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The sharp and recent increase in the availability of data
captured by different sensors combined with their considerably
heterogeneous natures poses a serious challenge for the effective
and efficient processing of remotely sensed data. Such an increase
in remote sensing and ancillary datasets, however, opens up the
possibility of utilizing multimodal datasets in a joint manner to
further improve the performance of the processing approaches
with respect to the application at hand. Multisource data fusion
has, therefore, received enormous attention from researchers
worldwide for a wide variety of applications. Moreover, thanks
to the revisit capability of several spaceborne sensors, the
integration of the temporal information with the spatial and/or
spectral/backscattering information of the remotely sensed data
is possible and helps to move from a representation of 2D/3D
data to 4D data structures, where the time variable adds new
information as well as challenges for the information extraction
algorithms. There are a huge number of research works dedicated
to multisource and multitemporal data fusion, but the methods
for the fusion of different modalities have expanded in different
paths according to each research community. This paper brings
together the advances of multisource and multitemporal data
fusion approaches with respect to different research communities
and provides a thorough and discipline-specific starting point
for researchers at different levels (i.e., students, researchers, and
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senior researchers) willing to conduct novel investigations on this
challenging topic by supplying sufficient detail and references.
More specifically, this paper provides a bird’s-eye view of many
important contributions specifically dedicated to the topics of
pansharpening and resolution enhancement, point cloud data
fusion, hyperspectral and LiDAR data fusion, multitemporal data
fusion, as well as big data and social media. In addition, the
main challenges and possible future research for each section
are outlined and discussed.

Index Terms—Fusion; Multisensor Fusion; Multitemporal Fu-
sion; Downscaling; Pansharpening; Resolution Enhancement;
Spatio-Temporal Fusion; Spatio-Spectral Fusion; Component
Substitution; Multiresolution Analysis; Subspace Representation;
Geostatistical Analysis; Low-Rank Models; Filtering; Composite
Kernels; Deep Learning.

I. INTRODUCTION

The number of data produced by sensing devices has

increased exponentially in the last few decades, creating the

“Big Data” phenomenon, and leading to the creation of the

new field of “data science”, including the popularization of

“machine learning” and “deep learning” algorithms to deal

with such data [1]–[3]. In the field of remote sensing, the

number of platforms for producing remotely sensed data has

similarly increased, with an ever-growing number of satellites

in orbit and planned for launch, and new platforms for

proximate sensing such as unmanned aerial vehicles (UAVs)

producing very fine spatial resolution data. While optical

sensing capabilities have increased in quality and volume,

the number of alternative modes of measurement has also

grown including, most notably, airborne light detection and

ranging (LiDAR) and terrestrial laser scanning (TLS), which

produce point clouds representing elevation, as opposed to

images [4]. The number of synthetic aperture radar (SAR)

sensors, which measure RADAR backscatter, and satellite and

airborne hyperspectral sensors, which extend optical sensing

capabilities by measuring in a larger number of wavebands,

has also increased greatly [5], [6]. Airborne and spaceborne

geophysical measurements such as the satellite mission Grav-

ity Recovery And Climate Experiment (GRACE) or airborne

electro-magnetic surveys are currently been also considered.

In addition, there has been great interest in new sources of

ancillary data, for example, from social media, crowd sourcing,

scraping the internet and so on ([7]–[9]). These data have a

very different modality to remote sensing data, but may be
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related to the subject of interest and, therefore, may add useful

information relevant to specific problems.

The remote sensors onboard the above platforms may vary

greatly in multiple dimensions; for example, the types of

properties sensed and the spatial and spectral resolutions of

the data. This is true, even for sensors that are housed on the

same platform (e.g., the many examples of multispectral and

panchromatic sensors) or that are part of the same satellite

configuration (e.g., the European Space Agency’s (ESA’s)

series of Medium Resolution Imaging Spectrometer (MERIS)

sensors). The rapid increase in the number and availability of

data combined with their deeply heterogeneous natures creates

serious challenges for their effective and efficient processing

([10]). For a particular remote sensing application, there are

likely to be multiple remote sensing and ancillary datasets

pertaining to the problem and this creates a dilemma; how

best to combine the datasets for maximum utility? It is for this

reason that multisource data fusion, in the context of remote

sensing, has received so much attention in recent years [10]–

[13].

Fortunately, the above increase in the number and het-

erogeneity of data sources (presenting both challenge and

opportunity) has been paralleled by increases in computing

power, by efforts to make data more open, available and

interoperable, and by advances in methods for data fusion,

which are reviewed here [15]. There exist a very wide range

of approaches to data fusion (e.g., [11]–[13]). This paper

seeks to review them by class of data modality (e.g., optical,

SAR, laser scanning) because methods for these modalities

have developed somewhat differently, according to each re-

search community. Given this diversity, it is challenging to

synthesize multisource data fusion approaches into a single

framework, and that is not the goal here. Nevertheless, a

general framework for measurement and sampling processes

(i.e., forward processes) is now described briefly to provide

greater illumination of the various data fusion approaches

(i.e., commonly inverse processes or with elements of inverse

processing) that are reviewed in the following sections. Due to

the fact that the topic of multisensor data fusion is extremely

broad and that specific aspects have been reviewed already

we have to restrict what is covered in the manuscript and,

therefore, do not address a few topics such as the fusion of

SAR and optical data.

We start by defining the space and properties of interest.

In remote sensing, there have historically been considered to

be four dimensions in which information is provided. These

are: spatial, temporal, spectral, and radiometric; that is, 2D

spatially, 1D temporally, and 1D spectrally with “radiometric”

referring to numerical precision. The electromagnetic spectrum

(EMS) exists as a continuum and, thus, lends itself to high-

dimensional feature space exploration through definition of

multiple wavebands (spectral dimension). LiDAR and TLS,

in contrast to most optical and SAR sensors, measure a

surface in 3D spatially. Recent developments in photo- and

radargrammetry such as Structure from Motion (SfM) and

InSAR, have increased the availability of 3D data. This

expansion of the dimensionality of interest to 3D in space

and 1D in time makes image and data fusion additionally

challenging [4]. The properties measured in each case vary,

with SAR measuring backscatter, optical sensors (including

hyperspectral) measuring the visible and infrared parts of

the EMS, and laser scanners measuring surface elevation in

3D. Only surface elevation is likely to be a primary interest,

whereas reflectance and backscatter are likely to be only

indirectly related to the property of interest.

Secondly, we define measurement processes. A common

“physical model” in remote sensing is one of four component

models: scene model, atmosphere model, sensor model, and

image model [16]–[21]. The scene model defines the subject

of interest (e.g., land cover, topographic surface), while the

atmosphere model is a transform of the EMS from surface

to sensor, the sensor model represents a measurement process

(e.g., involving a signal-to-noise ratio, the point spread func-

tion) and the image model is a sampling process (e.g., to create

the data as an image of pixels on a regular grid).

Third, the sampling process implied by the image model

above can be expanded and generalized to three key pa-

rameters (the sampling extent, the sampling scheme, and the

sampling support), each of which has four further parameters

(size, geometry, orientation, and position). The support is a

key sampling parameter which defines the space on which

each observation is made; it is most directly related to the

point spread function in remote sensing, and is represented

as an image pixel [22]. The combination and arrangement of

pixels as an image defines the spatial resolution of the image.

Fusion approaches are often concerned with the combination

of two or more datasets with different spatial resolutions such

as to create a unified dataset at the finest resolution [23]–[25].

Fig. 1(a) demonstrates schematically the multiscale nature

(different spatial resolutions) of diverse datasets captured by

spaceborne, airborne, and UAV sensors. In principle, there is

a relation between spatial resolution and scene coverage, i.e.,

data with a coarser spatial resolution (spaceborne data) have a

larger scene coverage while data with a finer spatial resolution

have a limited coverage (UAV data).

All data fusion methods attempt to overcome the above

measurement and sampling processes, which fundamentally

limit the amount of information transferring from the scene to

any one particular dataset. Indeed, in most cases of data fusion

in remote sensing the different datasets to be fused derive in

different ways from the same scene model, at least as defined

in a specific space-time dimension and with specific measur-

able properties (e.g., land cover objects, topographic surface).

Understanding these measurement and sampling processes is,

therefore, key to characterizing methods of data fusion since

each operates on different parts of the sequence from scene

model to data. For example, it is equally possible to perform

the data fusion process in the scene space (e.g., via some data

generating model such as a geometric model) as in the data

space (the more common approach) [21].

Finally, we define the “statistical model” framework as

including: (i) measurement to provide data, as described above,

(ii) characterization of the data through model fitting, (iii)

prediction of unobserved data given (ii), and (iv) forecasting

[26]. (i), (ii), and (iii) are defined in space or space-time, while

(iv) extends through time beyond the range of the current data.
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Fig. 1: (a) The multiscale nature of diverse datasets captured by multisensor data (spaceborne, airborne, and UAV sensors) in

Nambia [14]; (b) The trade-off between spectral and spatial resolutions; (c) Elevation information obtained by LiDAR sensors

from the University of Houston; (d) Time-series data analysis for assessing the dynamic of changes using RGB and urban

images captured from 2001 to 2006 in Dubai.

Prediction (iii) can be of the measured property x (e.g., re-

flectance or topographic elevation, through interpolation) or it

can be of a property of interest y to which the measured x data

are related (e.g., land cover or vegetation biomass, through

classification or regression-type approaches). Similarly, data

fusion can be undertaken on x or it can be applied to predict

y from x. Generally, therefore, data fusion is applied either

between (ii) and (iii) (e.g., fusion of x based on the model in

(ii)), as part of prediction (e.g., fusion to predict y) or after

prediction of certain variables (e.g., ensemble unification). In

this paper, the focus is on data fusion to predict x.

Data fusion is made possible because each dataset to be

fused represents a different view of the same real world defined

in space and time (generalized by the scene model), with

each view having its own measurable properties, measurement

processes, and sampling processes. Therefore, crucially, one

should expect some level of coherence between the real world

(the source) and the multiple datasets (the observations), as

well as between the datasets themselves, and this is the basis

of most data fusion methods. This concept of coherence is

central to data fusion [27].

Attempts to fuse datasets are potentially aided by knowledge

of the structure of the real world. The real world is spatially

correlated, at least at some scale [28] and this phenomenon

has been used in many algorithms (e.g., geostatistical models

[27]). Moreover, the real world is often comprised of func-

tional objects (e.g., residential houses, roads) that have expec-

tations around their sizes and shapes, and such expectations

can aid in defining objective functions (i.e., in optimization

solutions) [29]. These sources of prior information (on real

world structure) constrain the space of possible fusion solu-

tions beyond the data themselves.

Many key application domains stand to benefit from data fu-

sion processing. For example, there exists a very large number

of applications where an increase in spatial resolution would

add utility, which is the center of focus in Section II of this pa-

per. These include land cover classification, urban-rural defini-

tion, target identification, geological mapping, and so on (e.g.,

[30]). A large focus of attention currently is on the specific

problem that arises from the trade-off in remote sensing be-

tween spatial resolution and temporal frequency; in particular

the fusion of coarse-spatial-fine-temporal-resolution with fine-

spatial-coarse-temporal-resolution space-time datasets such as

to provide frequent data with fine spatial resolution [31]–[34],

which will be detailed in Section II and V of this paper. Land

cover classification is one of the most vibrant fields of research

in the remote sensing community [35], [36], which attempts

to differentiate between several land cover classes available in

the scene, can substantially benefit from data fusion. Another

example is the trade-off between spatial resolution and spectral

resolution (Fig. 1(b)) to produce fine-spectral-spatial resolution

images, which plays an important role for land cover classifica-

tion and geological mapping. As can be seen in Fig. 1(b), both

fine spectral and spatial resolutions are required to provide

detailed spectral information and avoid the “mixed-pixel”

phenomenon at the same time. Further information about

this topic can be found in Section II. Elevation information

provided by LiDAR and TLS (see Fig. 1(c)) can be used

in addition to optical data to further increase classification

and mapping accuracy, in particular for classes of objects,

which are made up of the same materials (e.g., grassland,

shrubs, and trees). Therefore, Sections III and IV of this paper

are dedicated to the topic of elevation data fusion and their

integration with passive data. Furthermore, new sources of

ancillary data obtained from social media, crowd sourcing,

and scraping the internet can be used as additional sources

of information together with airborne and spaceborne data

for smart city and smart environment applications as well as
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hazard monitoring and identification. This young, yet active,

field of research is the focus of Section VI.

Many applications can benefit from fused fine-resolution,

time-series datasets, particularly those that involve seasonal

or rapid changes, which will be elaborated in Section V.

