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Summary 1 

1. Plastic responses to spatio-temporal environmental variation strongly influence 2 

species distribution, with widespread species expected to have high phenotypic 3 

plasticity. Theoretically, high phenotypic plasticity has been linked to plant 4 

invasiveness because it facilitates colonization and rapid spreading over large and 5 

environmentally heterogeneous new areas.  6 

2. To determine the importance of phenotypic plasticity for plant invasiveness, we 7 

compare well-known exotic invasive species with widespread native congeners. First, 8 

we characterized the phenotype of 20 invasive-native ecologically and phylogenetically 9 

related pairs from the Mediterranean region by measuring 20 different traits involved in 10 

resource acquisition, plant competition ability and stress tolerance. Second, we 11 

estimated their plasticity across nutrient and light gradients. 12 

3. On average, invasive species had greater capacity for carbon gain and enhanced 13 

performance over a range of limiting to saturating resource availabilities than natives. 14 

However, both groups responded to environmental variations with high albeit similar 15 

levels of trait plasticity. Therefore, contrary to the theory, the extent of phenotypic 16 

plasticity was not significantly higher for invasive plants.  17 

4. We argue that the combination of studying mean values of a trait with its 18 

plasticity can render insightful conclusions on functional comparisons of species such as 19 

those exploring the performance of species co-existing in heterogeneous and changing 20 

environments.  21 
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Introduction 1 

Linking phenotypic plasticity to invasiveness of exotic species is an important topic in 2 

the study of biological invasion (Hulme, 2008, Richards, Bossdorf, Muth et al., 2006, 3 

Funk, 2008). Phenotypic plasticity, measured as the ability to express different 4 

phenotypes in different environments (Sultan, 1995, Valladares, Wright, Lasso et al., 5 

2000, Pigliucci, 2001, West-Eberhard, 2003) has been widely predicted to be a key trait 6 

for explaining why exotic invasive species are so successful in their recipient 7 

communities (e.g. Williams, Mack & Black, 1995, Sakai, Allendorf, Holt et al., 2001, 8 

Sexton, McKay & Sala, 2002, Niinemets, Valladares & Ceulemans, 2003, Funk, 2008). 9 

Theoretically, high plasticity is likely to influence the potential invasiveness of species 10 

because it may enable them to express advantageous phenotypes over a broad range of 11 

environments (detailed in Matesanz, Gianoli & Valladares, 2010), potentially enhancing 12 

their ecological success and their impact across ecosystems (Alpert, Bone & Holzapfel, 13 

2000, Daehler, 2003, Hulme, 2008). For instance, it has been postulated that plasticity 14 

would reduce the risk of stochastic local extinction after the arrival of a few genotypes 15 

and augment the likelihood of species to become invasive under environmental 16 

conditions to which they were not pre-adapted (Sultan, 2001, Ghalambor, McKay, 17 

Carroll et al., 2007, Bossdorf, Lipowsky & Prati, 2008). High plasticity can be due 18 

either to an adaptive strategy to cope with spatio-temporal resource fluctuation in the 19 

native region (Williams et al., 1995, Atkin, Loveys, Atkinson et al., 2005) or to rapid 20 

evolution in novel sites after colonization (Agrawal, 2001, Yeh & Price, 2004). 21 

Although it still remains to be tested, the higher the capacity to vary a broad number of 22 

morphological and ecophysiological traits the higher the likelihood of invaders to be 23 

pre-adapted to invasion (Hulme, 2008), especially under low resource environments 24 

(Davis, Grime & Thompson, 2000). 25 



 4 

Richards, Bossdorf, Muth et al., (2006) classified invasive species into three 1 

categories according to the fitness outcome due to plasticity as compared with a control 2 

group of native/non-invasive species: two main categories “Jack-of-all-trades” and 3 

“Master-of-some”, and a third category “Jack-and-Master”, which is a combination of 4 

the first two. Under the “Jack-of-all-trades” strategy, successful invasive species are 5 

hypothesized to have homeostasis of fitness (i.e. fitness remains constant along a 6 

resource gradient), because they are better able to maintain higher fitness in 7 

unfavourable environments. Several studies have shown evidence for this strategy. For 8 

example, invasive species (two trees, one shrub and two grasses) in Hawaiian Islands 9 

varied their specific leaf area to maximize light capture in response to a decrease of 10 

light availability (Funk, 2008). In response to increased temperature, Ailanthus altissima 11 

and Acer platanoides, two widespread invasive tree species, shifted their biomass 12 

allocation from transpiring tissues to roots and water transporting tissues (Säumel, 13 

2006). High plasticity in root/shoot ratio resulted in enhanced water uptake under 14 

drought conditions in species such as, Alternanthera philoxeroides and Taraxacum 15 

officinale (Brock & Galen, 2005, Geng, Pan, Xu et al., 2006). In contrast to the “Jack-16 

of-all-trades” strategy, the “Master-of-some” strategy encompasses those successful 17 

invasive species able to obtain higher fitness in response to an increase in resources 18 

availability via phenotypic plasticity. Finally, “Jack-and-Master” strategy includes those 19 

successful invasive species which are better able to maintain and to increase fitness in 20 

unfavourable and favourable environments, respectively.  21 

Although arguments in favor of linking phenotypic plasticity to plant invasion 22 

seem reasonable, no general pattern between phenotypic plasticity and invasiveness 23 

have emerged so far. While some studies support higher plasticity of invaders 24 

(Niinemets, Valladares & Ceulemans, 2003, Schumacher, Kueffer, Edwards et al., 25 
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2009, Davidson, Jennions & Nicotra, 2011) others do not (Bossdorf, Auge, Lafuma et 1 

al., 2005, Peperkorn, Werner & Beyschlag, 2005, Funk, 2008). Nevertheless and despite 2 

the fact that trait plasticity and trait mean value covary, only trait plasticity has been 3 

taken into account (but see Stinchcombe & Schmitt, 2006, Callahan & Pigliucci, 2002 4 

for selection analyses of plasticity). With the same adaptive extent of phenotypic 5 

plasticity one species may display higher fitness compared to another if the value of a 6 

given trait that account for fitness is significantly higher in the former. Accordingly, 7 

even low plasticity may be advantageous for the former species if the difference in the 8 

mean value of this trait is proportionally higher than the difference in plasticity 9 

displayed between the two species. This may explain why some studies have found that 10 

invasive species outperform native species even when the two have the same level of 11 

plasticity (e.g. Peperkorn, Werner & Beyschlag, 2005, Funk, 2008). Therefore, if we 12 

want to assess the importance of phenotypic plasticity to the invasiveness of exotic 13 

species, the question is not only how plastic an invasive species is, but how is the trait 14 

mean value related to fitness. 15 

The aim of this study was to explore phenotypic plasticity in exotic invasive 16 

species using a common garden experiment. 20 phylogenetically related pairs of 17 

invasive-native species covering a diversity of growth forms (trees, shrubs, perennial 18 

and annual herbs) that co-occur in Mediterranean ecosystems were compared measuring 19 

