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Multispectral Bathymetry Using a Simple
Physically Based Algorithm

David R. Lyzenga, Norman P. Malinas, and Fred J. Tanis

Abstract—A simple method for estimating water depths from
multispectral imagery is described and is applied to several
IKONOS data sets for which independent measurements of the
water depth are available. The methodology is based on a physical
model for the shallow-water reflectance, and is capable of correct-
ing for at least some range of water-quality and bottom-reflectance
variations. Corrections for sun-glint effects are applied prior to
the application of the bathymetry algorithm. The accuracy of the
depth algorithm is determined by comparison with ground-truth
measurements, and comparisons between the observed and calcu-
lated radiances are presented for one case to illustrate how the al-
gorithm corrects for water-attenuation and/or bottom-reflectance
variations.

Index Terms—Multispectral scanners, ocean optics, remote
sensing, water depth.

I. INTRODUCTION

THERE IS AN obvious need for measurements of water
depth, particularly in shallow areas that may present a risk

to navigation. These areas are subject to rapid changes due
to erosion and deposition, especially during storms. Shallow
water poses difficult problems for conventional ship sounding
techniques because of the difficulties in navigating in shallow
water and the high spatial sampling rates required. Because of
these considerations, remote-sensing techniques are attractive,
provided that reliable depths can be estimated from the remote-
sensing data.

The problem of estimating water depths from remote-sensing
data has a relatively long history, this being one of the applica-
tions of multispectral scanner technology that were envisioned
shortly after the development of this technology in the 1960s.
However, the recent commercial availability of data from high-
resolution spaceborne multispectral scanners such as IKONOS
[1] and the development of hyperspectral sensors with a large
number of wavelength bands [2], [3] have provided a new
impetus for revisiting this subject. In this paper, we review the
physical or theoretical basis for the measurement and present
new results derived from several IKONOS data sets.

It must be noted that advances in other types of remote-
sensing technology have also been made in recent years. We
note, in particular, the development of light detection and rang-
ing (LIDAR) bathymetric techniques such as the Scanning Hy-
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drographic Operational Airborne LIDAR System (SHOALS)
owned and operated jointly by the U.S. Army Corps of Engi-
neers and the U.S. Navy [4]. This system represents a much
more direct measurement of the water depth, being the optical
equivalent of acoustic depth sounding, and is capable of pro-
viding accurate depth measurements over wide areas in much
less time than could be done by ship surveys. In fact, these
measurements are used as “ground truth” for the IKONOS data
sets analyzed in this paper. Our motivation for continuing the
development of passive multispectral techniques is that the cost
of operating the SHOALS system is still relatively high, and it
is not yet practical to deploy this system in all areas of the world
where updated bathymetric information is required or desired.

II. SHALLOW-WATER REFLECTANCE MODEL

The water-depth-estimation algorithm described in this paper
is based on a simplified model for the reflectance of shallow-
water areas. The model represents an approximation to the
radiative transfer solution in water and is therefore not com-
pletely accurate, but we believe that the modeling error is small
compared with the uncertainties in the parameters entering the
model. According to this model, the subsurface reflectance for
a water depth h can be written as

R(h) ≡ πL
−

E−
i

= rv + r∗be
−αh (1)

where E−
i is the downwelling irradiance and L− is the up-

welling radiance just below the surface, rv is the reflectance
due to volume scattering in the water column for an effectively
infinite water depth, r∗b = rb − rv, where rb is the bottom re-
flectance, and α is the sum of the diffuse attenuation coefficients
for upwelling and downwelling light. This model has been
derived in different ways and used in slightly different forms
by several investigators [5]–[8]. The parameters in this model
can be related to the inherent optical properties of the water and
the bottom, but in our case, they are empirically derived by a
comparison of remote-sensing signals with measured depths.

The effect of the air–water interface is fourfold: 1) to reflect
incident radiation (direct sunlight and diffuse skylight) into the
field of view of the sensor; 2) to reduce slightly the down-
welling irradiance below the surface and concentrate this radi-
ation into a smaller range of zenith angles; 3) to substantially
reduce the upwelling radiance passing through the surface
due to refractive effects; and 4) to internally reflect some of
the upwelling radiance back downward, causing it to undergo
further scattering or reflection from beneath the surface. The
first three of these effects modify the magnitude of the terms
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in (1) but do not modify the form of this equation. Internal-
reflection effects are important only for very shallow water,
and are neglected here. Thus, the upwelling radiance above the
surface can be written as

L(h) = Ls + Lbe
−αh (2)

where Ls includes surface-reflection as well as volume-
scattering effects, and Lb includes transmission losses through
the air–water interface as well as the bottom reflectance and
volume-scattering effects included in r∗b. Surface-reflection ef-
fects are discussed further in Section III.