Fig. 1(d) shows the dynamic of changes for an area in Dubai

from 2001 to 2006 using time-series of RGB and urban

images. For example, monitoring of vegetation phenology (the

seasonal growing pattern of plants) is crucial to monitoring

deforestation [37] and crop yield forecasting, which mitigates

against food insecurity globally, natural hazards (e.g. earth-

quakes, landslides) or illegal activities such as pollutions (e.g.

oil spills, chemical leakages). However, such information is

provided globally only at very coarse resolution, meaning that

local smallholder farmers cannot benefit from such knowledge.

Data fusion can be used to provide frequent data needed for

phenology monitoring, but at a fine spatial resolution that

is relevant to local farmers [38]. Similar arguments can be

applied to deforestation where frequent, fine resolution data

may aid in speeding up the timing of government interventions

[37], [39]. The case for fused data is arguably even greater

for rapid change events; for example, forest fires and floods.

In these circumstances, the argument for frequent updates at

fine resolution is obvious. While these application domains

provide compelling arguments for data fusion, there exist

many challenges including: (i) the data volumes produced at

coarse resolution via sensors such as MODIS and MERIS

are already vast, meaning that fusion of datasets most likely

needs to be undertaken on a case-by-case basis as an on-

demand service and (ii) rapid change events require ultra-fast

processing meaning that speed may outweigh accuracy in such

cases [40]. In summary, data fusion approaches in remote

sensing vary greatly depending on the many considerations

described above, including the sources of the datasets to

be fused. In the following sections, we review data fusion

approaches in remote sensing according to the data sources to

be fused only, but the further considerations introduced above

are relevant in each section.

The remainder of this review is divided into the following

sections. First, we review pansharpening and resolution en-

hancement approaches in Section II. Then, we will move on

by discussing point cloud data fusion in Section III. Section

IV is devoted to hyperspectral and LiDAR data fusion. Section

V presents an overview of multitemporal data fusion. Major

recent advances in big data and social media fusion are pre-

sented in Section IV. Finally, Section VII draws conclusions.

II. PANSHARPENING AND RESOLUTION ENHANCEMENT

Optical Earth observation satellites have trade-offs in spa-

tial, spectral, and temporal resolutions. Enormous efforts have

been made to develop data fusion techniques for reconstructing

synthetic data that have the advantages of different sensors.

Depending on which pair of resolutions has a tradeoff, these

technologies can be divided into two categories: (1) spatio-

spectral fusion to merge fine-spatial and fine-spectral reso-

lutions [see Fig. 2(a)]; (2) spatio-temporal fusion to blend

fine-spatial and fine-temporal resolutions [see Fig. 2(b)]. This

Fig. 2: Schematic illustrations of (a) spatio-spectral fusion and

(b) spatio-temporal fusion.

section provides overviews of these technologies with recent

advances.

A. Spatio-spectral fusion

Satellite sensors such as WorldView and Landsat ETM+ can

observe the Earth’s surface at different spatial resolutions in

different wavelengths. For example, the spatial resolution of

the eight-band WorldView multispectral image is 2 m, but the

single band panchromatic (PAN) image has a spatial resolution

of 0.5 m. Spatio-spectral fusion is a technique to fuse the fine

spatial resolution images (e.g., 0.5 m WorldView PAN image)

with coarse spatial resolution images (e.g., 2 m WorldView

multispectral image) to create fine spatial resolution images for

all bands. Spatio-spectral fusion is also termed pan-sharpening

when the available fine spatial resolution image is a single

PAN image. When multiple fine spatial resolution bands are

available, spatio-spectral fusion is referred to as multiband im-

age fusion, where two optical images with a trade-off between

spatial and spectral resolutions are fused to reconstruct fine-

spatial and fine-spectral resolution imagery. Multiband image

fusion tasks include multiresolution image fusion of single-

satellite multispectral data (e.g., MODIS and Sentinel-2) and

hyperspectral and multispectral data fusion [41].
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Fig. 3: The history of the representative literature of five

approaches in spatio-spectral fusion. The size of each cir-

cle is proportional to the annual average number of ci-

tations. For each category, from left to right, circles cor-

respond to [42]–[50] for CS, [51]–[57] for MRA, [58]–

[61], [27], [62], [31], [63] for Geostatistical, [64]–[69] for

Subspace, and [70]–[72] for Sparse.

Over the past decades, spatio-spectral fusion has motivated

considerable research in the remote sensing community. Most

spatio-spectral fusion techniques can be categorized into at

least one of five approaches: 1) component substitution (CS),

2) multiresolution analysis (MRA), 3) geostatistical analysis,

4) subspace representation, and 5) sparse representation. Fig. 3

shows the history of representative literature with different col-

ors (or rows) representing different categories of techniques.

The size of each circle is proportional to the annual average

number of citations (obtained by Google Scholar on January

20, 2018), which indicates the impact of each approach in the

field. The main concept and characteristics of each category

are described below.

1) Component Substitution: CS-based pan-sharpening

methods spectrally transform the multispectral data into an-

other feature space to separate spatial and spectral information

into different components. Typical transformation techniques

include intensity-hue-saturation (IHS) [44], principal compo-

nent analysis (PCA) [43], and Gram-Schmidt [46] transfor-

mations. Next, the component that is supposed to contain the

spatial information of the multispectral image is substituted

by the PAN image after adjusting the intensity range of

the PAN image to that of the component using histogram

matching. Finally, the inverse transformation is performed on

the modified data to obtain the sharpened image.

Aiazzi et al. (2007) proposed the general CS-based pan-

sharpening framework, where various methods based on dif-

ferent transformation techniques can be explained in a unified

way [48]. In this framework, each multispectral band is

sharpened by injecting spatial details obtained as the differ-

ence between the PAN image and a coarse-spatial-resolution

synthetic component multiplied by a band-wise modulation

coefficient. By creating the synthetic component based on

linear regression between the PAN image and the multispectral

image, the performances of traditional CS-based techniques

were greatly increased, mitigating spectral distortion.

CS-based fusion techniques have been used widely owing

to the following advantages: i) high fidelity of spatial details

in the output, ii) low computational complexity, and iii)

robustness against misregistration. On the other hand, the

CS methods suffer from global spectral distortions when the

overlap of spectral response functions (SRFs) between the two

sensors is limited.

2) Multiresolution Analysis: As shown in Fig. 3, great

effort has been devoted to the study of MRA-based pan-

sharpening algorithms particularly between 2000 and 2010

and they have been used widely as benchmark methods for

more than ten years. The main concept of MRA-based pan-

sharpening methods is to extract spatial details (or high-

frequency components) from the PAN image and inject the

details multiplied by gain coefficients into the multispectral

data. MRA-based pan-sharpening techniques can be charac-

terized by 1) the algorithm used for obtaining spatial details

(e.g., spatial filtering or multiscale transform), and 2) the

definition of the gain coefficients. Representative MRA-based

fusion techniques are based on box filtering [54], Gaussian

filtering [56], bilateral filtering [73], wavelet transform [53],

[55], and curvelet transform [57]. The gain coefficients can be

computed either locally or globally.

Selva et al. (2015) proposed a general framework called hy-

persharpening that extends MRA-based pan-sharpening meth-

ods to multiband image fusion by creating a fine spatial

resolution synthetic image for each coarse spatial resolution

band as a linear combination of fine spatial resolution bands

based on linear regression [74].

The main advantage of the MRA-based fusion techniques is

its spectral consistency. In other words, if the fused image is

degraded in the spatial domain, a degraded image is spectrally

consistent with the input coarse-spatial and fine-spectral reso-

lution image. The main shortcoming is that its computational

complexity is greater than that of CS-based techniques.

3) Geostatistical Analysis: Geostatistical solutions provide

another family of approaches for spatio-spectral fusion. This

type of approach can preserve the spectral properties of the

original coarse images. That is, when the downscaled predic-

tion is upscaled to the original coarse spatial resolution, the

result is identical to the original one (i.e., perfect coherence).

Pardo-Iguzquiza et al. [58] developed a downscaling cokriging

(DSCK) method to fuse the Landsat ETM+ multispectral

images with the PAN image. DSCK treats each multispectral

image as the primary variable and the PAN image as the

secondary variable. DSCK was extended with a spatially

adaptive filtering scheme [60], in which the cokriging weights

are determined on a pixel basis, rather than being fixed in

the original DSCK. Atkinson et al. [59] extended DSCK to

downscaled the multispectral bands to a spatial resolution finer

than any input images, including the PAN image. DSCK is

a one-step method, and it involves auto-semivariogram and

cross-semivariogram modeling for each coarse band [61].

Sales et al. [61] developed a kriging with external drift

(KED) method to fuse 250 m Moderate Resolution Imaging

Spectroradiometer (MODIS) bands 1-2 with 500 m bands

3-7. KED requires only auto-semivariogram modeling for

the observed coarse band and simplifies the semivariogram

modeling procedure, which makes it easier to implement

than DSCK. As admitted in Sales et al. [61], however, KED

suffers from expensive computational cost, as it computes
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TABLE I: Quantitative assessment of five representative pan-

sharpening methods for the Hong Kong WorldView-2 dataset

Category Method PSNR SAM ERGAS Q2n

— Ideal inf 0 0 1
CS GSA 36.9624 1.9638 1.2816 0.86163

MRA SFIM 36.4975 1.8866 1.2857 0.86619
MRA MTF-GLP-HPM 36.9298 1.8765 1.258 0.85945

Geostatistical ATPRK 37.9239 1.7875 1.1446 0.88082
Sparse J-SparseFI-HM 37.6304 1.6782 1.0806 0.88814

kriging weights locally for each fine pixel. The computing

time increases linearly with the number of fine pixels to be

predicted.

Wang et al. [27] proposed an area-to-point regression krig-

ing (ATPRK) method to downscale MODIS images. ATPRK

includes two steps: regression-based overall trend estimation

and area-to-point kriging (ATPK)-based residual downscaling.

The first step constructs the relationship between the fine and

coarse spatial resolution bands by regression modelling and

then the second step downscales the coarse residuals from the

regression process with ATPK. The downscaled residuals are

finally added back to the regression predictions to produce

fused images. ATPRK requires only auto-semivariogram mod-

eling and is much easier to automate and more user-friendly

than DSCK. Compared to KED, ATPRK calculates the kriging

weights only once and is a much faster method. ATPRK

was extended with an adaptive scheme (called AATPRK),

which fits a regression model using a local scheme where the

regression coefficients change across the image [62]. For fast

fusion of hyperspectral and multispectral images, ATPRK was

extended with an approximate version [63]. The approximate

version greatly expedites ATPRK and also has a very similar

performance in fusion. ATPRK was also employed for fusion

of the Sentinel-2 Multispectral Imager (MSI) images acquired

from the recently launched Sentinel-2A satellite. Specifically,

the six 20 m bands were downscaled to 10 m spatial resolution

by fusing them with the four observed 10 m bands [31].

4) Subspace Representation: As indicated in Fig. 3, re-

search on subspace-based fusion techniques has become very

popular recently. Most of these techniques have been devel-

oped for multiband image fusion. The subspace-based methods

solve the fusion problem via the analysis of the intrinsic

spectral characteristics of the observed scene using a subspace

spanned by a set of basis vectors (e.g., a principal component

basis and spectral signatures of endmembers). The problem is

formulated as the estimation of the basis at a fine-spectral res-

olution and the corresponding subspace coefficients at a fine-

spatial resolution. This category of techniques includes various

methods based on Bayesian probability [68], matrix factoriza-

tion [66], and spectral unmixing [75]. The interpretation of

the fusion process is straightforward in the case of unmixing-

based methods: endmembers and their fine-spatial-resolution

fractional abundances are estimated from the input images; the

output is reconstructed by multiplying the endmember matrix

and the abundance matrix.

A recent comparative review on multiband image fu-

sion in [41] demonstrated that unmixing-based methods are

capable of achieving accurate reconstruction results even

when the SRF overlap between the two sensors is limited.

Many subspace-based algorithms are computationally expen-

sive compared to CS- and MRA-based methods due to itera-

tive optimization. Recent efforts for speeding up the fusion

procedure [69] are key to the applicability of this family

of techniques for large-sized images obtained by operational

satellites (e.g., Sentinel-2). Another drawback of the subspace-

based methods is that they can introduce unnatural artifacts in

the spectral domain due to imperfect subspace representations.