20 different traits in a common garden experiment across one nutrient and one light 20 

gradient. Specifically, we ask: (1) whether exotic invasive species and native species 21 

differ in their trait mean values (2) whether exotic invasive species have higher levels of 22 

plasticity than native species, (3) whether differences of particular trait-plasticity and 23 

overall mean trait-plasticity between both groups are dependent on the level of the 24 

resource gradient considered or not.  25 
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Studies at both species- and genotype-level are useful approaches to explore the 1 

relationship between plasticity and invasiveness (Richards, Bossdorf, Muth et al., 2 

2006). Genotype-level approaches provide a precise study of plasticity, its mechanisms 3 

and its evolutionary potential (Sultan, 2000). However, the species-level approach 4 

allows for broader generalizations if many species and traits are included (Schlaepfer, 5 

Glättli, Fischer et al., 2010), and for the development of risk-assessment protocols 6 

because species level is the most frequent taxonomic level for coping with invasions in 7 

practice (van Kleunen, Weber & Fischer, 2010).  Also, multispecies comparison allows 8 

us to explore whether plasticity is phylogenetically conserved (Kembel & Cahill, 2005) 9 

which may increase our capacity to predict potential invasiveness from phylogenetic 10 

information of the species. Despite their importance, studies involving multi-species 11 

comparison are scarce and most functional studies of invasive organisms are restricted 12 

to only a few species (but see Schlaepfer, Glättli, Fischer et al., 2010) and a limited 13 

number of traits.  14 

 15 

Material and Methods  16 

Species selection 17 

From January to October 2005 and 2006, plants from twenty exotic and twenty native 18 

species (Table 1) were grown from seeds in the Botanical Garden of the University of 19 

Alcalá (40º 28´N, 3º 22´W, 588 m). The exotic species set was comprised of introduced 20 

species clearly invasive in the Iberian Peninsula (sensu Pyšek, Richardson, Rejmánek et 21 

al., 2004), local dominants in some native ecosystems (Valéry, Fritz, Lefeuvre et al., 22 

2008), and species with potential impact on native ecosystems (transformer species, 23 

sensu Richardson, Pyšek, Rejmanek et al., 2000). Overall, they represent the broad 24 

range of taxonomy, invaded habitats (woodlands, scrublands, grasslands and riparian 25 
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areas) and growth forms (annual and biannual herbs, shrubs and trees) of invasive 1 

exotic species in the Iberian Peninsula (Sanz Elorza, Dana Sanchez & Sobrino 2 

Vesperinas, 2004). Nomenclature follows the Iberian Flora (Castroviejo, 1986-2008), 3 

which is in agreement with the Missouri Botanical Garden, VAST nomenclatural 4 

database (W3Tropicos, http://mobot.mobot.org/W3T/Search/vast.html).  5 

When assessing differences between invasive and native species, it is important 6 

to take phylogenetically independent contrast controls into account as well as to ensure 7 

that within pairs both species occur in similar ecosystems (Lambdon & Hulme, 2006). 8 

Thus, we paired each invader with one closely related native species based on the 9 

following phylogenetic and ecological guidelines: a) the native species had to belong to 10 

the same family as the invasive species (that was achieved in 17 of 20 pairs), b) they 11 

had to have the same growth form (achieved in all pairs except number 15 and 16 (See 12 

Table S1 in Supporting Information), in which invasive species were trees and natives 13 

shrubs), c) they had to co-exist in the same habitat-type in the Iberian Peninsula and the 14 

same successional community stage, and d) they had to be recorded as co-occurring at 15 

least once in Spain. We consulted the extensive Herbarium database at Universidad 16 

Complutense de Madrid (MACB, founded 1968) to check for co-occurrence within 17 

pairs. Native species with small distribution ranges, rare or with endangered status were 18 

excluded. 19 

 20 

Experimental design 21 

Several resource concurrent gradients influence plastic responses of plants (Portsmuth 22 

& Niinemets, 2007). However, in order to make useful predictions we need to quantify 23 

potentially adaptive plastic traits to one resource at a time using a realistic resource 24 

gradient (e.g. Funk, 2008, Quero, Villar, Marañón et al., 2006, Sánchez-Gómez, 25 
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Valladares & Zavala, 2006, Poorter, 1999), despite the limitations of this approach 1 

(Hulme, 2008). Accordingly, we designed a non-factorial experiment with two resource 2 

gradients using two different greenhouses due to logistical limitations: Nutrient 3 

Gradient (Low-Medium-High) under the same sun light conditions and Light Gradient 4 

(Shade-Sun) under the same medium nutrient conditions. Within the “nutrient 5 

greenhouse” radiation was kept constant at 50% full radiation (950-1050µmolm-2s-1) 6 

and light quality red:far red ratio (R:fR) =1. Within “light greenhouse” plants were 7 

subjected to Medium-nutrient growth environment with “Shade” being 20% of full 8 

sunlight radiation (350-500µmolm-2s-1) and light quality modified to R:fR=0.8, which is 9 

the most common shade under Mediterranean ecosystems (Valladares, 2004).  Although 10 

we did not use low light levels (e.g. 1-15% full radiation) that will potentially show the 11 

non-linear plant responses to light variation (Poorter, 1999), this design enabled us to 12 

reasonably frame our hypothesis across nutrient and light availabilities where exotic 13 

species invade in Spanish Mediterranean ecosystems. 14 

 Half of the species pair were grown during 2005 and the other half during 2006 15 

(see Table S1). In each year 144 plants per species were grown from seeds in individual 16 

1 L pots (QP 12T/18, PROJAR, Spain) with vermiculite (0-3 mm grain, 80-100kg/m3, 17 

PROJAR, Spain). Seeds were obtained from commercial supply or field collection and 18 

sown in March of the corresponding year and grown for a full growing season. In both 19 

cases, seeds came from locations where the exotic species are clearly invasive. For 20 

commercial supply, seeds were certified to come from one single location. For field 21 

collection, we collected seeds from 15-20 haphazardly chosen plants within one 22 

population. Population delimitation was according to Schlaepfer, Glättli, Fischer et al., 23 