To complete the picture, we must include the effects of
the atmosphere on the measured radiance. Similar to surface-
reflection effects, these include an additive term due to path
radiance, i.e., scattering of sunlight by aerosols and molecular
constituents, and a multiplicative factor due to transmission
losses in the atmosphere. These effects can also be absorbed
into the Ls and Lb terms in (2), so the form of this equation is
not changed.

III. SUN-GLINT-CORRECTION ALGORITHM

In some cases, if the atmosphere and water optical properties
are sufficiently uniform, and the solar angles and view geometry
is such that a minimal amount of direct sunlight is reflected
into the field of view, the Ls term in (2) may be considered a
constant. In such cases, this term can be determined empirically
by simply averaging the signals over optically deep water. In
general, however, there may be variations in Ls due to sun glint,
haze or thin clouds, or water-quality fluctuations. Many of these
variations (at least from the first two sources) can be corrected
if the multispectral scanner data include a near-infrared (NIR)
channel. The reflected sunlight (i.e., the sun glint) contribution
to Ls can be written as

Lsg = c(λ)p(ηxs, ηys) (3)

where c(λ) is a wavelength-dependent factor that includes the
Fresnel reflectance of the surface and the spectral intensity of
the incident sunlight, and p(ηxs, ηys) is the surface slope proba-
bility density function evaluated at the slopes required for spec-
ular reflection of the sunlight into the sensor field of view, i.e.,
ηxs = −nx/nz and ηys = −ny/nz , where nx, ny , and nz are
the components of the surface normal vector n = (ks + ko)/
|ks + ko|, in which ks and ko are vectors pointing toward
the sun and the observer (sensor), respectively. This equation
implies that there is a correlation of the sun-glint signal between
wavelength bands, since the factor p(ηxs, ηys) is the same
for all bands. The wavelength dependence can be determined
empirically by isolating a deep-water area containing sun-glint
patterns and computing the covariance of each band relative to
the NIR band, i.e.,

ρij =
1
N

N∑
n=1

LinLjn − 1
N

N∑
n=1

Lin
1
N

N∑
n=1

Ljn (4)

where Lin is the nth sample of the radiance in band i. The
coefficient relating the sun-glint signal in band i to that in the
NIR channel (band j) is then given by

rij =
ρij

ρjj
. (5)

The correction is applied by scaling the NIR signal by this
factor and subtracting from the band under consideration, i.e.,

L′
i = Li − rij(Lj − Lj) (6)

where L̄j is the mean radiance in the NIR channel. The reason
that the NIR channel is used for this correction is that there
is practically no volume scattering or bottom-reflected signal
in this channel, so the correction can be applied over the
entire scene without changing the depth dependence of the
corrected signal.

A similar correction can be applied for variations in Ls due
to haze or thin clouds, by computing the covariance over a
deep-water region containing these variations. However, the
correction coefficients will, in general, be different for at-
mospheric effects than for sun glint, so a correction can only
be made for one or the other of these effects. If the deep-water
area contains both sun glint and atmospheric variations, the
procedure outlined above will achieve a compromise correction
for both types of effects, but the correction may not be exact for
either effect.

IV. DEPTH-ESTIMATION ALGORITHM

If the water optical properties and the bottom reflectance
were uniform within a given region, (2) could be simply solved
for the water depth, yielding a depth algorithm of the form

ĥ =
1
α

ln(Lb) − 1
α

ln (L′ − L′
s) (7)

where ĥ is the estimated depth, L′ is the radiance corrected for
sun glint and/or atmospheric variations, and L′

s is the average
deep-water signal after this correction. In most cases, however,
there are variations in the bottom reflectance and/or water
optical properties that lead to errors in the depth estimated using
(7). These errors can in some cases be reduced by means of
multispectral algorithms. For example, givenN spectral bands,
we can define the linear combinations

Yi =
N∑

j=1

AijXj (8)

whereXj = ln(L′
j − L′

sj) and Aij are elements of the rotation
matrix defined by Lyzenga [6]. If the water optical properties
are uniform, it can be shown that the first N − 1 of these
linear combinations are independent of the depth, while the
last one (YN ) is a function of both the water depth and the
bottom reflectance. The variables Y1 to YN−1 can therefore
be considered as depth-invariant indexes of the bottom type.
It is reasonable to hypothesize that a correction for bottom-
reflectance variations can be expressed as a linear combination
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of these bottom-type indexes, and to propose a depth algorithm
of the form

ĥ = ho −
N∑

j=1

hjXj . (9)

Such an algorithm was in fact applied quite successfully to
an airborne multispectral data set in which the hj parameters
were determined by a regression analysis using a set of depths
measured by an LIDAR system operated simultaneously with
the multispectral scanner [9].