5) Sparse Representation: In recent years, spatio-spectral

fusion approaches based on patch-wise sparse representation

have been developed along with the theoretical develop-

ment of compressed sensing and sparse signal recovery. Pan-

sharpening based on sparse representation can be regarded

as a special case of learning-based super-resolution, where

correspondence between coarse- and fine-spatial-resolution

patches are learned from a database (or a dictionary). Li et

al. (2011) proposed the first sparse-representation-based pan-

sharpening method that exploits various external fine-spatial-

resolution multispectral images as a database [70]. By consid-

ering the PAN image as a source for constructing a dictionary,

it is possible to deal with the general problem setting of

pan-sharpening, where there is only one pair of PAN and

multispectral images is available [71]. Sparse representations

have been introduced into the subspace-based fusion scheme

to regularize fine-spatial-resolution subspace coefficients based

on Bayesian probability [72].

It is noteworthy that sparse-representation-based techniques

are capable of sharpening spatial details that are not visible in

the fine spatial resolution image at exactly the same location by

reconstructing each patch of the output as a linear combination

of non-local patches of the fine-spatial-resolution image. The

critical drawback is its extremely high computational com-

plexity, sometimes requiring supercomputers to process fusion

tasks in an acceptable time.

We compare five representative pan-sharpening algorithms,

namely, GSA [48], SFIM [54], MTF-GLP-HPM [76], AT-

PRK [27], and J-SparseFI-HM [77] using WorldView-2 data

taken over Hong Kong. The original dataset consists of 0.5 m

GSD PAN and 2 m GSD 8 multispectral bands. To assess the

quality of pan-sharpened images, we adopt Wald’s protocol,

which degrades the original PAN and multispectral images to 2

m and 8 m GSDs, respectively, with the original multispectral

bands being the reference. For quantitative evaluation, we

use peak signal-to-noise ratio (PSNR), spectral angle mapper

(SAM), erreur relative globale adimensionnelle de synthèse

(ERGAS) [78], and Q2n [79], which are all well-established

quality measures in pan-sharpening. PSNR quantifies the spa-

tial reconstruction quality of each band, and the SAM index

measures the spectral information preservation at each pixel.

We use the average PSNR and SAM values. ERGAS and Q2n

are global reconstruction indices.

The experimental results are compared both visually and

quantitatively in Fig. 4 and Table I, respectively. The quality

measures in Table I are consistent with the literature: GSA,

SFIM, and MTF-GLP-HPM provide the competitive baselines,

ATPRK clearly outperforms the baselines, and J-SparseFI-

HM achieves further increases in accuracy. In Fig. 4, we can
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(a) Multispectral image (b) Panchromatic image (c) GSA (d) SFIM

(e) MTF-GLP-HPM (f) ATPRK (g) J-SparseFI-HM (h) Reference

Fig. 4: The Hong Kong WorldView-2 dataset (bands 4, 3, and 2 as RGB). (a) 8 m coarse multispectral image, (b) 2 m PAN

image (c) GSA, (d) SFIM, (e) MTF-GLP-HPM, (f) ATPRK, (g) J-SparseFI-HM, and (h) 2 m reference image.

observe different characteristics of the investigated methods.

For instance, GSA, SFIM, MTF-GLP-HPM, and ATPRK show

sharper edges but also artifacts along object boundaries (e.g.,

between water and vegetation) where brightness is reversed

between the PAN image and each band. J-SparseFI-HM deals

with such situations and produces visually natural results

owing to its non-local sparse representation capability.

B. Spatio-temporal fusion

For remote sensing-based global monitoring, there always

exists a trade-off between spatial resolution and temporal

revisit frequency (i.e., temporal resolution). For example, the

MODIS satellite can provide data on a daily basis, but the

spatial resolution (250 m to 1000 m) is often too coarse to

provide explicit land cover information, as such information

may exist at a finer spatial scale than the sensor resolution.

The Landsat sensor can acquire images at a much finer spatial

resolution of 30 m, but has a limited revisit capability of

16 days. Fine spatial and temporal resolution data are cru-

cial for timely monitoring of highly dynamic environmental,

agricultural or ecological phenomena. The recent development

of remotely piloted aircraft systems (RPAS) or drones will

provide a huge amount of multisource data with very high

spatial and temporal resolutions.

Spatio-temporal fusion is a technique to blend fine spatial

resolution, but coarse temporal resolution (e.g., Landsat) data

and fine temporal resolution, but coarse spatial resolution

data to create fine spatio-temporal resolution (e.g., MODIS)

data [80]–[82]. Its implementation is performed based on the

availability of at least one coarse-fine spatial resolution image

pair (e.g., MODIS-Landsat image pair acquired on the same

day) or one fine spatial resolution land cover map that is

temporally close to the prediction day. Over the past decade,

several spatio-temporal fusion methods have been developed

and they can generally be categorized into image-pair-based

and spatial unmixing-based methods.

The spatial and temporal adaptive reflectance fusion model

(STARFM) [83] is one of the earliest and most widely used

spatio-temporal fusion methods. It is a typical image-pair-

based method. It assumes that the temporal changes of all

land cover classes within a coarse pixel are consistent, which

is more suitable for homogeneous landscapes dominated by

pure coarse pixels. To enhance STARFM for heterogeneous

landscapes, an enhanced STARFM (ESTARFM) method was

developed [84]. ESTARFM requires two coarse-fine image

pairs to estimate the temporal change rate of each class

separately and assumes the change rates to be stable during

the relevant period [85]. Moreover, some machine learning-

based methods were proposed, including sparse representation

[86], [87], extreme learning machine [88], articial neural

network [89], and deep learning [90]. These methods learn

the relationship between the available coarse-fine image pairs,

which is used to guide the prediction of fine images from

coarse images on other days.

Spatial unmixing-based methods can be performed using

only one fine spatial resolution land cover map. The thematic

map can be produced by interpretation of the available fine

spatial resolution data [91]–[93] or from other sources such

as an aerial image [94] or land-use database [95]. This type

of methods is performed based on the strong assumption

that there is no land-cover/land-use change during the period

of interest. Using a fine spatial resolution land-use database

LGN5 [95] or a 30 m thematic map obtained by classifica-

tion of an available Landsat image [93], 30 m Landsat-like

time-series were produced from 300 m Medium Resolution

Imaging Spectrometer (MERIS) time-series to monitor vege-

tation seasonal dynamics. To maintain the similarity between

the predicted endmembers and the pre-defined endmembers
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extracted from the coarse data, Amors-López et al. [91],

[92] proposed to include a new regularization term to the

cost function of the spatial unmixing. Wu et al. [96] and

Gevaert et al. [97] extended spatial unmixing to cases with

one coarse-fine image pair available. The method estimates

changes in class endmember spectra from the time of the

image pair to prediction before adding them to the known

fine spatial resolution image. Furthermore, Huang and Zhang

[98] developed an unmixing-based spatio-temporal reflectance

fusion model (U-STFM) using two coarse-fine image pairs.

In addition, the image-pair-based and spatial unmixing-based

methods can also be combined [32], [99], [100].

Spatio-temporal fusion is essentially an ill-posed prob-

lem involving inevitable uncertainty, especially for predicting

abrupt changes and heterogeneous landscapes. To this end,

Wang et al. [101] proposed to incorporate the freely available

250 m MODIS images into spatio-temporal fusion. Compared

to the original 500 m MODIS data, the 250 m data can provide

more information for the abrupt changes and heterogeneous

landscapes than, and thus, can increase the accuracy of spatio-

temporal fusion predictions.

Blending MODIS and Landsat has been the most common

spatio-temporal fusion problem over the past decade. Recently,

Sentinel-2 and Sentinel-3 are two newly launched satellites for

global monitoring. The Sentinel-2 MSI and Sentinel-3 Ocean

and Land Colour Instrument (OLCI) sensors have very dif-

ferent spatial and temporal resolutions (Sentinel-2 MSI sensor

10 m, 20 m and 60 m, 10 days, albeit 5 days with 2 sensors,

conditional upon clear skies; Sentinel-3 OLCI sensor 300 m,

<1.4 days with 2 sensors). Wang et al. [34] proposed a new

method, called Fit-FC, for spatio-temporal fusion of Sentinel-

2 and Sentinel-3 images to create nearly daily Sentinel-2

images. Fit-FC is a three-step method consisting of regression

model fitting (RM fitting), spatial filtering (SF) and residual

compensation (RC). The Fit-FC method can be implemented

using only one image pair and is particularly relevant for cases

involving strong temporal changes.

C. Challenges and trends of downscaling

The major remaining issue in the field of spatio-spectral

fusion is how to conduct fair comparisons. Many researchers

use their own simulated datasets, and the source code is rarely

released. To fairly evaluate the performance of each algorithm,

it is necessary to develop benchmark datasets that can be

accessible for everyone and include various scenes. Also, it

is always desirable to release the source code of each method

for enabling reproducible research. In several review papers,

researchers have attempted to evaluate many methods with

common datasets and to disclose their source code, which

is an excellent contribution to the community. However, the

diversity of the studied scenes may not be enough to evaluate

generalization ability, and also those datasets are not freely

available due to a restricted data policy of the original sources.

Regarding the source code, there are still many research

groups who never release their source code, while always

outperforming state-of-the-art algorithms in their papers. It

is an urgent issue of the community to arrange benchmark

Fig. 5: Point cloud data model with the additional point

features classification (ID per object class), intensity (LiDAR

backscatter information), and true color (RGB values). Each

point vector of the point cloud is stored in a table with its 3D

coordinate and additional columns per attribute contained in

the point cloud.

datasets on a platform like the GRSS Data and Algorithm

Standard Evaluation (DASE) website [102] so that everyone

can fairly compete for the performance of the algorithm.

With respect to spatio-temporal fusion, the main challenges

lie in the reconstruction of land cover changes and eliminating

the differences between coarse and fine spatial resolution time-

series. Due to the large difference in the spatial resolution

between coarse and fine spatial resolution time-series (e.g.,

a ratio of 16 for MODIS-Landsat), the prediction of land

cover changes (especially for abrupt changes) from coarse

images always involves great uncertainty. Most of the existing

methods are performed based on the strong assumption of no

land cover change, such as the classical STARFM, ESTARFM,

and the spatial unmixing-based method. Furthermore, due

to the differences in characteristics of sensors, atmospheric

condition, and acquisition geometry, the available coarse and

fine spatial resolution data (e.g., MODIS and Landsat data)

are always not perfectly consistent. The uncertainty is directly

propagated to the spatio-temporal fusion process. In future

research, it will be of great interest to develop more accurate

methods to account for the land cover changes and inconsis-

tency between coarse and fine spatial resolution time-series.

III. POINT CLOUD DATA FUSION

Georeferenced point clouds have gained importance in re-

cent years due to a multitude of developments in technology
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and research that increased their availability (e.g., hardware to

capture 3D point clouds) and usability in applications (e.g,.

algorithms and methods to generate point clouds and analyze

them) [103]. Research and development with point cloud

data is driven from several disciplines (e.g., photogrammetry,

computer science, geodesy, geoinformatics, and geography),

scientific communities (e.g., LiDAR, computer vision, and

robotics) and industry [104]. Spatial and temporal scales to

utilize point clouds range from episodic country-wide, large-

scale topographic mapping to near real-time usage in au-

tonomous driving applications. Sensors and methods, respec-

tively, to derive point clouds include predominantly LiDAR

and photogrammetry [105]. A further very recent data source

of point clouds in research is tomographic SAR [106]. Also

low-cost depth cameras are used increasingly [107]. LiDAR,

also referred to as laser scanning, is the only widely used

method that records 3D points directly as an active remote,

and also close-range, sensing technique [108].

A. Point cloud data model

Although the above-mentioned aspects draw a very broad

picture, the common denominator is the point cloud data

model, which is the initial data model shared by all multi-

source fusion methods that include point clouds. Otepka et al.

[109] defined the georeferenced point cloud data model as a

set of points, Pi, i = 1, ..., n, in three-dimensional Cartesian

space that is related to a geospatial reference system (e.g.,

UTM). Pi has at least three coordinates (xi, yi, zi)
T

∈ IR3

for its position and it can have additional point features, also

referred to as attributes aj,i, with j = 1, ...,mi as the number

of point features of point i. A point feature, aj , could be the

color of a spectral band, LiDAR, or SAR backscatter value,

ID of classification or segmentation, local surface normal

vector component (e.g., nx, ny , nz), and so forth. Fig. 5

visualizes a point cloud with further point features stored in

additional columns of a table with the 3D coordinates. Such

point features can originate from the measurement process

(e.g., LiDAR intensity [110]), or they can be derived by

data post-processing (e.g., segmentation) and fusion with other

data sources. Please refer to [109] and [111] for a more

detailed description of LiDAR point cloud features. A point

in a point cloud, Pi, is a vector, (xi, yi, zi, a1,i, ...., ami,i)
T ,

of dimension 3 + mi with the 3D coordinates as the first

three dimensions (see Fig. 5). Generally, the point cloud model

supports a variable number of point features mi and leaves the

3D spatial distribution of (xi, yi, zi)
T up to the point cloud

generation process. The main challenges of the point cloud

model for fusion with other data sources is the unstructured

three-dimensional spatial nature of P and that often no fixed

spatial scale and accuracy exist across the dataset. Local

neighborhood information must be derived explicitly, which is

computationally intensive, and the definition of neighborhood

depends on the application and respective processing task

[109], [112].