(2010) criteria.  24 
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In each greenhouse, plants were divided into 3 different blocks (12 plants per 1 

block*species*treatment) to control for possible variation in measurements due to 2 

microclimatic gradients. In addition, plants were randomly positioned in their block and 3 

rotated every month. We fertilized plants at the beginning of the experiment with a 4 

Plantacote mix 6 month slow-release fertilizer 14-9-15 N-P-K, (Aglukon Spezialdünger 5 

GMBH & Co.KG, Dusseldorf, Germany). We used a slow-release fertilizer to ensure 6 

that plants had available nitrogen throughout the experiment. The main nitrogen 7 

compound was ammonium nitrate (NH4NO3) (85%). Plants received one dose, over the 8 

six months, equivalent to 0.010g N in the Low-nutrient level, 0.085g N in the Medium-9 

nutrient level and 0.245g N in the High-nutrient level. Pure vermiculite was used as 10 

substrate in the experiments to ensure that the fertilizer was the only source of nutrient 11 

supply. The gravimetric soil water content in the pots was maintained at >30%. Local 12 

air temperature and available photosynthetic photon flux density (PPFD) were recorded 13 

every 5 min throughout the growing season with a data logger (HOBO model H08- 006-14 

04; Onset, Pocasset, MA, USA) and self-made external sensors that were cross-15 

calibrated with a Li-Cor 190SA sensor (Li-Cor, Lincoln, NB, USA). Mean daily PPFD 16 

(400–700 nm) over the summer was 41 mol m2d−1, which is equivalent to full sunlight.  17 

 18 

Phenotypic traits 19 

We measured 20 variables related to plant- and leaf-level traits (see Table 1 for 20 

abbreviations). Traits were selected because of their functional significance for resource 21 

acquisition (e.g. high LAR and RWR are associated with light and nutrient acquisition, 22 

respectively), plant competition (e.g. high rate of maximum photosynthesis and Fv/Fm 23 

are associated with fast growth and good physiological status), and stress tolerance (e.g. 24 

high PNUE is associated with high plant performance in nitrogen limited environments 25 
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and high SLA in light limited environments). Finally, we measured survival (n=36 per 1 

species*treatment) and total biomass (above + below ground biomass) after 6 months 2 

since germination as surrogates of fitness. These variables are commonly used in short-3 

term studies of perennial species when reproductive measures are difficult to obtain 4 

(Sultan, Wilczek, Bell et al., 1998, Funk, 2008).  5 

Plant-level traits were recorded for nine replicate plants per treatment and 6 

species (plants were arranged in 3 blocks). Each individual plant was separated into 7 

leaves, stems and roots, oven-dried at 60ºC for 3 days and weighed to calculate weight 8 

ratio of leaf (LWR), stem (SWR) and root (RWR) per total biomass. Before oven-9 

drying the material, leaf area of each whole individual was measured using a Delta-T 10 

leaf area meter device (Delta-T devices, Cambridge), to calculate leaf area ratio (LAR= 11 

leaf area/plant dry mass) and specific leaf area (SLA=leaf area/leaf dry mass). 12 

  Because the selected plant-level traits vary with ontogeny (Evans, 1972, 13 

Poorter, 1999), we used a non-destructive method for measuring plant volume over time 14 

that partially corrected for possible ontogenetic development drift between treatments 15 

(e.g. usually plants exhibit faster development under higher nutrient availability). To 16 

satisfy both needs, we first followed the growth dynamics measuring plant volume as a 17 

function of height and crown cover for each species and nutrient treatment in each 18 

month. For this, we used the semi-sphere equation (V=(2/3)*π*r2*H) where  H is height 19 

and r is the mean radius (r) of plant cover (maximum radius + minimum radius/2). 20 

Later, during August, we fitted for the mean plant volume of invasive and native species 21 

a sigmoidal function to predict their volume increase. Results revealed that plants 22 

growing under the high nutrient treatment developed faster (i.e. ontogenetic drift). 23 

Therefore, we partly correct for differences on ontogeny across treatments by collecting 24 

plants grown in the higher nutrient treatment one month before the end of the 25 
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experiment (October of 2005 or 2006) (see Appendix S2). This procedure also ensured 1 

that the harvesting period was short enough to avoid an effect on the results. 2 

Leaf-level traits were measured using a LI-6400 portable photosynthesis system 3 

with a fluorescence chamber (LI-COR, Lincoln, NE) in one mid-height undamaged 4 

fully expanded leaf (n=3 plants randomly selected per species and treatment). We 5 

constructed light response curves at 10 light intensities of PAR following the order 0, 6 

800, 1100, 1500, 1900, 500, 250, 150, 100, 50, 0 µmolm-2 s-1 and with the following 7 

constant conditions: CO2 concentration 400 ppm, flow 400 cm3min-1, air humidity 40-8 

60% and block temperature 25ºC. First, we adapted the leaf to dark for 30 minutes to 9 

measure respiration (Rdark). Then, the leaf was irradiated with saturating and non-10 

inhibitory light (800 µmolm-2 s-1) for 10 minutes to be sure that plants were 11 

photosynthetically active. We then changed light intensity and recorded maximum 12 

photosynthetic rate (Amax) at each light level when it was stable (i.e. every 3 minutes on 13 

average). At maximum light intensity (1900 µmolm-2 s-1), transpiration rate (T) was also 14 

recorded to subsequently calculate instantaneous water use efficiency (iWUE= Amax/T). 15 

Instantaneous WUE was calculated instead of intrinsic WUE= Amax/gs because we were 16 

interested in the gas exchange ratio between carbon acquisition and water release. From 17 

dark to maximum light intensity, we measured a set of fluorescence parameters (Fv/Fm, 18 

ФPSII, qP, qN, NPQ and ETR) (see Appendix S3). Additionally, we selected 3 random 19 

plants per species and treatment to measure Amax and WUE in a total of 6 plants per 20 

species and treatment.  21 

We obtained photosynthetic parameters from light response curves using 22 

Photosyn Assistant software version 1.1.1 (Richard Parsons, Dundee, U.K). This 23 

software models the photosynthetic response of leaves to variation in light level by a 24 

rectangular hyperbola following the quadratic equation presented by Chartier & Prioul 25 
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(1976), where the light compensation point (Γ) is estimated from intercept to x-axis, the 1 

light saturation point (Ic) is the light level at which the leaf reaches its maximal 2 

photosynthetic capacity and the convexity light curve factor (Θ) describes the 3 

progressive rate of bending between the linear gradient and the maximum value.  4 

