left[\frac{\partial \alpha_k^{model}(a)}{\partial a_i} \frac{\partial \alpha_k^{model}(a)}{\partial a_j} + \left[\alpha_k^{obs} - \alpha_k^{model}(a) \right] \frac{\partial^2 \alpha_k^{model}(a)}{\partial a_i \partial a_j} \right].$$
(19)

In In
$$u$$
 i
In G so u_{1} so u_{1} i
su so u_{1} so u_{1} i
 g_{1} so u_{2} so u_{2} i
 $[\alpha^{obs} - \alpha^{model}$, so In so u_{1} in u_{2} in u_{2} in u_{2} in u_{3} in u_{4} in u_{5} in $u_$

$$\frac{\partial^2 \gamma^2(a)}{\partial a_i \partial a_j} \approx 2 \sum_{k=1}^{SN8} \frac{\partial \gamma_k(a)}{\partial a_i} \frac{\partial \gamma_k(a)}{\partial a_j}$$

$$i, j = 1, 2, \dots, S(N4+2) + 1.$$
(20)

$$\begin{array}{ccc} \mathbf{h} & & & - \\ \mathbf{u} & \mathbf{u} & \mathbf{i} & & - \\ \mathbf{i} & & & - \\ \mathbf{i} & & & \mathbf{A} \\ \mathbf{A} \\ \mathbf{SSMM} & \mathbf{i} & & & \mathbf{\alpha}_i, \end{array}$$

Assume that
$$x^{2}$$
, x^{2} ,

Error estimation

h w is
h yis
h g
$$\pm 45^{\circ} (e \pm 1)$$
 where h
where h g $\pm 45^{\circ} (e \pm 1)$ where h
is
where h is not so
yis
is
 $Z_{meas}(\theta_{regional}) = \begin{bmatrix} -(1-t)B & (1-t)A \\ (1+t)B & (1+t)A \end{bmatrix}$
(21)

$$Z_{meas}(\theta_{regional}) = \begin{bmatrix} (1-t)^2 & (1-t)^2 \\ -(1+t)B & (1+t)A \end{bmatrix}$$
(21)

$$t(\theta) = t - \mathbf{n} \left(\theta - \theta_{regional}\right) \tag{22}$$

when
$$(\theta - \theta_{regional})$$
 is
be g
in the heri

$$Z_{meas}(\theta_{regional}) = \begin{bmatrix} -(e-t)B & 0\\ -(1+te)B & 0 \end{bmatrix}$$
(23)

$$Z_{meas}(\theta_{regional}) = \begin{bmatrix} 0 & (1-te)A\\ 0 & (e+t)A \end{bmatrix}.$$
 (24)

la dai s∽i ba g mania

V

ļi 9-10 g W **EXAMPLES OF APPLICATION** Synthetic example 1 du i i. 🖿 (1993) w g y 10. 9.10 **3**• 1 me (AC) maui 1990), h us 1, i ά y. $\mathbf{Z} = \mathbf{C}\mathbf{Z}_{2-D} = \begin{bmatrix} 1.26 & 0.44 \\ 0.53 & 0.86 \end{bmatrix} \\ \times \begin{bmatrix} 0 & (4.72, 4.05) \\ (-8.25, -3.10) & 0 \end{bmatrix} \times 10^{-4}(\Omega)$ $= \begin{bmatrix} (-3.63, -1.36) & (5.95, 5.10) \\ (-7.10, -2.67) & (2.51, 2.15) \end{bmatrix} \times 10^{-4}(\Omega).$ (25) D 🛍 g) 1. -2. ° (t = -0.037), 9∙ýi s) ,• 0. 24. \circ (*e* = 0.47). i °. usi ni (25) **u** 31**m** i 9 31 h У ui i 'n UN à g nà. *−*2.2°. wi 0. -2.1° , ۰, i **3**1 'n g u 🛍 yу

⇒i

Synthetic example 2

synthetic example 2 **i** w **i** s **i** 2-Bi 2-Bi 2-Bi 2- 3-3-

FiG. 1. umtynn y∳r

164

McNeice and Jones

• •

11·

Real data example—Papua New Guinea

n g

∎mi u (___)(šr

Table 1. Results of decomposition of synthetic 2-D data set. Joint decomposition found a regional strike of 30.3° , close to the real value of 30.0° .

McNeice and Jones

ha u s ha su y	v 🔊 🏅 mi	
g Ma u i		} .
bou bou A		ì
1		
121 mg 122 g u m (1. gi		
ंग भिः		● +30°.
u kan in		i,
າ ໝາບຳ		g
i i minis		3
u d.		
una ya jenna na yu wa ° ha yua sa	1,	in, °alions∽
500-	0	l ala v ml
2500 m (• • >2 s).		y y ر
\dot{s} °(±0.2°),		4
y mai Σα		
••• y,	°, °, °i	
1− In us In su yw	• }~m • u u	s à shisi
lan iang	ં	•]:
na ka		۲۰ ۱۵
wi Lohuse i		ì
34°.		
umyą,•mąmy s` ,•mąmy suu si	I	-

ROTATION OF MT IMPEDANCE TENSOR

Extended MT Tensor Decomposition

Fig. 9.

Fig. 15. s (s i

172

McNeice and Jones

v