B. Concepts of point cloud fusion

The main objectives of point cloud data fusion are to make

use of the three-dimensional geometric, spatial-structural and

LiDAR backscatter information inherent in point clouds and

combine it with spectral data sources or other geoinforma-

tion layers, such as GIS data. Zhang and Lin [104] gave a

broad overview of applications involving the fusion of optical

imagery and LiDAR point clouds. Looking more specifically

at the methodology of fusion, three main methodological

concepts can be distinguished in the literature with respect to

the target model of multi-source point cloud fusion. The target

data model of data fusion also determines which methods and

software (e.g., image or point cloud processing) are primarily

applied to classify the datasets. Based on the target data model

(“product”) we separate the following strategies (see Fig. 6):

1) Point cloud level: Enrich the initial point cloud P with

new point features.

2) Image/Voxel level: Derive new image layers representing

3D point cloud information.

3) Feature level: Fusion of point cloud information on the

segment/object level.

1) Point cloud level - Pixel to point and point to point:

Texturing point clouds with image data is a standard procedure

for calibrated multi-sensor LiDAR systems for which the

transformation from image to point cloud is well-known from

lab calibration, such as LiDAR systems with integrated mul-

tispectral cameras. For point clouds from photogrammetry -

structure-from-motion and dense image matching - the spectral

information is already given for each 3D point reconstructed

from multiple 2D images [105]. Thus, the resulting point cloud

Pi contains the respective pixel values from the images (e.g.,

R, G, B) as point features and can be used for classification

and object detection.

The labels of classified hyperspectral data can be transfered

to the corresponding 3D points from LiDAR using precise co-

registration. With this approach, Buckley et al. [113] related

the spectra from close-range hyperspectral imaging pixels to

terrestrial LiDAR point clouds to classify inaccessible geolog-

ical outcrop surfaces. This enables improved visual inspection,

but no joint 3D geometric and hyperspectral classification is

conducted. A joint classification is presented by Vo et al. [114],

in a paper of the 3D-competition of the 2015 IEEE GRSS Data

Fusion Contest [103]. They focused on LiDAR point clouds

and RGB images and developed an end-to-end point cloud

processing workflow. The authors made use of the colored

point cloud and applied a supervised single-point classification

(decision tree) to derive the target classes ground, building,

and unassigned. This step was followed by the region growing

segmentation of the classified ground points to delineate roads.

The point features of P were height, image intensity (RGB

and HSV), laser intensity, height variation, surface roughness,

and normal vector. RGB and laser intensity data particularly

supported the exclusion of grass areas and joint classification

increased the accuracy of a LiDAR-only solution by 2.3%.

Generally, the majority of published approaches of multi-

source point cloud classification, which resulted in a classified

point cloud, worked in the image domain and then transfered

back the classification results to the point cloud [115]. This

allows the use of fast and established image processing, but

limits the methods to single point classification because the
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Fig. 6: Strategies of point cloud data fusion on (1) point cloud level, (2) image/voxel level, and (3) feature/object level. 1)

Visualizes the enrichment of the initial point cloud colored by LiDAR intensity with RGB information from imagery with the

RGB-colored point cloud as product. 2) Depicts a voxel model where each voxel contains information from a set of RGB and

hyperspectral image layers as well as 3D point cloud features within each voxel. 3) Shows the assignment of features derived

from the 3D point cloud to object segments created from raster image data.

3D point neighborhood information is not available in the

classification procedure in the image domain, such as it is,

for example, in point cloud segmentation.

Point cloud-to-point cloud data fusion is known as point

cloud (co-)registration or alignment. Co-registration of point

clouds from the same sensor (e.g., within one LiDAR scanning

campaign) is a standard pre-processing step in surveying with

LiDAR from ground-based and airborne platforms [108]. Data

fusion can be performed by different algorithms, such as point-

based [e.g., Iterative Closest Point (ICP)], keypoint-based [e.g.,

Scale Invariant Feature Transform (SIFT)] or surface-based

(e.g., local planes) or any combination [116]. This fusion

principle is generally valuable if point clouds from different

sensor types are merged, which have different accuracies,

spatial coverages, and spatial scales as well as being captured

at different timestamps.

An image-based 2D registration for merging airborne and

multiple terrestrial LiDAR point clouds was used by Paris et al.

[117] to assess tree crown structures. They used the respective

canopy height models for the registration, which was finally

applied to the point cloud datasets to derive a fused point

cloud.

A combination of datasets from different methods (e.g.,

LiDAR and photogrammetry) and platforms can lead to more

accurate results compared to the individual use of a source.

This was concluded in [118], where datasets from two different

methods (LiDAR and photogrammetry) and three different

platforms [a ground-based platform, a small unmanned aerial

systems (UAS)-based platform, and a manned aircraft-based

platform] were explored. They merged point clouds from UAS

LiDAR, airborne manned LiDAR, and UAS photogrammetry

spatially to a single point cloud to estimate the accuracy of

bare earth elevation, heights of grasses, and shrubs.

2) Image/Voxel level - Point-to-pixel/voxel: This concept

transforms point cloud information into 2D images or voxels

that can be analyzed by image processing approaches. In

general, a multitude of images can be derived from rich

point clouds that derive from point cloud geometry, (LiDAR)

backscatter, and also full-waveform LiDAR data directly.

Those image bands usually represent elevation, geometric

features (e.g., vertical distribution of points within a pixel), and

LiDAR intensity-derived features. Ghamisi and Höfle [119]

outlined several features that can be derived from LiDAR point

clouds to encapsulate the 3D information into image bands for

image classification, such as laser echo ratio, variance of point

elevation, plane fitting residuals, and echo intensity. The fusion

approach of LiDAR and HSI and classification of an urban

scene is presented in Section IV. The experiment compares

classification results to accuracies of the individual use of HSI.

A pixel-based convolutional neural network (CNN) was

used to perform semantic labeling of point clouds by Boulch et

al. [115] based on RGB and geometric information (e.g., depth

composite image). Every 3D point is labeled by assigning the

derived pixel-wise label predictions to the single 3D points via
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back projection. The study could apply it to both terrestrial

LiDAR and photogrammetric point clouds.

A fusion of UAV-borne LiDAR, multispectral, and hyper-

spectral data was presented by Sankey et al. [120] for forest

vegetation classification. Furthermore, they used terrestrial

LiDAR as reference dataset. The HSI was pre-classified with

the mixture-tuned matched filtering subpixel classification

technique. The multi-source fusion of UAV LiDAR and hy-

perspectral data (12 cm GSD) was performed via a decision

tree classification approach. The fusion-based result achieved

higher user’s accuracy for most target classes and also overall

accuracy with an increase from 76% with only HSI to 88% for

HSI and LiDAR data inputs. The largest increase by adding

LiDAR was given for vegetation classes that separate well in

height.

The combination of the geometric quality of LiDAR and

spectral information was used by Gerke and Xiao [121] to

detect buildings, trees, vegetated ground, and sealed ground.

They developed a method to fuse airborne LiDAR and

multispectral imagery with two main consecutive steps: 1)

Point cloud segmentation (region growing) and classifica-

tion (mean shift) using 3D LiDAR and spectral information

(NDVI/Saturation), 2) supervised (Random Trees) or unsu-

pervised classification - by a Markov random field frame-

work using graph-cuts for energy optimization - of voxels.

The voxels contain features derived from 3D geometry and

from the spectral image, as well as the results from the

initial segmentation step. The results showed that spectral

information supported the separation of vegetation from non-

vegetation, but shadow areas still caused problems. Point cloud

segmentation is sensitive to the color information that was also

used in this process, which sometimes led to planes being

missed out.

Airborne hyperspectral imagery was combined with full-

waveform LiDAR data by Wang and Glennie [122] to classify

nine target land-cover classes (e.g., trees, bare ground, water,

asphalt road, etc.). The main goal was to generate synthetic

vertical LiDAR waveforms by converting the raw LiDAR

waveforms into a voxel model (size of 1.2 m×1.2 m×0.15 m).

The voxels were then used to derive several raster features

from the vertical distribution of backscatter intensity along

the vertical voxels corresponding to one image pixel, and also

metrics such as the height of the last return, penetration depth,

and maximum LiDAR amplitude. In addition to these raster

features, they derived principal components from the original

72 HSI bands and stacked them with the LiDAR features for

classification. The fusion of LiDAR waveform data and HSI

could increase the overall accuracy using a support vector

machine (SVM) classification to 92.61% compared to 71.30%

using only LiDAR and 85.82% using only HSI data.

3) Feature/Object level: This concept is based on the

previous concepts in terms of data model, which is used to

derive objects followed by a classification step. Image or point

cloud segmentation, and combined pixel- and object-based

approaches can be applied [123] to derive the entities for

classification.

With airborne LiDAR images and full-waveform point cloud

data, only one data source but two different data models for

object-based urban tree classification were used by Höfle et

al. [124]. They introduced a method to produce segments

based on LiDAR point cloud-derived images [e.g., normalized

DSM (nDSM) and echo ratio images]. The output segments

were enriched by a multitude of geometric and full-waveform

features that were computed directly in the 3D point clouds

of each segment (e.g., mean echo width). In particular, the

geometric 3D point cloud features (e.g., echo ratio) played

an important role for vegetation classification because they

encapsulated the 3D structure of vegetation. Alonzo et al.

[125] also worked at the single tree/crown object level and

added HSI to the airborne LiDAR dataset to map urban tree

species. They applied canonical variates in a linear discrim-

inant analysis classifier to assign tree species labels to the

segments, which were derived from the LiDAR canopy height

model. Their LiDAR point cloud-derived structural variables

included, for example, median height of returns in crown,

average intensity below median height, and so forth. Saarinen

et al. [126] went one step further and fused UAV-borne LiDAR

and HSI for mapping biodiversity indicators in boreal forests.

After tree crown delineation by watershed segmentation, they

derived point cloud-based segment features (e.g., height per-

centiles and average height) and also spectral segment features

(e.g., mean and median spectra). By using nearest-neighbor

estimation, the variables of diameter at breast height, tree

height, health status, and tree species were determined for each

crown segment. In the second step, the biodiversity indicators

- structural complexity, amount of deciduous, and dead trees

- were derived using single tree variables as input.

Considering multiple sensors, hyperspectral and LiDAR

data were fused in an approach proposed by Man et al. [123]

for urban land-use classification (15 classes) with a combined

pixel and feature-level method. LiDAR point cloud infor-

mation was encapsulated in image layers. Furthermore, they

aimed at assessing the contribution of LiDAR intensity and

height information, particularly for the classification of shadow

areas. Their methodology included pixel-based features such

as the nDSM and intensity image from LiDAR, and the inverse

minimum noise fraction rotation (MNF) bands, NDVI, and

texture features (GLCM) of HSI data. The derived features

were input to a supervised pixel-based classification (SVM

and maximum likelihood classifiers). Additionally, an edge-

based segmentation algorithm was used to derive segments

based on LiDAR nDSM, intensity and NDVI images, which

was followed by a rule-based classification of the derived

objects. The classification outputs of the pixel- and object-

based methods were merged by GIS raster calculation. The

combination of HSI and LiDAR increased overall accuracy

by 6.8% (to 88.5%) compared to HSI classification alone.

The joint pixel and object-based method increased the overall

accuracy by 7.1% to 94.7%.

HSI and airborne LiDAR data were used as complemen-

tary data sources for crown structure and physiological tree

information by Liu et al. [127] to map 15 different urban

tree species. First, crowns were segmented by watershed

segmentation of the canopy height model. Second, LiDAR and

hyperspectral features were extracted for the crown segments

for the subsequent segment-based random forest classification.
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The 22 LiDAR-derived crown structural features per segment

included, for example, crown shape, laser return intensity, laser

point distribution, etc.. They concluded that the combination

of LiDAR and HSI increased the single-source classification

up to 8.9% in terms of overall accuracy.