We measured organic leaf nitrogen concentration per mass (Nmass) and per area 5 

(Narea) at Nutrilab (University Rey Juan Carlos, Móstoles, Madrid, Spain) with 6 

segmented flux autoanalyzer (S-F.A.S. Skalar San ++), after digestion with H2SO4 and 7 

Cu-KSO4, which converts all organic nitrogen into ammonium (NH4
+-N). Previously, 8 

leaves of each species and treatment had been pooled within blocks and ground in a 9 

Culatti mill to 1 mm particle size. After that, Narea was calculated by dividing N leaf 10 

content by the leaf area mean and photosynthetic nitrogen use efficiency (PNUE) as the 11 

division of Amax by Narea. Mean values for each trait and species are shown in Table S4. 12 

 13 

Phenotypic plasticity  14 

We calculated trait variation for each plant species with the plasticity index (PI) created 15 

by Valladares, Wright, Lasso et al., (2000).  16 

))2(),1((
)2()1(

envMeanenvMeanMax
envMeanenvMeanPI −

=  17 

Mean(env1) and Mean(env2) are the mean values of a given trait for one species in the 18 

environment 1 and 2, representing the mathematical expression of a reaction norm. 19 

))2(),1(( envMeanenvMeanMax serves to standardize the index, which ranges from zero 20 

(no plasticity) to one (maximum plasticity). PI also indicates the direction of the 21 

change. For instance, a negative PI value indicates that the mean value of a given trait is 22 

higher under environment 2. We preferred PI to other published plasticity indices  (see 23 

list of plasticity indices in Valladares, Sanchez-Gomez & Zavala, 2006) because it is the 24 

index that better reflects a reaction norm and it is not sensitive to differences in variance 25 
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between two samples. PI was calculated for each trait and species along the two 1 

resource gradients. We also calculated the mean plant-level and leaf-level plasticity, as 2 

well as the overall mean plasticity.  3 

 Finally, it must be noted that we calculated PI for shade to sun under light 4 

gradient (Sh-S) and for each experimental resource change under nutrient gradient (i.e 5 

low to medium, medium to high nutrient level (L-M, M-H), instead of for the extreme 6 

of the gradient (i.e low-high nutrient level L-H), in order to relate PI values to “Jack-of-7 

all-trades, Master-of-Some” framework. 8 

 9 

Statistical analysis  10 

We evaluated the effect of invasiveness (two levels, invasive vs. native), block 11 

(three levels), and phylogenetic distance within pairs on phenotypic traits, on different 12 

trait-plasticity scales (each trait-plasticity, mean plant-level and leaf-level plasticity, and 13 

overall mean plasticity) and, finally, on fitness in the two resource gradients using a 14 

non-parametric analysis of variance (PERMANOVA, Anderson, 2001, Anderson, 15 

2005). We selected a PERMANOVA approach because it permits pairwise comparison 16 

at different phylogenetic levels. This type of analysis was also selected because it does 17 

not make assumptions of normality or homocedasticity of the data and its residuals. We 18 

initially performed an analysis with all 20 phenotypic traits included, considering 19 

invasive/native status and nutrient/light levels as fixed factors, block as a random factor 20 

and phylogenetic distance within pairs as a co-variable. Next, a series of models 21 

including one trait at a time as the dependent variable were performed to search for the 22 

possible differences found in the first model including all variables. The same statistical 23 

procedure was performed for the plasticity of the 20 measured traits, for the mean plant-24 

level and leaf-level plasticity, as well as for the overall mean plasticity. However, we 25 
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took a slightly different approach when we analysed each trait-plasticity separately. 1 

Because plant size can directly influence biomass partitioning and thus plant-level trait 2 

plasticity (Poorter, 1999, Funk 2008), we also included biomass as a covariable to test 3 

whether observed plasticity was a mechanistic consequence of an increase in plant size 4 

(apparent plasticity sensu Dudley, 2004, Hulme, 2008) or a plastic strategy per se. 5 

Analyses were conducted to compare data from L-M nutrient levels and M-H nutrient 6 

levels and from Sh-S light levels. In all cases, significant results between invasive and 7 

native pairwise comparisons and post-hoc comparisons were estimated from 9999 8 

permutations using Bray-Curtis dissimilarity, which measures the distance between the 9 

trait values that remains unique to one group (invasive or native) divided over the trait 10 

values common to both groups. The phylogenetic distance from one species to another 11 

for each of the species pairs was calculated through to the first common ancestor to both 12 

species using the plant phylogenetic supertree described by Soltis, Soltis, Chase et al., 13 

(2000) and modifications by Bremer, Bremer, Chase et al., (2003). 14 

 15 

Phylogenetic pattern of plasticity  16 

We investigated phylogenetic conservatism in plasticity at different taxonomic levels by 17 

implementing the phylogenetic node-dated tree of our invasive and native species set 18 

and plasticity values (mean plant-level and leaf-level plasticity, overall mean plasticity) 19 

into the Analysis of Traits (AOT), module of Phylocom package (Webb, Ackerly & 20 

Kembel, 2008). However, we did not correct for ontogenetic drift here since we used 21 

mean plasticity values. To perform the analyses, we first built a pruned phylogenetic 22 

tree with the study species as terminal tips using the maximally resolved seed plant tree 23 

available in Phylomatic (http://www.phylodiversity.net/phylomatic/). Next, we 24 

calibrated the resulting tree by dating the nodes with the Branch Length ADJustment 25 

function (BLADJ), another module of Phylocom, on the basis of clade age estimation of 26 
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Wikstrom, Savolainen & Chase, (2001). Once we obtained a node-dated tree, calibrated 1 

in millions of years, we introduced plasticity values into the AOT to calculate 2 

divergence-convergence degree at each internal node of the tree. The standard deviation 3 

between trait means of daughter nodes was used as a proxy of the degree of divergence 4 

at the focal node (i.e., divergence size). Significance of divergence size was estimated 5 

by 20000 randomly permuting trait values across the tips of the phylogeny at a p-6 

value<0.05.  7 

Furthermore, we dealt with polytomies in the input tree (Butler & King, 2004) 8 

by randomly generating 100 fully resolved trees using MESQUITE (Maddison & 9 

Maddison, 2009). We then re-sampled 50 of the 100 fully resolved trees randomly and 10 

ran the analyses described above again separately for each of those 50 trees. None of the 11 

results described in the following section changed with input tree which supports the 12 

robustness of the analyses above to phylogenetic uncertainty.  13 

 14 

Results 15 

Mean phenotypic values and performance 16 

Results of the PERMANOVA indicated significant differences from plant- to leaf-level 17 

traits between invasive species and natives (Table 2, Table S4). Plant allometry was 18 

similar in both groups, except that invasive species assigned more resources to above-19 

ground plant construction (higher SWR and lower RWR). Invasive species showed the 20 

same maximum photosynthetic rate (Amax) as natives but surprisingly their nitrogen leaf 21 

concentration per mass and per area was lower (Nmass, Narea). Thus, the photosynthetic 22 

nitrogen use efficiency (PNUE) was higher for invasive species (Table 2). Despite both 23 

groups exhibiting the same maximum photosynthetic rates, invasive species reached this 24 

value at lower light intensities (light saturation point, Ic) and with faster light saturation 25 



 16 

(light curve convexity, Θ). In addition, invasive species had lower instantaneous water 1 

use efficiency (iWUE) than natives (Table 2). The different ways of leaf photo-2 

protection of invasive and native species led to convergent results in the physiological 3 

status of the plants. (i.e. no significant differences were founded in Fv/Fm). Invasive 4 

species protected their photosynthetic machinery against an excess of light through 5 

higher non-photochemical quenching (NPQ) associated with a greater number of rich-6 

carbon photo-protective pigments (e.g. xanthophylls), whereas native species used 7 

greater amounts of chlorophyll (photochemical quenching, qP) (Table 2). In summary, 8 

differences on the light curve shape and the ability to produce photo-protective 9 

pigments based on rich-carbon compounds reflected the fact that invasive species 10 

possessed a fast-growth strategy due to faster carbon acquisition. Congruent with these 11 

results, invasive species had higher biomass than natives at medium and high nutrient 12 

levels but not at low nutrient level (Fig. 2). In the case of the light gradient, greater light 13 

availability had a positive effect on biomass for both groups, but invasive species 14 

always exhibited higher above-ground biomass for both light treatments (shade and 15 

sun), and higher total biomass than natives under low light availability (shade). 16 

PERMANOVA results revealed that plant survival did not differ between invasive and 17 

native species along the nitrogen gradient (F(nutrient)2,119=1.17, p=0.76, 18 

F(I/N)1,119=0.89, p=0.83, F(nutrient*I/N)1,119=0.91, p=0.83), whereas invasive species 19 

had higher survival than natives under low light conditions (F(light)1,119=14.22 p<0.01, 20 

F(I/N)1,119=2.15 p=0.73, F(light*I/N)1,119=17.32 p<0.01 (Fig. 2).  Finally, analysis 21 

including all variables showed that the effect of block and phylogenetic distance within 22 

pairs on survival were not significant either for the nutrient greenhouse 23 

(F(I/N)1,119=19.8, p<0.001, F(block)2,119=0.09, p=0.99), F(phylogeny)1,119=0.34, p=0.92, 24 
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or for the light greenhouse (F(I/N)1,119=15.7, p<0.001, F(block)2,119=0.43, p=0.95, 1 

F(phylogeny)1,119=0.55, p=0.89). 2 

 3 

Phenotypic plasticity values: Invasive versus native 4 

Trait-plasticity in response to nutrient and light variation was highly variable 5 

within traits (e.g. Narea=0.07-0.66 or qP1900=0.01-0.42) and between traits from low trait 6 

plasticity (e.g. Fv/Fm=0.01-0.04 or qN1900 =0.01-0.06) to high trait plasticity (e.g. 7 

LAR=0.11-0.70) (Table 2). However, relatively few traits showed significant 8 

differences in plasticity between invasive and native species.  In most cases, variability 9 

in plant-level trait plasticity was captured by plant size (biomass as a covariable) in 10 

PERMANOVA analyses. Only after accounting for allometric effects, invaders did 11 

show significantly higher LAR plasticity from medium to high nutrient. For leaf-level 12 

traits, PNUE plasticity was consistently higher in invasive species from low to medium 13 

nutrient and from shade to sun light. Amax followed the same pattern from low to 14 

medium nutrient availability. On the other hand, nitrogen content per mass (Nmass) and 15 

per area (Narea) varied less in invasive species from low to medium nutrient availability 16 

and from shade to sun light conditions respectively (Table 2). The effective quantum 17 

yield of Photosystem II and electronic transport rate under at high irradiances (ФPSII1900, 18 

ETR1900) varied in opposite directions (i.e. the plasticity sign was different between 19 

groups) from medium to high nutrient (Table 2). While invasive species showed a 20 

positive increase in response to nutrient addition (i.e. negative PIv values), native 21 

species did the opposite. Finally, PERMANOVA results for all trait-plasticity 22 

measurements, including into the analyses PI values from low to high nutrient, 23 

indicated that the effect of block and phylogenetic distances within pairs were not 24 

significant, either for nutrient gradient (F(I/N)1,119=22.8, p<0.001, 25 
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F(nutrient)1,119=19.44, p<0.001, F(block)2,119=0.12, p=0.97), F(phylogeny)1,119=0.30, 1 

p=0.93, or for light gradient (F(I/N)1,119=20.72 p<0.001, F(block)2,119=0.66, p=0.90, 2 

F(phylogeny)1,119=0.55, p=0.89).   3 

The main pattern of non-significantly higher plastic responses of invaders was 4 

repeated for the mean of plant-level, leaf-level and overall plasticity in both nutrient and 5 

light gradients (Fig. 2-3). In some cases the invasive species even had lower phenotypic 6 

plasticity, as in the case of mean leaf physiology plasticity when nutrient availability 7 

increased from medium to high. In summary, contrary to theory, our results showed that 8 

invasive species did not display a higher phenotypic plasticity.  9 

  10 

Phylogenetic conservatism of plasticity 11 

Cross-species phenotypic plasticity differences were not explained by the phylogenetic 12 

structure of the species selected when including together invasive and native species 13 

into the node-dated tree. All the taxonomic families showed the same level of 14 

phenotypic plasticity, across the phylogenetic tree, thus no divergence or convergence 15 

between nodes was observed (Plant-level plasticity r2=0.09 p=0.80, Leaf-level plasticity 16 

r2=0.11 p=0.77, Mean phenotypic plasticity r2=0.04 p=0.91) (Fig. 4). 17 

 18 

Discussion 19 

Mean phenotypic values: invasive versus native species 20 

Mean phenotypic values of traits related to growth and allocation are considered 21 

important for explaining invasiveness (Pyšek & Richardson, 2007, van Kleunen, Weber 22 