A complex fusion strategy for LiDAR point cloud and HSI

image data in a two-stage neural network classification was

developed by Rand et al. [128]. First, spectral segmentation

of the HSI data was performed by a stochastic expectation-

maximization algorithm and spatial segmentation of the Li-

DAR point cloud with a combined mean-shift and dispersion-

based approach. Second, the resulting segments from LiDAR

and HSI data were input to a supervised cascaded neural

network to derive the final object class labels. The final fusion

classification map was produced in 3D by using the elevation

values from the LiDAR point cloud. Their approach resulted

in a large increase in overall classification accuracy by multi-

source fusion (HSI and LiDAR) to 98.5%, compared to 74.5%

overall accuracy with HSI input only.

C. Challenges and trends of point cloud fusion

Generally, we can see a large gain in the importance of point

clouds. Multi-source fusion including point clouds is already

used in a huge variety of fields of applications (see [104]) and

reveals several trends:

• The increasing use of machine learning methods includ-

ing point clouds or point cloud derivatives.

• The majority of current approaches transform and en-

capsulate 3D point cloud information into 2D images

or voxels and perform fusion and analysis on images or

objects. Derived classification labels are transfered back

to points afterwards.

• The fusion (or joint use) of spectral and 3D point

cloud information from single-source photogrammetry

(structure-from-motion and dense image matching). The

link between point clouds and images is already given

via several methodologies.

• The fusion of geometric and backscatter point cloud

information from LiDAR exhibits increases in terms of

classification accuracy.

Future research on multi-source fusion with point clouds

will need to address the combination of point clouds from

different sources and with strongly heterogeneous character-

istics (e.g., point density and 3D accuracy). So far, mainly

one source of point clouds is used in the fusion process, e.g.,

the joint use of HSI and LiDAR point clouds. Multispectral

[129] and even hyperspectral LiDAR data [130] offer new

possibilities for the fusion of point clouds, as well as of point

clouds with MSI/HSI data. The availability of 3D point cloud

time-series [110] will also enable investigation of how tempo-

ral aspects need to be addressed in fusion and classification

approaches.

The number of contributions on HSI and LiDAR rasterized

data fusion in the remote sensing community is fast-growing

due to the complementary nature of such multi-sensor data.

Therefore, Section IV is specifically dedicated to the fusion

of HSI and LiDAR-derived features to provide readers with

an effective review of such fusion schemes.

IV. HYPERSPECTRAL AND LIDAR

The efficacy of LiDAR, which is characterized as an active

remote sensing technique, for the classification of complex

areas (e.g., where many classes are located close to each

other) is limited by the lack of spectral information. On the

other hand, hyperspectral sensors, which are characterized as

passive remote sensing techniques, provide rich and contin-

uous spectral information by sampling the reflective portion

of the electromagnetic spectrum, ranging from the visible

region (0.4-0.7µm) to the short-wave infrared region (almost

2.4µm) in hundreds of narrow contiguous spectral channels

(often 10 nm wide). Such detailed spectral information has

made HSIs a valuable source of data for complex scene clas-

sification. Detailed and systematic reviews on hyperspectral

data classification for characterizing complex scenes have been

published in [35], [131]. However, HSIs do not contain any

information about the elevation and size of different materials,

which imposes an inevitable constraint to classify objects

that are made up of similar materials (e.g., grassland, shrubs,

and trees). The aforementioned limitations and capabilities of

each sensor, as discussed earlier in the introduction part, have

provided the main motivation for fusing HSI and LiDAR.

The joint use of LiDAR and HSI has already been investi-

gated for diverse applications such as rigorous illumination

correction [132] and quantifying riparian habitat structure

[133]. However, the main application of this multi-sensor

fusion technique is dedicated to scene classification, which

is also the pre-eminent focus of this section.

Several studies such as [134], [135] investigated the dif-

ferentiation of diverse species of trees in complex forested

areas, while several other approaches dealt with complex

urban area classification (e.g., [136]). Co-registered LiDAR

and HSI data were introduced in [137]. Fig. 7 demonstrates

schematically that the fusion of HSI and LiDAR can increase

the classification accuracy above that of each individual source

considerably (i.e., this figure was generated based on some

studies in [138]).

Below, we discuss briefly a few key approaches for the

fusion of LiDAR and HSI, which are categorized in four

subsections: Filtering approaches, low-rank models, composite

kernels, and deep learning-based fusion approaches. Corre-

sponding to each section, some numerical classification results

obtained from the CASI Houston University data (details

below) are reported in Table II. To obtain a better numerical

evaluation, the classification accuracies of the individual use

of HSI obtained by random forest (RFHSI), support vector ma-

chine (SVMHSI), and convolutional neural network (CNNHSI)

are also listed in Table II.

A. Houston University

The Houston University data for this section are composed

of a LiDAR-derived digital surface model (DSM) and an HSI

both captured over the University of Houston campus and

the neighboring urban area. This dataset was initially made

publicly available for the 2013 GRSS data fusion contest. The

HSI and LiDAR data were captured on June 23, 2012 and June

22, 2012, respectively. The size of the dataset is 349 × 1905
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TABLE II: Houston - The classification accuracy values achieved by different state-of-the-art approaches. The indexes, average

accuracy (AA) and overall accuracy (OA), are reported in percentages while the kappa coefficient (K) is of no unit.

Spectral Multisensor fusion

Class name Train./Test RFHSI SVMHSI CNNHSI EPHSI+LiDAR GBFF[136] FFCK[139] MLRsub[140] ALWMJ-KSRC[141] CNNGBFF[142] SLRCA[143] OTVCA[138]

Grass Healthy 198/1053 83.38 83.48 82.24 78.06 82.53 81.39 82.91 98.36 78.73 81.58 80.63

Grass Stressed 190/1064 98.40 96.43 98.31 84.96 98.68 99.91 81.48 98.59 94.92 99.44 99.62

Grass Synthetis 192/505 98.02 99.80 70.69 100.00 100 100 100 100 100 98.61 100.00

Tree 188/1056 97.54 98.77 94.98 95.45 98.96 97.92 95.83 98.04 99.34 96.12 96.02

Soil 186/1056 96.40 98.11 97.25 98.76 100 100 99.05 93.15 99.62 99.72 99.43

Water 182/143 97.20 95.10 79.02 95.80 95.10 95.80 91.61 100 95.8 98.60 95.8

Residential 196/1072 82.09 89.09 86.19 73.41 90.95 78.54 87.59 91.11 87.87 90.39 86.01

Commercial 191/1053 40.65 45.87 65.81 85.28 90.98 86.61 84.14 92.51 95.25 95.73 93.54

Road 193/1059 69.78 82.53 72.11 93.95 90.46 87.72 91.78 86.87 89.71 98.21 97.07

Highway 191/1036 57.63 83.20 55.21 67.08 60.91 68.82 86.20 94.66 81.18 63.42 68.53

Railway 181/1054 76.09 83.87 85.01 90.89 94.46 90.23 98.58 90.56 86.34 90.70 98.86

Parking Lot 1 192/1041 49.38 70.99 60.23 88.56 99.14 98.08 92.32 90.74 92.7 91.07 100.00

Parking Lot 2 184/285 61.40 70.53 75.09 76.14 65.26 80.35 76.84 89.92 87.02 76.49 74.74

Tennis Court 181/247 99.60 100.00 83.00 100.00 100 100 99.60 98.58 99.19 100.00 100.00

Running Track 187/473 97.67 97.46 52.64 99.78 99.15 100 98.73 98.14 89.64 99.15 100.00

AA – 80.34 86.34 77.19 88.54 91.24 91.02 90.65 NA 91.82 91.95 92.45

OA – 77.47 84.69 78.35 86.98 91.28 89.93 91.11 92.45 91.75 91.3 92.68

K – 0.7563 0.8340 76.46 0.8592 0.903 0.8910 0.8985 NA 0.9033 0.9056 0.9181

+ =

92.45%77.47% 31.83%

Fig. 7: HSI and LiDAR fusion. This figure was generated

based on some studies in [138] where the overall classification

accuracy of HSI (77.47%) and LiDAR (31.83%) is signifi-

cantly increased to 92.45% using a feature fusion approach.

pixels with a ground sampling distance of 2.5 m. The HSI

consists of 144 spectral bands ranging 0.38-1.05µm. Fig. 8

illustrates the investigated data and the corresponding training

and test samples. The number of training and test samples for

different classes are detailed in Table II.

B. Filtering

Filtering approaches have been used intensively in the liter-

ature to effectively extract contextual and spatial features by

attenuating redundant spatial details (based on a criterion) and

preserving the geometrical characteristics of the other regions.

Among those approaches, one can refer to morphological

profiles (MPs [144], i.e., which can be produced by the

sequential implementation of opening and closing operators

by reconstruction by considering a structuring element of

increasing size), attribute profiles (APs [145], i.e., which can

obtain a multilevel characterization of the input image by

considering the repeated implementation of morphological

attribute filters), and extinction profiles (EPs [146], i.e., which

can obtain a multilevel characterization of the input image by

considering the repeated implementation of a morphological

extinction filter).

Fig. 8: Houston - From top to bottom: LiDAR-derived raster-

ized DSM, a color composite illustration of the CSI Houston

HSI using bands 64, 43, and 22 as R, G, and B, respec-

tively; Training samples; Test samples; and legend of different

classes.

These approaches have been investigated frequently for the

fusion of LiDAR and HSI since they are fast and conceptually

simple and able to provide accurate classification results. For

instance, in [147], [148], the spatial features of HSI and Li-

DAR were extracted using APs. Then, they were concatenated

and fed to a classifier leading to precise results in terms of

classification accuracy in a fast manner. In [142], EPs were

used to automatically extract the spatial and elevation features

of HSI and LiDAR data. The extracted features were stacked

and then classified using a random forest (RF) classifier (i.e.,

the results obtained by that approach can be found in Table II

as EPHSI+LiDAR).

Filtering approaches such as MPs, APs, and EPs suffer from
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MPHSI or APHSI or EPHSI

Filtering

Filtering

DR2

HSI

LiDAR MPLiDAR or APLiDAR or EPLiDAR

DR2

DR2

Feature Fusion
DR1

Fig. 9: Low-rank models. The use of DR2 is optional. How-

ever, the studies investigated in [136], [142], [138] and [143]

recommend the consideration of this extra extra step in order

to provide more accurate classification maps.

two shortcomings: The curse of dimensionality and intensive

processing time for the subsequent classification steps since

they usually increase the number of dimensions by stacking

spectral, spatial, and elevation features extracted from HSI

and LiDAR, while the number of training samples remains

the same. To address this shortcoming, composite kernel- and

low rank-based approaches, which will be discussed in the

following subsections, have been suggested in the literature to

effectively fuse HSI and LiDAR.

C. Low-rank models

To avoid the curse of dimensionality and also increase the

efficiency of the analysis compared to filtering approaches,

low-rank models were investigated in [136], [138], [142],

[143] whose main assumption was that the extracted features

from HSI and LiDAR can be represented into a space of a

lower dimension. All those approaches followed a general

framework as demonstrated in Fig. 9. This framework is

composed of the following building blocks:

1) DR1 generates base images to build up MP, AP, or EP.

2) Filtering investigates MP, AP, or EP to extract spatial

features (e.g., EP/AP/MPHSI) and elevation features

(e.g., EP/AP/MPLiDAR) from HSI and LiDAR, respec-

tively.

3) DR2 is used to produce exactly the same number of

spectral, spatial, and elevation features to put the same

weight on each category. The other advantages of DR2

are that it can reduce the executable computational cost

as well as noise throughout the feature space. In [136],

[138], [142], [143], kernel PCA (KPCA) has been use

for DR2.

4) Finally, the outputs of (3) are fused and fed to a

classification method. Below, we discuss [136], [142],

[138] and [143] in more detail:

In [136], the spectral (HSI), spatial (MPHSI), and elevation

features (MPLiDAR) were used (as the filtering step). A graph-

based feature fusion (GBFF) technique was utilized (as the

feature fusion step). Finally, an SVM classifier was used to

classify the fused features (results can be found in Table II as

GBFF).

In [142], the spectral (HSI), spatial (EPHSI), and elevation

features (EPLiDAR) were concatenated and fed to the GBFF

and classified by a 2D CNN. These results can be found in

Table II as CNNGBFF.