& Fischer, 2010). Several studies have shown that invasive species have lower 23 

root/shoot ratio, higher SLA, and exhibit more efficient photosynthetic machinery 24 

compared to native or non-invasive species (Daehler, 2003, Schlaepfer, Glättli, Fischer 25 
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et al., 2010, Pyšek & Richardson, 2007 and references therein, van Kleunen, Weber & 1 

Fischer, 2010). At the same time, high resource use efficiency (i.e. high carbon 2 

assimilation per unit of resource) have been hypothesized as a decisive feature allowing 3 

exotic species to become invasive in newly colonized ecosystems (Dukes & Mooney, 4 

1999, Niinemets, Valladares & Ceulemans, 2003, Funk & Vitousek 2007). In support of 5 

both hypotheses, we have found significantly lower RWR and higher PNUE in invasive 6 

than in native species (Table 2). On the other hand, higher SLA and LAR as strong 7 

correlates of invasiveness (Daehler, 2003, Hamilton, Murray, Cadotte et al., 2005) were 8 

not found in our data. Although both groups had a similar rate of net photosynthesis per 9 

unit area (Amax), invasive species achieved it with lower N investment in leaves (Narea) 10 

(Table 2). Investing less nitrogen in leaves may be inherent to the nitrogen resource use 11 

strategy of invasive species (Godoy, Castro-Diez, Logtestijn et al., 2010). For instance, 12 

there were no significant differences in Nmass and Narea across the three nutrient levels 13 

(data not shown). Niinemets, Valladares & Ceulemans, (2003) suggested that the origin 14 

of higher PNUE of invaders was related to reduction in soil nitrogen availability upon 15 

invasion, because invasive species slow down nutrient cycling due to the production of 16 

litter with a high concentration of recalcitrant compounds (e.g. allelopathic and carbon-17 

based compounds,  Godoy, Castro-Díez, Logtestijn et al., 2010). By contrast, Liao, 18 

Peng, Luo et al., (2008) and Ehrenfeld, (2003) have found that most invasive species 19 

tend to speed up nutrient cycling, specially nitrogen-fixing invaders. Irrespective of 20 

what theory matches better with different empirical studies, our results support the idea 21 

that high PNUE, is a key trait associated with invasiveness in both limiting and non-22 

limiting N environments. 23 

Our results have documented for the first time the existence of a suite of traits 24 

that allow invasive species to achieve a higher light-harvesting efficiency than that of 25 
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the natives and a better photosynthetic performance under a range of light 1 

environments. Significantly higher light curve convexity (Θ) and lower light saturation 2 

point (Ic) clearly enhanced carbon uptake of invasive species under limited irradiance 3 

(Table 2 and Fig. 2). Additionally, invaders avoided an excess of irradiance by 4 

producing higher amount of carbon-rich compounds, such as xanthophylls (significant 5 

higher NPQ1900), whereas native species tend to use photosynthesis pathway and thus 6 

chlorophylls (significant higher qP1900) (Table 2). These higher trait values associated 7 

with carbon acquisition by invaders and quenching differences between both groups 8 

suggest that invaders disposed enough carbon to diminish the carbon trade-off between 9 

growth and tissue protection (Villar, Robleto, De Jong et al., 2006). In contrast,  native 10 

species might have to trade off growth for leaf photo-protection by producing N-rich 11 

pigments, such as chlorophylls, as suggested by their higher nitrogen leaf content (Narea, 12 

Nmass) (Table 2) . Although we did not find significant differences in the physiological 13 

status of both groups (i.e. Fv/Fm was similar), this subtle difference between leaf-photo 14 

protection strategies involves for native species an increased risk of damage of their 15 

chlorophylls by photo inhibition, which in turn can decrease carbon gain and growth.   16 

Collectively, our results reveal that the invasive species studied displayed high 17 

tolerance to and high performance over a wide range of nutrient and light conditions.  18 

This is in agreement with results for other ecosystems (Mooney & Hobbs, 2000, van 19 

Kleunen, Weber & Fischer, 2010). The higher trait mean values for key aspects of 20 

physiological performance of invasive species must positively influence their capacity 21 

to outcompete natives. These higher trait means might be more important than 22 

phenotypic plasticity to succeed under changing conditions because in Mediterranean-23 

type ecosystems (MTE) plasticity is not always advantageous. Under stochastic and 24 

unpredictable resource fluctuations, plastic adaptive responses to a given abiotic factor 25 
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can turn out to be maladaptive when another abiotic factor is also fluctuating and 1 

stressful (see discussion in Valladares, Gianoli & Gomez, 2007). 2 

 3 

Phenotypic plasticity: invasive versus native species 4 

Our results do not match with previous studies that suggest that invasiveness of 5 

exotic species is related to an increased phenotypic plasticity (see for instance Gerlach 6 

& Rice, 2003, Niinemets, Valladares & Ceulemans, 2003, Davidson, Jennions & 7 

Nicotra, 2011). In general, the level of plasticity of invasive species measured at 8 

multiple scales (trait, mean trait-level, and overall mean plasticity) was similar, and in 9 

some cases even lower, to that of natives (Fig. 2-4, Table 2). In addition, both invasive 10 

and native species had highly plastic responses across the entire resource gradient, 11 

supporting the idea that trait plasticity is not constrained in low resource environments 12 

(Funk, 2008). Still, our results should be corroborated at very low resource conditions 13 

where species usually show non-linear plastic responses (e.g. light availability below 14 

20% full radiation) (Poorter, 1999). The lack of evidences supporting high plasticity as 15 

a determinant of invasiveness might indicate that their importance per se is low 16 

compared to other mechanisms. For instance, invasiveness may be also attributed to the 17 

benefits of escaping from natural enemies, such as pathogens or predators, as predicted 18 

by the Enemy Release Hypothesis (ERH) and the Evolution of Increased Competitive 19 

Ability (EICA). Since there are almost 20 different hypotheses in the literature trying to 20 

explain invasiveness, future promise research may be channelled to distinguishing the 21 

relative importance of different hypotheses.      22 

Even so, invasive species did display higher plasticity for a few traits under 23 

particular resource availabilities, providing some insights on plastic strategies that may 24 

convey invasiveness. When resource availability changed from low to medium nutrient 25 
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and from shade to sun, invasive species displayed higher plasticity in only two leaf 1 

physiological traits, PNUE and N leaf content (both Nmass and Narea) (Table 2). Funk, 2 

(2008) investigated the plastic responses of 5 invasive-native pairs in low resource 3 

environments of the Hawaiian Islands and found that Amax and Narea were positively 4 

related to the invasive species fitness, although this pattern was observed in response to 5 

nitrogen but not to light availability. Thus, it seems that high plasticity in leaf-level 6 

nitrogen and light use traits is important for successful plant invasions, particularly in 7 

low resource environments.   8 

Surprisingly, when resource conditions change from medium to high nutrient 9 

level, invasive species tracked the nutrient increase with a higher production of leaf area 10 

per unit biomass (plasticity for LAR) than natives, rather than increasing Nmass in leaves 11 

(Table 2). Perhaps, higher LAR plasticity entailed higher plasticity in ФPSII and ETR at 12 

high light intensities, 1900 µmolm-2s-1 (Table 2) because new leaves have their 13 

photosynthesis machinery intact. If this is the case, the production of new leaves to 14 

maximize carbon acquisition may be a profitable strategy to grow faster when nitrogen 15 

is abundant. Overall, these plastic responses support the idea of invader’s fast-growing 16 

dynamics as suggested by Niinemets, Valladares & Ceulemans, (2003), for example. 17 

 18 

Relationship between traits, plasticity and fitness 19 

Strong trait variation responses do not necessarily confer success to exotics; instead the 20 

interaction of plasticity with certain trait values (typically high values) results in a 21 

“general purpose phenotype” (i.e. high mean values of traits associated with a strong 22 

ability to compete along broad ranges of environmental conditions). Following the 23 

predictions of Richards, Bossdorf, Muth et al., (2006), our results showed that invasive 24 

species can be classified in different categories depending on how resource gradients 25 
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affect fitness traits. While in the nutrient gradient invasive species followed the 1 

“Master-of-Some” strategy because they showed similar levels of survival to natives 2 

across nutrient treatments but with higher biomass as nitrogen availability was 3 

increased, in the light gradient invaders followed a “Jack-and-Master” strategy because 4 

they always had higher levels of above-ground biomass and higher rate of survival than 5 

natives in shade (Fig. 1).  6 

Further attempts are needed to distinguish the mechanism by which invasive 7 

species benefit more from plasticity than natives. Theoretically, two potential 8 

mechanistic explanations (not mutually exclusive) can explain this result: (1) invasive 9 

species display high trait plasticity resulting in significantly higher fitness than the 10 

natives; and (2), invasive species have the same plasticity level but trait values 11 

associated to fitness were always higher in invasive species. Our results of similar 12 

plasticity between both groups but higher capacity for carbon acquisition by invasive 13 

species suggest that the latter mechanism explains the higher fitness of invasive species. 14 

However, this might not be always the case. Further studies applying multivariate 15 

techniques such as structural equation modelling (SEM, see Shipley, 2004 for details) 16 

should explicitly disentangle the relative importance for plant fitness of trait mean 17 

value, phenotypic plasticity, and other important features not measured in this study 18 

such as phenotypic integration (Murren, Pendleton & Pigliucci, 2002).  19 

 20 

Phylogenetic signal!21 

The lack of phylogenetic signal in trait plasticity across different plant scales (leaf-level, 22 

whole plant-level, and mean phenotypic plasticity) suggests that there are no significant 23 

phylogenetic constrains for wide trait variation (Fig. 4). In addition, phylogenetic 24 

analyses suggest that higher levels of phenotypic plasticity are not related to a specific 25 
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growth form of invasive species, since no differences were found at the family-level 1 

nodes where woody and herbaceous are nested to each taxonomic family. Therefore, 2 

these results reflect the fact that plasticity is a convergent evolutionary strategy, at least 3 

for the set of species studied here. 4 

 5 

Strengths and limitations of the study 6 

Multi-species comparisons enable more robust conclusions than single-species 7 

studies, but they have been restricted to the evaluation of a reduced number of traits 8 

(Goodwin, McAllister & Fahrig, 1999, Prizing, Durka, Klotz et al., 2002, van Kleunen, 9 

Johnson & Fischer, 2007). Very few studies have tackled the invasiveness of exotic 10 

species experimentally with a large number of species and traits (van Kleunen & 11 

Johnson, 2007, Schlaepfer, Glättli, Fischer et al., 2010). However, species selection is 12 

an important step in multi-species comparison studies (van Kleunen, Dawson, 13 

Schlaepfer, Glättli, Fischer et al., 2010) and our study has the limitation that three 14 

native species, Pinus pinaster, Achillea millefolium and Dittrichia viscosa, were also 15 

recorded as invasive species elsewhere (Beckmann, Erfmeier & Bruelheide, 2009, 16 

Wacquant, 1990, Rejmánek & Richardson, 1996). Besides, methods to control for 17 

ontogenetic drift were only partial because plant biomass did not overlap between 18 

treatments. We acknowledge that both facts, invasiveness elsewhere and ontogenetic 19 

drift, might have affected our results. Despite these limitations, our study provides novel 20 

insights on invasiveness and an important methodological conclusion: phenotypic 21 

plasticity should not be considered alone regarding invasiveness, but rather in 22 

combination with trait mean values.   23 

 24 
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Additional supporting information may be found in the online version of this article 
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Table S4 Trait mean values detailed for each species 

 
Please note: Wiley Blackwell are not responsible for the content or functionality of any 
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Table 1 Variables and descriptions of the traits measured. Effective quantum yield, 

photochemical and non-photochemical quenchings and electronic transportation rate were 

measured at non-saturating light level (150 µmol photon m-2 s-1) and saturating light level (1900 

µmol photon m-2 s-1) 

 
Variable Description Units 

Plant-level traits   

LWR Leaf weight ratio g leaf g-1 plant  
SWR Stem weight ratio g stem g-1 plant 
RWR Root weight ratio g root g-1 plant 
LAR Leaf area ratio m2 leaf kg-1 plant 

Leaf-level traits   

Amax Maximum photosynthetic rate at saturating 
light per unit area 

µmol CO2 m-2 leaf s-1 

iWUE Instantaneous Water use efficiency  µmol CO2 mol-1 H2O 
PNUE Photosynthetic nitrogen use efficiency µmol CO2 mol-1 N s-1 
Narea Leaf nitrogen content per unit area g N m-2 leaf 
Nmass Leaf nitrogen concentration mg N g-1 leaf 
SLA Specific leaf area cm2 leaf g-1 leaf 
Rdark Plant respiration  µmol CO2 m-2 leaf s-1 
Curvature factor (Θ) Light curve convexity - 
Compensation point (Γ) Light compensation point µmol CO2 m-2 leaf s-1 
Saturation point (Ic) Light saturation point µmol CO2 m-2 leaf s-1 
qP1900 Photochemical quenching - 
qN1900 Non-photochemical Quenching associated 

with radiant energy dissipation 
- 

NPQ1900 Non-photochemical  Quenching associated 
with non-radiant energy dissipation  