In [138], the following low-rank model was suggested to

fuse HSI, EPHSI, and EPLiDAR:

F = AV
T +N, (1)

where F =
[

f(i)

]

is an n × p matrix which contains the

vectorized features in its columns, V is a p×r unknown matrix

containing the subspace basis, A =
[

a(i)

]

is a n × r matrix

which contains the r unknown fused features in its columns,

and N =
[

n(i)

]

is the model error and noise. Note that r is

the number of fused features. Also, hyperspectral bands, and

hyperspectral and LiDAR features are concatenated in matrix

F (F = [EPHSI,HSI,EPLiDAR]).
In model (1), matrices A and V are both unknown. There-

fore, they both need to be estimated. In [138], orthogonal total

variation component analysis (OTVCA) [149] was suggested

to solve this problem (as the feature fusion step shown in

Fig. 9). OTVCA is given by

argmin
A,V

1

2

∥

∥F−AV
T
∥

∥

2

F
+ λ

r
∑

i=1

TV(a(i)) s.t. VT
V = Ir,

(2)

where the total variation penalty (TV) is applied spatially on

the fused features. TV preserves the spatial structure of the

features while promotes piece-wise smoothness on the fused

features. As a result, the final classification map contains

homogeneous regions. The OTVCA fusion results can be

found in Table II as OTVCA.

In [143], the extracted features were defined using the sparse

and low-rank model given in [150],

F = DWV
T +N, (3)

where D is an n× n matrix which contains two-dimensional

wavelet basis, and W =
[

w(i)

]

is an n× r matrix containing

the unknown 2D wavelet coefficients for the ith fused com-

ponent. In [143], the sparse and low-rank component analysis

[150], [151] was used to estimate W and V given by

arg min
W,V

1

2

∥

∥F−DWV
T
∥

∥

2

F
+λ

r
∑

i=1

∥

∥w(i)

∥

∥

1
s.t. VT

V = Ir,

(4)

Note that the estimated fused features are given by F̂fused =
DŴ. The fused features are expected to be sparse in the 2D

wavelet basis. Therefore, in [150], to enforce the sparsity an

ℓ1 penalty on the wavelet coefficients Wr was used. As a

result, promoting sparsity on the fused feature improves the

SNR and the final classification accuracies. Results for this

approach can be found in Table II as SLRCA.

D. Composite kernel

Composite kernel-based fusion approaches partially over-

come the shortcomings of the filtering approaches by design-

ing several kernels to handle spectral, spatial, and elevation

features in feature space [152].
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In [139], spectral, spatial (e.g., EPHSI), and elevation (e.g.,

EPLiDAR) information were fused using a local-region filter

(LRF) and composite kernels. Results for this approach can

be found in Table II as FFCK. The main shortcoming of

this approach was that its obtained classification accuracy was

dramatically influenced by the µ parameter which represents

the amount of trade-off between the spectral and spatial-

elevation kernels. To solve this issue, in [140], a fusion

approach was introduced capable of exhibiting substantial

flexibility to integrate different feature sets without requiring

any regularization parameters. That approach was based on

APs and multiple feature learning using the subspace multi-

nomial logistic regression (MLRsub) classifier. The result of

this approach is shown as MLRsub in Table II.

A joint sparse representation classification approach was

proposed in [141] for multisource data fusion where the multi-

source data were weighted to have better sparse representation.

The core idea of this approach was based on sparse represen-

tation classification. Then, the minimum distance (in the sense

of ℓ2 norm) between each sample and its sparse representation

using subdictionaries (containing only training samples for one

class) were used to allocate the class labels. However, in [141]

the regularization term was weighted according to the data

sources. Moreover, the method was also translated into the

kernel space using kernel tricks. Results for the composite

kernel version can be found in Table II as ALWMJ-KSRC.

E. Deep learning

Hyperspectral imaging often exhibits a nonlinear relation

between the captured spectral information and the correspond-

ing material. This nonlinear relation is the result of several

factors such as undesired scattering from other objects in

the acquisition process, different atmospheric and geometric

distortions, and intraclass variability of similar objects. This

nonlinear characteristic is further magnified when we deal with

multisensor data. On the other hand, deep architectures are

inherently able to extract high-level, hierarchical, and abstract

features, which are usually invariant to the nonlinearities of

the input data.

Deep learning is a fast-growing topic in the remote sensing

community whose trace can also be found in the research

area of LiDAR and HSI data fusion. For instance, in [142],

a classification method was developed to fuse spectral (HSI),

spatial (EPHSI), and elevation features EPLiDAR using a 2D-

CNN and GBFF. The results for this approach can be found

in Table II as CNNGBFF. To extract spatial and elevation

features in a more effective manner than in [142], two distinct

CNN streams (as shown in Fig. 10) were employed in [153].

The heterogeneous features obtained by the previous CNNs

were then classified by a fully connected deep neural network.

In [154], a three-stream CNN with multisensor composite

kernel was utilized to fuse spectral, spatial, and elevation

features.

F. Trends of hyperspectral and LiDAR fusion

The following trends for the advancements of hyperspectral

and LiDAR fusion need to be further investigated in the future:

• Due to the increased availability of large-scale DSMs

and hyperspectral data, the further development of fast,

accurate, and automatic classification/fusion techniques

for the challenging task of transferable and large-area

land-cover mapping is of great interest.

• Investigation of the advanced machine learning ap-

proaches (e.g., deep learning, domain adaptation, and

transfer learning) for developing transferable classifica-

tion/fusion schemes of areas with limited number of

training samples is in demand in our community.

• The development of sparse, low-rank, and subspace fu-

sion approaches is another interesting line of research to

address the high dimensionality of the heterogeneous fea-

tures extracted from HSI and LiDAR to further increase

the quality of classification outputs.

• [155] took the first step in the remote sensing community

to simulate DSM from single optical imagery. This work

opens a new path in front of researchers to further modify

this approach and design more sophisticated network

architectures to produce more accurate elevation infor-

mation from single optical images.

As stated above, the classification/fusion of large-scale data

(e.g., big data) is a vitally important research line which will

be further discussed in the next section.

V. MULTITEMPORAL DATA FUSION

The use of multitemporal information is crucial for many

important applications (from the analysis of slow and smooth

evolving phenomena [156], [157] to steep and abrupt changes

[158]–[160]). Fig. 11 shows a taxonomy of temporal phenom-

ena that can be observed and detected by including the time

variable in the analysis of remote sensing data.

As discussed earlier in the introduction part, the recent

availability of satellite constellations like Sentinel 1 and Sen-

tinel 2 [161], which are characterized by the acquisition of

fine resolution images (up to 10 m) with a very short revisit

time (few days depending on the latitude), is making the

time dimension of satellite remote sensing images one of the

most important sources of information to be exploited for

the extraction of semantic content from a scene [158]. The

time variable can expand the dimensionality of interest from

3D to 4D in space and time and can be exploited working

with pairs of images, short time-series or long time-series

of either multispectral passive or SAR active images [158],

[162]. Moreover, it is also possible to fuse together time-

series of multisensor images in a proper multitemporal sensor-

fusion framework [163]–[165]. Fusion of temporal information

with spatial and/or spectral/backscattering information of the

images opens the possibility to change the perspective also

from the viewpoint of methodologies for data analysis. We can

move from a representation of 3D cubes with multispectral

images to 4D data structures, where the time variable adds

new information as well as challenges for the information

extraction algorithms.

Analyzing the literature, the most widely addressed appli-

cations of multitemporal data are the analysis/classification of

image time-series and change detection [158], [162]. Nonethe-

less, there are many emerging topics based on the joint
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Fig. 10: Deep learning models [153].

exploitation of the spectral, spatial, and temporal information

of long and dense time-series of fine spatial resolution images

[166]–[169]. These topics were investigated widely in the

past with coarse/medium spatial resolution images (i.e., at the

scale of MODIS or MERIS/ENVISAT). However, with the

availability of relatively dense time-series of fine resolution

images (e.g., Sentinel 1, Sentinel 2, and Landsat-8), it is

now possible to develop studies at a dramatically increased

resolution. For example, it is possible to study the phenology

of the vegetation in specific local areas or to analyze the

trends of vegetation in single fields of agricultural regions for

precision farming applications [157], [166]. This can be done

also by fusing the acquisitions of different satellites in a single

multisensor time-series. Given the complexity and the extent

of the topic, in the following we analyze temporal information

in relation to the classification problem, which is one of the

most challenging lines of research and widely studied in the

past [157], [167], [170]. First, we analyze the definition of the

different classification problems with multitemporal data and

briefly recall the methods presented in the literature for the

solution of these problems. Then, we discuss the challenges

related to multitemporal classification especially from the view

point of the availability of labeled training data.

A. Multitemporal Information in Classification

Let us assume the availability of a set of multitemporal

images (a time-series with many images or at least a pair of

images) acquired of the same geographical area at different

times. The classification of these multitemporal data can be

defined in different ways depending on the objective of data

analysis. The goal of the classification can be to generate:

i) a land-cover map associated with the most recent image

(acquisition) of a time-series (or of a pair of acquisitions)

(Fig. 12 (a)) [171]; ii) a land cover map for each item of

the time-series, thus, producing a set of multitemporal land-

cover maps (Fig. 12 (b)) that also implicitly models the land-

cover transitions [172], [173]; iii) an annual/sesonal land-cover

map with classes that represent the behavior of the temporal

signature of each pixel/region in the images in a year/season

(Fig. 12 (c)) [174], [175]. These three definitions should result

in significantly different classification approaches based on

different assumptions. Unfortunately, in many cases in the

literature and in the definition of application-oriented systems,

the problems are not properly identified and modeled with the

implication of obtaining sub-optimal results.

The use of the temporal information in classification dates

to the early 1980s. First approaches used a stacked vector rep-

resentation of the multitemporal data as input to the classifiers

resulting in the so-called supervised direct multidate classifica-

tion [159]. The main idea of such approaches is to characterize

pixels by stacking the feature vectors of the images acquired

at two (or more) times. Then the classification is carried out

by training the classifiers to produce a map describing only

the land covers of the most recent image. However, this is

theoretically affordable under the assumption that both: i) there

are no changes in the land covers between the considered

image acquisition dates; and ii) it is possible to properly model

the complexity of the data distributions with respect to the

classification methodology. The latter becomes critical when

statistical Bayesian approaches are used. Another possible way

of using multidate direct classification approaches is to classify

the land covers of each item of the time-series, thus, producing

a land-cover map for each available acquisition time. This

allows one to explicitly identify land-cover transitions and to

remove the assumption that there are no changes between the

considered dates. However, a proper modeling of the change

information requires the availability of labeled training data

that can adequately represent the statistics of all possible

combination of classes, including those associated to the

changes. This is seldom possible in real application scenarios.

Many methodologies have been developed to address the

above-mentioned issues of multidate direct classification.

Swain [176] introduced in a pioneering paper a very interesting

approach to the classification of multitemporal data based on

the cascade classification of pairs of images. He modeled the

classification problem from a Bayesian perspective introducing

the temporal correlation in the classification process of images

acquired at different times for linking class probabilities esti-

mated on single images. In this way it is possible to decouple
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Fig. 11: Example of taxonomy of phenomena observable and detectable by using temporal information in remote sensing data

analysis.

(a) (b) (c)

Fig. 12: Block scheme for achieving different goals in multitemporal classification: (a) a land-cover map associated with the

most recent image of a time-series; (b) a land cover map for each item of the time-series; (c) an annual/seasonal land-cover

map with classes that represent the behavior of the temporal signature of each pixel/region in the time-series.

in the multitemporal classification problem the modeling of

the class distributions at each single date with the estimation

of the temporal correlation between images. Bruzzone et

al. [171] developed and generalized this framework to the

case of multitemporal and multisensor data, introducing an

approach to compound classification based on neural net-

works classifiers being able to properly merge in a Bayesian

decision framework the distribution free estimations of the

class parameters derived from both multispectral and SAR

multitemporal images. This kind of fusion has been studied

widely in the past two decades, and developed in the context of

different classification methodologies including several neural

models (e.g., multilayer perceptron neural networks, radial

basis function networks), kernel methods (e.g., support vector

machines [177], [178]), and multiple classifier systems [175],

[179], [180] (e.g., based on the fusion of neural and statistical

classification algorithms). Also the joint exploitation of the

spatio-temporal information has been investigated including

Markov Random Fields in the modeling of the spatio-temporal

context of multitemporal data.
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Nowadays, the challenge, still poorly addressed, is to exploit

deep learning architectures (e.g., convolutional neural net-

works) in the classification of multitemporal data [181], [182].

These architectures are intrinsically able to capture the spatio-

temporal patterns in the definition of the classification model

and, thus, to increase the accuracy of the land-cover/land-

cover-transition maps. However, there is still a very significant

challenge to define theoretically sound and computational

affordable deep learning architectures able to properly process

multitemporal images. Indeed, the use of the 4D data structure

sharply increases the complexity associated with deep learning

architectures and requires an amount of training data that

currently is far from being available.

B. Challenges in Multitemporal Classification

The main challenges associated with the exploitation of the

time information source in the classification of remote sensing

data are related to the availability of adequate labeled samples

for the definition of training sets suitable for the learning of

supervised algorithms. The problem is to define statistically

significant training sets able to represent the structured infor-

mation content present in the data [172], [183]. This problem

is much more critical than in the classification of single

images given the complexity associated with the possible

combinations of land-cover classes in the spatio-temporal

domain. A proper modeling of the temporal information would

require multitemporal ground reference samples (or reliably

annotated multitemporal images) with samples that represent:

i) all the multitemporal classes; ii) the inter-relation between

classes along the time-series (e.g., land-cover transitions or

different kinds of changes) with a reliable statistic; and iii) the

high temporal and spatial variabilities in large scenes. These

constraints are very difficult to satisfy in real applications. For

this reason, a large attention has been and is still devoted to the

use of methods that address the limitations of the real training

set.

In this context, the scientific community activities have

been focused on semi-supervised (also called partially unsu-

pervised) classification methods [183]–[188]. These methods

jointly exploit the available labeled training data and the dis-

tribution of the observed images for improving the modeling

of the spatio-temporal properties of the analyzed time-series.

Early attempts to use these approaches in remote sensing are

related to the use of the expectation-maximization algorithm

in the context of land-cover map updating with a maximum

likelihood classifier [183]. This has been extended to the

use with the cascade and compound classification approaches

to the classification of bi-temporal images [171], [184]. The

approaches can integrate multispectral and SAR multitemporal

data, as well as multisensor images. The problem of semi-

supervised learning with multitemporal data has been then

formulated in the more general theoretical problem of domain

adaptation for which different solutions can be found in the

literature [189]. For example, the use of semi-supervised SVM

has been widely investigated with different methodological

implementations [177]. The use of active learning in the frame-

work of compound classification for optimizing the definition

of training data while minimizing the cost associated with

their collection was proposed in [185]. The main idea was to

collect ad-hoc training samples in portions of the images where

there is high multitemporal uncertainty on the labels of the

classes. Transfer learning approaches were proposed in [186]–

[188], where change detection-based techniques were defined

for propagating the labels of available data for a given image

to the training sets of other images in the time-series. The main

observation at the basis of these techniques is that the available

class labels can be propagated within the time-series to all

the pixels that have not been changed between the considered

acquisitions. In this way, unsupervised change detection can

become a way to increase the amount of supervision that can

be injected in the learning of a multitemporal classifier.

However, despite the large amount of papers on methods

capable to capture in a semi-supervised way the information

of 4D data structures, this is still a critical issue in the

classification of multitemporal data and definitely an open

issue in the framework of multitemporal classification with

deep learning architectures. In this last case the challenges

are related to decouple in the architecture of the network the

learning of the relation between the spatio-temporal patterns to

achieve feasible requirements on the amount and the character-

istics of training samples without degrading significantly the

capability to extract the semantic of spatio-temporal pattern

from the data. We expect that these crucial issues will be

widely addressed in future years.

VI. BIG DATA AND SOCIAL MEDIA

In the recent decade, big data has become a very important

topic in many research areas, e.g., remote sensing applica-

tions [190]. Every day a massive number of remote sensing

data is provided by a large number of Earth observation

(EO) space borne and airborne sensors from many different

countries. In the near future, all-day, all-weather and full

spectrum acquisition segment datasets will be provided by

commercial satellites, such as the Jilin-1 constellation, which

has launched 10 fine-spatial resolution satellites by February

2018 and will have 60 satellites in orbit by 2020 with a

capability of observing any global arbitrary point with a 30

minute revisit frequency [191]. Those video satellites with a

(very) fine temporal and spatial resolution can effectively be

exploited to monitor our location-based living environments

like CCD cameras but on a much larger scale [192]. From a

broader spatial perspective, new opportunities for humankind

can be provided by the big remote sensing data acquired

by those satellites jointly with social media data providing

local and live/real time information to better monitor our

living environment [192], especially in the applications of

smart cities [193], [194], emergency and environmental haz-

ards [195], [196], etc.. On the other hand, new challenges can

appear from unprecedented access to a huge number of remote

sensing data that are leading to a data-rich but knowledge-

poor environment in a fast manner. Here, the semantic gap of

remote sensing data is usually caused due to the lack of certain

land-cover or land-use remote sensing categories on site. As

an example, one can analyze the change in remote sensing
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Fig. 13: Trinity for understanding big data, i.e., three facets of

big data from different perspectives related to who owns big

data, who has innovative big data methods and methodologies,

and who needs big data applications [190]. This list can further

be extended by big data visualization and big data accelerated

computing.

images before and after floods. In this context, it is possible to

roughly determine the damaged area by unsupervised learning

algorithms, but it is difficult to assess the details (e.g., the

damage to transportation infrastructure) [192].

Social media data provides one of the most important data

sources from human activities and are usually comprised of

geolocated posts, tweets, photos, video and audio with rich

spatial information. With the fast development of computer

technologies and internet innovations, social media data are

easily created by wearable and intelligent mobile devices

equipped with Global Position System (GPS) receivers. Those

data can be disseminated quickly to social networks like Face-

book, Twitter, YouTube, Weibo and in particular, messaging

apps like SnapChat, WhatsApp, and WeChat. Accordingly, the

big data produced by the integration of massive global-view

remote sensing data and local-but-live location-based social

media data can offer new opportunities for smart city and smart

environment applications with the “ground reference” collec-

tion through social sensing [197] and crowd sensing [198],

in particular for hazards and disaster identification or track-

ing [192], [199]–[201].

To better analyze and utilize big data in remote sensing with

social media data, as in the definition of connotations of big

data in [190], it can be expressed in the context of a trinity

framework with three perspectives, i.e., owning data, data

applications and data methods. The trinity concept of big data

is illustrated in Fig. 13. Accordingly, different perspectives

have individual challenges and all the facets of such a trinity

share common challenges, which have been discussed in detail

in [190].

To derive the value of big data, combining remote sensing

and social medial data, one of the most important challenges

is how to process and analyze those data by novel methods or

methodologies. Since remote sensing data have significantly

different properties from those of social media data, typical

data fusion methods cannot be exploited directly for com-

bining remote sensing and social medial data. Often, remote

sensing data consist of multi-source (laser, radar, optical,

etc.), multi-temporal (collected on different dates), and multi-

resolution (different spatial resolution) data. Most remote

sensing data are images. Social media data have a much wider

array of formats, including images, videos, audio and texts,

where texts contain different types of textual information,

such as geotagging, hashtags, posts, tweets, RSS (Rich Site

Summary), etc.. Nevertheless, the challenges for data fusion

of remote sensing and social media data are similar to those

in a general big data problem, i.e., data representation, data

analysis, and data accelerated computing [190]. However,

advances of artificial intelligence (AI) techniques in particular,

deep neural networks, have merged data representation and

data analysis to a unified AI model. In recent decades, high

performance computing has developed for data accelerated-

based computing on big data platforms, such as Hadoop [202]

or SPARK [203]. In particular, with the fast development

of artificial intelligence (AI), GPU-accelerated computing by

using a graphics processing unit (GPU) and AI (in particular

deep learning) chips have developed quickly in recent years

for accelerating deep learning computing in a heterogeneous

platform by combining CPU, GPU, FPGA, etc..

Social media data, such as photos with geotaggings, can

be integrated with remote sensing data in feature or decision

or feature-decision levels, respectively, in the context of deep

neural networks. In the feature-based data fusion, social media

photos (SMPs) can be integrated to the same deep neural

network to extract the features for further processing as shown

in Fig. 14(a). Here, the feature extractor can have a deep

architecture and the features generated from SMPs can be

integrated in each layer (or arbitrary layers) of the deep neural

network. Nonetheless, features can be extracted individually

from remote sensing images and the SMPs by different deep

neural networks as shown in Fig. 14(b). After that, the fused

features can be sent to a deep neural network for further

processing with feature convolutional layers, activation layers,

pooling layers, and final classification to get a more reliable

and more accurate result. In the decision-based fusion, each

deep neural network is designed to firstly extract the features

of remote sensing images or social media photos, and then the

classification result is generated by individual features. In the

decision level, those results provided by the remote sensing

and social media data, respectively, are integrated to a unified

deep neural network as shown in Fig. 14. In this case, social

media data can have diverse types, such as images, texts and so

on, such that different types of the social media data can build

different deep neural networks for further decision fusion. By

combining two properties of feature-based and decision-based

fusion strategies, the feature-decision-based fusion can be

easily derived based on deep neural networks. The challenge

is how to design a unified DNN model to efficiently and

accurately fuse the heterogeneous data.
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(a) (b) (c)

Fig. 14: On the context of deep neural networks, the integration of remote sensing (RS) images with social media photos

(SMP): (a) Feature-based fusion, (b) Decision-based fusion, and (c) Feature-decision-based fusion, respectively.

TABLE III: The overall accuracies are compared in terms of

the training datasets labeled by volunteers with social media

photos (SMPs) and without SMPs, respectively.

Models OA%

With SMPs
FCN 78.91
CNN 74.85
SVM 62.40

Without SMPs
FCN 71.23
CNN 65.72
SVM 61.16

Except for directly modeling a deep learning algorithm

by the integration of remote sensing and social media data,

social media photos can be utilized to label remote scene

images, especially for fine spatial resolution data. For instance,

SMPs with the same positions as the fine resolution remote

sensing data can be acquired to help volunteers without any

professional knowledge to effectively label remote sensing

scene images. To validate the effectiveness of using SMPs

for labeling, fine spatial resolution remote sensing images in

Frankfurt, Germany acquired by the Jilin-1 satellite are utilized

for remote sensing image classification. The classification

models are trained respectively on the training datasets labeled

with and without SMPs. Table III shows the prediction results

on the test data. Both the fully convolutional network (FCN)

model [204] and the CNN model are constructed based on

the pre-trained ImageNet VGG-16 network [205] with the

cross-entropy loss. The SVM model with the RBF kernels is

adopted for a further comparison. Fig. 15 illustrates Several

classification maps obtained by SVM, CNN, and FCN with or

without using SMPs.

Except for the challenge of designing a novel data tech-

nology by fusing big remote sensing data combining remote

sensing and social media data, how to exploit the two different

types of data is another challenging problem. As future trends,

big remote sensing data will be utilized for monitoring natural

hazards as well as human-made disasters, such as factory

explosion. In addition, big remote sensing data can provide

rich information on the contents and locations of the scenes

for Augmented Reality (AR) applications, 3D reconstruction,

indoor positioning, and so on.

VII. CONCLUSIONS

The ever-growing increase in the availability of data cap-

tured by different sensors coupled with advances in method-

ological approaches and computational tools makes it desir-

able to fuse the considerably heterogeneous complementary

datasets to increase the efficacy and efficiency of the remotely

sensed data processing approaches with respect to the problem

at hand.

The field of multisensor and multitemporal data fusion for

remotely sensed imagery is enormously broad which makes it

challenging to treat it comprehensively in one literature review.

This article focuses particularly on advances in multisource

and multitemporal data fusion approaches with respect to

different research communities since the methods for the

fusion of different modalities have expanded along different

paths with respect to each research community. In this context,

several vibrant fusion topics, including pansharpening and

resolution enhancement, point cloud data fusion, hyperspectral

and LiDAR data fusion, multitemporal data fusion, as well as

big data and social media were detailed and their correspond-

ing challenges and possible future research directions were

outlined and discussed.

As demonstrated through the challenges and possible future

research of each section, although the field of remote sensing

data fusion is mature, there are still many doors left open for

further investigation, both from the theoretical and application



IEEE GRSM DRAFT 2018 21

Fig. 15: Several classification maps obtained by SVM, CNN,

and FCN with or without using SMPs.

perspectives. We hope that this review opens up new possibili-

ties for readers to further investigate the remaining challenges

to developing sophisticated fusion approaches suitable for the

applications at hand.
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of sensor spectral response into image fusion methods. application to
wavelet-based methods,” IEEE Trans. Geos. Remote Sens., vol. 43,
no. 10, pp. 2376–2385, 2005.

[56] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, “MTF-
tailored multiscale fusion of high-resolution MS and Pan imagery,”
Photogramm. Eng. Remote Sens., vol. 72, no. 5, pp. 591–596, May
2006.

[57] F. Nencini, A. Garzelli, S. Baronti, and L. Alparone, “Remote sensing
image fusion using the curvelet transform,” Information Fusion, vol. 8,
no. 2, pp. 143–156, 2007.

[58] E. Pardo-Igzquiza, M. Chica-Olmo, and P. M. Atkinson, “Downscaling
cokriging for image sharpening,” Remote Sensing of Environment,
vol. 102, no. 1, pp. 86 – 98, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S003442570600068X

[59] P. M. Atkinson, E. Pardo-Iguzquiza, and M. Chica-Olmo, “Downscal-
ing cokriging for super-resolution mapping of continua in remotely
sensed images,” IEEE Transactions on Geoscience and Remote Sens-

ing, vol. 46, no. 2, pp. 573–580, Feb 2008.