- 

Fv/Fm Ratio of variable to maximum fluorescence  
ФPSII1900 Effective quantum yield of PSII µmol CO2 µmol-1 photon  
ETR1900 Electron transport rate µmol e- m-2 leaf s-1 
Fitness related variables   
Survival Percentage of survival during growth % 
Total biomass Total above and below ground biomass g plant 
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Table 2 Mean±SE plant-level and leaf-level traits and their plasticities across nutrient and light gradients for twenty pairs of phylogenetically 
related invasive and native species across light and nutrient treatments. Woody pairs are n=11 and herbaceous pairs are n=9, d.f=39. Significantly 
higher values (p<0.05 or below) across invasive/native pairs, on the basis of a PERMANOVA analysis, are denoted by bold font. PI is the 
plasticity index of Valladares et al., (2000). Units do not apply to PI values. Mean±SE trait values for each species are supplied in Table S4. 
 

 Trait Mean Value PI Low to Medium nutrients PI Medium to High nutrients PI Shade to Sun 
Variable Invasive Native Invasive Native Invasive Native Invasive Native 

Plant-level traits         

LWR (g) 0.21±0.02 0.21±0.01 0.09±0.08 0.08±0.07 -0.01±0.06 -0.11±0.04 0.33±0.06 0.44±0.07 
SWR (g) 0.28±0.02 0.24±0.02 -0.03±0.08 -0.01±0.08 -0.14±0.03 -0.11±0.06 0.23±0.07 0.22±0.10 
RWR (g) 0.50±0.02 0.55±0.02 0.02±0.02 0.07±0.04 -0.08±0.02 -0.09±0.02 -0.34±0.05 -0.31±0.03 

LAR (m2/kg) 3.00±0.56 3.36±06.3 -0.14±0.08 -0.11±0.07 -0.18±0.07 0.01±0.05 0.60±0.06 0.70±0.04 

Leaf-level traits         

Amax (µmolCO2m-2s-1) 8.97±0.40 8.88±0.41 -0.27±0.07 -0.09±0.07 -0.13±0.04 -0.21±0.04 -0.15±0.05 -0.12±0.06 
iWUE (µmolCO2mol-1H2O) 2.73±0.08 3.33±0.22 -0.14±0.06 -0.07±0.05 -0.08±0.02 -0.02±0.06 -0.17±0.03 -0.16±0.06 
PNUE (µmolCO2mol-1Ns-1 164.07±10.46 136.44±10.01 -0.31±0.08 -0.08±0.07 -0.12±0.03 -0.17±0.05 -0.46±0.05 -0.23±0.08 

Narea (gNm-2) 0.73±0.06 0.86±0.07 -0.66±0.11 -0.45±0.11 -0.50±0.06 -0.48±0.09 0.07±0.05 -0.21±0.08 
Nmass (mgNg-1) 15.34±0.78 18.71±0.83 0.04±0.02 -0.07±0.03 -0.02±0.03 0.04±0.04 0.31±0.05 0.24±0.06 
SLA (cm2g-1) 210.7±18.9 218.2±16.7 0.02±0.04 0.07±0.05 0.10±0.05 0.06±0.04 0.39±0.06 0.46±0.03 

Rdark (µmolCO2m-2s-1) -1.30±0.09 -1.36±0.08 -0.01±0.09 -0.07±0.07 -0.02±0.08 -0.11±0.08 -0.17±0.10 -0.07±0.05 
Curvature factor (Θ) 0.61±0.02 0.49±0.03 -0.09±0.09 -0.03±0.11 0.02±0.08 0.10±0.09 -0.05±0.04 0.17±0.07 

Compensation point (Γ) 
(µmolCO2m-2s-1) 30.6±3.2 36.1±4.6 0.14±0.13 0.04±0.10 0.03±0.10 0.05±0.09 -0.29±0.10 -0.20±0.11 

Saturation point (Ic) 
(µmolCO2m-2s-1) 226.9±9.8 269.3±14.1 0.02±0.08 0.06±0.08 -0.01±0.08 -0.01±0.09 -0.21±0.07 -0.22±0.08 

qP 1900 0.26±0.01 0.28±0.01 0.01±0.05 -0.03±0.07 0.08±0.06 -0.03±0.06 -0.35±0.05 -0.42±0.06 
qN 1900 0.88±0.01 0.86±0.001 0.02±0.01 -0.02±0.02 -0.01±0.01 -0.02±0.01 -0.06±0.01 -0.03±0.02 

NPQ 1900 2.76±0.07 2.42±0.07 -0.06±0.03 0.01±0.04 -0.02±0.03 0.01±0.04 -0.32±0.05 -0.11±0.05 
Fv/Fm 0.76±0.01 0.75±0.01 -0.04±0.02 -0.02±0.02 -0.01±0.01 -0.04±0.01 -0.01±0.01 0.03±0.01 

ФPSII 1900 (µmolCO2µmol-1 photon) 0.09±0.01 0.09±0.01 -0.08±0.08 0.03±0.06 -0.06±0.05 0.15±0.06 -0.22±0.07 -0.32±0.05 
ETR 1900 (µmol e- m-2 leaf s-1) 71.03±2.53 76.09±2.99 -0.11±0.08 -0.03±0.06 -0.09±0.04 0.12±0.06 -0.28±0.05 -0.32±0.05 
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Figure Legends  

 

Figure 1 Representation of biomass and survival profiles, A) and B) respectively. 

Significant differences found between invasive and native species within each treatment 

and within above- or below-ground biomass are denoted with an asterisk. Differences 

across treatment and invasive or native species were assessed by Tukey Post-Hoc and 

denoted by letters (above-ground biomass from a to e, below ground biomass from g to 

j). 

 

Figure 2 Nutrient gradient. Mean phenotypic plasticity of invasive and native species 

for plant-level traits, leaf-level traits and mean plasticity of the whole phenotype from 

low to medium nutrient level (left) and from medium to high nutrient level (right). * 

p<0.05.  

 

Figure 3 Light gradient. Mean phenotypic plasticity of invasive and native species for 

plant-level traits, leaf-level traits and mean plasticity of the whole phenotype from 

shade to sun. * p<0.05.   

 

 

Figure 4 Phylogenetic tree of the mean plasticity across invasive and native species. 

Mean ± SE for each species is also shown. 
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Figure 4  