[60] E. Pardo-Iguzquiza, V. F. Rodrguez-Galiano, M. Chica-Olmo, and P. M.
Atkinson, “Image fusion by spatially adaptive filtering using downscal-
ing cokriging,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 66, no. 3, pp. 337 – 346, 2011.

[61] M. H. R. Sales, C. M. Souza, and P. C. Kyriakidis, “Fusion of
modis images using kriging with external drift,” IEEE Transactions

on Geoscience and Remote Sensing, vol. 51, no. 4, pp. 2250–2259,
April 2013.

[62] Q. Wang, W. Shi, and P. M. Atkinson, “Area-to-point regression
kriging for pan-sharpening,” ISPRS Journal of Photogrammetry and

Remote Sensing, vol. 114, no. Supplement C, pp. 151 – 165, 2016.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0924271616000496

[63] Q. Wang, W. Shi, P. M. Atkinson, and Q. Wei, “Approximate area-
to-point regression kriging for fast hyperspectral image sharpening,”
IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing, vol. 10, no. 1, pp. 286–295, Jan 2017.

[64] R. C. Hardie, M. T. Eismann, and G. L. Wilson, “MAP estimation for
hyperspectral image resolution enhancement using an auxiliary sensor,”
vol. 13, no. 9, pp. 1174–1184, Sep. 2004.

[65] M. T. Eismann and R. C. Hardie, “Hyperspectral resolution en-
hancement using high-resolution multispectral imagery with arbitrary
response functions,” vol. 43, no. 3, pp. 455–465, Mar. 2005.

[66] N. Yokoya, T. Yairi, and A. Iwasaki, “Coupled nonnegative matrix
factorization unmixing for hyperspectral and multispectral data fusion,”
vol. 50, no. 2, pp. 528–537, Feb. 2012.

[67] M. Simões, J. B. Dias, L. Almeida, and J. Chanussot, “A convex
formulation for hyperspectral image superresolution via subspace-based
regularization,” vol. 53, no. 6, pp. 3373–3388, Jun. 2015.

[68] Q. Wei, N. Dobigeon, and J.-Y. Tourneret, “Bayesian fusion of multi-
band images,” vol. 9, no. 6, pp. 1117–1127, Sep. 2015.

[69] ——, “Fast fusion of multi-band images based on solving a Sylvester
equation,” vol. 24, no. 11, pp. 4109–4121, Nov. 2015.

http://www.sciencedirect.com/science/article/pii/S0034425716304023
http://www.sciencedirect.com/science/article/pii/S003442570600068X
http://www.sciencedirect.com/science/article/pii/S0924271616000496
http://www.sciencedirect.com/science/article/pii/S0924271616000496


IEEE GRSM DRAFT 2018 23

[70] S. Li and B. Yang, “A new pan-sharpening method using a compressed
sensing technique,” vol. 49, no. 2, pp. 738–746, Feb. 2011.

[71] X. X. Zhu and R. Bamler, “A sparse image fusion algorithm with
application to pan-sharpening,” vol. 51, no. 5, pp. 2827–2836, May
2013.

[72] Q. Wei, J. M. B. Dias, N. Dobigeon, and J.-Y. Tourneret, “Hyperspectral
and multispectral image fusion based on a sparse representation,”
vol. 53, no. 7, pp. 3658–3668, Jul. 2015.

[73] W. Sun, B. Chen, and D. Messinger, “Nearest-neighbor diffusion-based
pan-sharpening algorithm for spectral images,” Optical Engineering,
vol. 53, no. 1, p. 013107, 2014.

[74] M. Selva, B. Aiazzi, F. Butera, L. Chiarantini, and S. Baronti, “Hyper-
sharpening: A first approach on SIM-GA data,” vol. 8, no. 6, pp. 3008–
3024, Jun. 2015.

[75] C. Lanaras, E. Baltsavias, and K. Schindler, “Hyperspectral super-
resolution by coupled spectral unmixing,” in Proc. IEEE ICCV, Dec.
2015, pp. 3586–3594.

[76] G. Vivone, R. Restaino, M. Dalla Mura, G. Licciardi, and J. Chanussot,
“Contrast and error-based fusion schemes for multispectral image
pansharpening,” IEEE Geoscience and Remote Sensing Letters, vol. 11,
no. 5, pp. 930–934, 2014.

[77] C. Grohnfeldt, “Multi-sensor data fusion for multi- and hyperspectral
resolution enhancement based on sparse representations,” Ph.D. disser-
tation, Technical University of Munich, 2017.

[78] L. Wald, “Quality of high resolution synthesised images: Is there a
simple criterion?” in Proc. the Third Conference Fusion of Earth

Data: Merging Point Measurements, Raster Maps and Remotely Sensed

Images, Jan. 2000, pp. 99–103.

[79] A. Garzelli and F. Nencini, “Hypercomplex quality assessment of
multi/hyperspectral images,” vol. 6, no. 4, pp. 662–665, Oct. 2009.

[80] F. Gao, T. Hilker, X. Zhu, M. Anderson, J. Masek, P. Wang, and
Y. Yang, “Fusing landsat and modis data for vegetation monitoring,”
IEEE Geoscience and Remote Sensing Magazine, vol. 3, no. 3, pp.
47–60, Sept 2015.

[81] H. K. Zhang, B. Huang, M. Zhang, K. Cao, and L. Yu, “A gener-
alization of spatial and temporal fusion methods for remotely sensed
surface parameters,” International Journal of Remote Sensing, vol. 36,
no. 17, pp. 4411–4445, 2015.

[82] B. Chen, B. Huang, and B. Xu, “Comparison of spatiotemporal fusion
models: A review,” Remote Sensing, vol. 7, no. 2, pp. 1798–1835, 2015.

[83] F. Gao, J. Masek, M. Schwaller, and F. Hall, “On the blending of the
landsat and modis surface reflectance: predicting daily landsat surface
reflectance,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 44, no. 8, pp. 2207–2218, Aug 2006.

[84] X. Zhu, J. Chen, F. Gao, X. Chen, and J. G. Masek, “An enhanced
spatial and temporal adaptive reflectance fusion model for complex
heterogeneous regions,” Remote Sensing of Environment, vol. 114,
no. 11, pp. 2610 – 2623, 2010.

[85] I. V. Emelyanova, T. R. McVicar, T. G. V. Niel, L. T. Li, and A. I.
van Dijk, “Assessing the accuracy of blending landsatmodis surface
reflectances in two landscapes with contrasting spatial and temporal
dynamics: A framework for algorithm selection,” Remote Sensing of

Environment, vol. 133, no. Supplement C, pp. 193 – 209, 2013.

[86] B. Huang and H. Song, “Spatiotemporal reflectance fusion via sparse
representation,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 50, no. 10, pp. 3707–3716, Oct 2012.

[87] H. Song and B. Huang, “Spatiotemporal satellite image fusion through
one-pair image learning,” IEEE Transactions on Geoscience and Re-

mote Sensing, vol. 51, no. 4, pp. 1883–1896, April 2013.

[88] X. Liu, C. Deng, S. Wang, G. B. Huang, B. Zhao, and P. Lauren,
“Fast and accurate spatiotemporal fusion based upon extreme learning
machine,” IEEE Geoscience and Remote Sensing Letters, vol. 13,
no. 12, pp. 2039–2043, Dec 2016.

[89] V. Moosavi, A. Talebi, M. H. Mokhtari, S. R. F. Shamsi, and
Y. Niazi, “A wavelet-artificial intelligence fusion approach (waifa)
for blending landsat and modis surface temperature,” Remote Sensing

of Environment, vol. 169, no. Supplement C, pp. 243 – 254, 2015.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0034425715301036

[90] M. Das and S. K. Ghosh, “Deep-step: A deep learning approach for
spatiotemporal prediction of remote sensing data,” IEEE Geoscience

and Remote Sensing Letters, vol. 13, no. 12, pp. 1984–1988, Dec 2016.

[91] J. Amoros-Lopez, L. Gomez-Chova, L. Alonso, L. Guanter, J. Moreno,
and G. Camps-Valls, “Regularized multiresolution spatial unmixing
for envisat/meris and landsat/tm image fusion,” IEEE Geoscience and

Remote Sensing Letters, vol. 8, no. 5, pp. 844–848, Sept 2011.

[92] J. Amors-Lpez, L. Gmez-Chova, L. Alonso, L. Guanter, R. Zurita-
Milla, J. Moreno, and G. Camps-Valls, “Multitemporal fusion of
landsat/tm and envisat/meris for crop monitoring,” International Jour-

nal of Applied Earth Observation and Geoinformation, vol. 23, no.
Supplement C, pp. 132 – 141, 2013.

[93] R. Zurita-Milla, J. G. P. W. Clevers, and M. E. Schaepman, “Unmixing-
based landsat tm and meris fr data fusion,” IEEE Geoscience and

Remote Sensing Letters, vol. 5, no. 3, pp. 453–457, July 2008.
[94] Y. T. Mustafa, V. A. Tolpekin, and A. Stein, “Improvement of spatio-

temporal growth estimates in heterogeneous forests using gaussian
bayesian networks,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 52, no. 8, pp. 4980–4991, Aug 2014.
[95] R. Zurita-Milla, G. Kaiser, J. Clevers, W. Schneider, and M. Schaep-

man, “Downscaling time series of meris full resolution data to monitor
vegetation seasonal dynamics,” Remote Sensing of Environment, vol.
113, no. 9, pp. 1874 – 1885, 2009.

[96] C. W. C. W. L. W. Mingquan Wu, Zheng Niu, “Use of modis and
landsat time series data to generate high-resolution temporal synthetic
landsat data using a spatial and temporal reflectance fusion model,”
Journal of Applied Remote Sensing, vol. 6, pp. 6 – 6 – 14, 2012.

[97] C. M. Gevaert and F. J. Garca-Haro, “A comparison of starfm and an
unmixing-based algorithm for landsat and modis data fusion,” Remote

Sensing of Environment, vol. 156, no. Supplement C, pp. 34 – 44, 2015.
[98] B. Huang and H. Zhang, “Spatio-temporal reflectance fusion via

unmixing: accounting for both phenological and land-cover changes,”
International Journal of Remote Sensing, vol. 35, no. 16, pp. 6213–
6233, 2014.

[99] Y. Xu, B. Huang, Y. Xu, K. Cao, C. Guo, and D. Meng, “Spatial
and temporal image fusion via regularized spatial unmixing,” IEEE

Geoscience and Remote Sensing Letters, vol. 12, no. 6, pp. 1362–1366,
June 2015.

[100] D. Xie, J. Zhang, X. Zhu, Y. Pan, H. Liu, Z. Yuan, and Y. Yun, “An
improved starfm with help of an unmixing-based method to generate
high spatial and temporal resolution remote sensing data in complex
heterogeneous regions,” Sensors, vol. 16, no. 2, 2016.

[101] Q. Wang, Y. Zhang, A. O. Onojeghuo, X. Zhu, and P. M. Atkinson,
“Enhancing spatio-temporal fusion of modis and landsat data by
incorporating 250 m modis data,” IEEE Journal of Selected Topics

in Applied Earth Observations and Remote Sensing, vol. 10, no. 9, pp.
4116–4123, Sept 2017.

[102] GRSS Data and Algorithm Standard Evaluation website. [Online].
Available: http://dase.grss-ieee.org/

[103] A. V. Vo, L. Truong-Hong, D. F. Laefer, D. Tiede, S. d’Oleire
Oltmanns, A. Baraldi, M. Shimoni, G. Moser, and D. Tuia, “Processing
of extremely high resolution lidar and rgb data: Outcome of the 2015
ieee grss data fusion contest,” IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, vol. 9, no. 12, pp.
5560–5575, Dec 2016.

[104] J. Zhang and X. Lin, “Advances in fusion of optical imagery and
lidar point cloud applied to photogrammetry and remote sensing,”
International Journal of Image and Data Fusion, vol. 8, no. 1, pp.
1–31, 2017.

[105] F. Remondino, M. G. Spera, E. Nocerino, F. Menna, and F. Nex,
“State of the art in high density image matching,” The Photogrammetric

Record, vol. 29, no. 146, pp. 144–166, 2014.
[106] X. X. Zhu and M. Shahzad, “Facade reconstruction using multiview

spaceborne tomosar point clouds,” IEEE Transactions on Geoscience

and Remote Sensing, vol. 52, no. 6, pp. 3541–3552, June 2014.
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