Although this algorithm was derived under the assumption
that the water optical properties are uniform, it can be shown
that the depths obtained from (9) are insensitive to certain types
of variations in the water-attenuation coefficients as well as the
bottom reflectance. To see this, we note that, using the model
expressed by (2), the Xj variables can be written as

Xj = ln(Lbj) − αjh+ εj (10)

where Lbj is proportional to the bottom reflectance in band j,
αj is proportional to the water-attenuation coefficient in this
band, h is the actual water depth, and εj represents random
noise in the measurement. Substituting this into (9), and ne-
glecting the noise term, yields the estimated depth

ĥ =


ho −

N∑
j=1

hj ln(Lbj)


 +




N∑
j=1

hjαj


h. (11)

The algorithm is properly “calibrated” if the first term in
brackets is equal to zero, and the second term in brackets is
equal to one, i.e., if

ho =
N∑

j=1

hj ln(Lbj)
N∑

j=1

hjαj = 1. (12)

Clearly, this set of equations exactly determines the hj

parameters if N = 1 and underdetermines these parameters if
N > 1, for a fixed set of Lbj and αj . That is, if more than one
channel is used, there is more than one set of parameters that
will satisfy (12) for fixed Lbj and αj . If N = 2, and if there
are two different bottom types or two different water masses in
the scene (but not both), then (12) can be solved, so that the
correct depth will be estimated correctly for both. If N > 2,
then (12) can be satisfied for two sets of bottom reflectances
and attenuation coefficients, and so on. In fact, a range of the
bottom reflectances and/or water-attenuation coefficients can
often be accommodated, provided that (12) are satisfied over the
entire range of values. For example, suppose we have a sensor
with two bands and a scene that satisfies (12) with h1 = −h2.
Then, it is easy to see that (12) will continue to be satisfied
as long as α1 − α2 does not change and as long as Lb1/Lb2

remains constant. Thus, if there is a constituent that has a
specific attenuation coefficient that is the same in both bands,
variations in the concentration of this constituent will not affect
the accuracy of the depth estimate. On the other hand, the
specific attenuation coefficient of biogenic constituents such as
chlorophyll and colored dissolved organic matter (CDOM) is a

strong function of the wavelength, being much larger in the
blue than in the green region of the spectrum. Variations in
the concentration of such constituents will affect the value of
α1 − α2 and will therefore cause depth errors if h1 = −h2.
However, the impact of such variations on the depth algorithm
can, in this case, be minimized by choosing

N∑
j=1

hjα
∗
j = 0 (13)

where α∗j is the specific attenuation coefficient of the variable
constituent. Thus, although the depth algorithm expressed by
(9) may not work in all cases, it can be tailored to minimize
the errors caused by at least some variations in water and
bottom optical properties, and, in general, the larger the number
of bands employed, the larger the range of variations can be
tolerated. In our case, we choose the coefficients empirically,
so as to minimize the difference between the estimated depth
and the actual or in situ measurement of the depth for a large
number of points. That is, we choose the hj parameters to
minimize the error

ε =
1
2

∑
m


h

(m) − ho +
N∑

j=1

hjX
(m)
j




2

(14)

where h(m) is the measured depth at sample location m and
X

(m)
j is the log-transformed radiance at this location. This

minimization is accomplished by solving the set of equations

∂ε

∂hj
= 0, for j = 0, . . . , N. (15)

The parameters resulting from this procedure presumably
minimize the errors due to the variations in the water-
attenuation coefficients and bottom reflectance in the scenes
used for “training” the algorithm. However, we find that these
parameters are surprisingly universal in the sense that they
can be applied to a large range of data sets while maintaining
relatively small depth errors. These results will be discussed in
more detail in Section VI below.

V. DATA SETS

The data sets used in this paper include the IKONOS images
indicated in Table I, along with corresponding ground-truth
bathymetric measurements. Ground-truth bathymetry included
LIDAR measurements from the SHOALS system [4], [10]
for the Cancun and Hawaii data sets, detailed surveys of the
near-shore bathymetry near Duck, NC, by the staff of the
U.S. Army Corps of Engineers (USACE) field research facility
[11], and digital bathymetry files compiled by the National
Oceanographic and Atmospheric Administration (NOAA) for
Carysfort Reef.

The bathymetry data sets were registered using a second-
order bipolynomial (quadratic) fitting of the geographic co-
ordinates (latitude, longitude) of the bathymetry data to the
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TABLE I
IKONOS DATA SETS USED IN THIS STUDY

line-element pixel locations of the imagery. This transformation
was determined by using a set of 100 and 200 ground-control
points consisting of the image coordinates (line and element
numbers) of recognizable features along with the correspond-
ing geographic coordinates of these features as obtained from
navigational charts.

For each study site, the spatially transformed bathymetric
measurements were allocated to the appropriate image pixel
locations. If more than one depth value was assigned to a
particular imagery location, the values within that cell were
averaged. In the final step before analysis, each resulting image
of bathymetric point values was linearly interpolated by panel-
izing the data using Delaunay triangulation in order to obtain
a smooth and continuous representation of each site’s bathym-
etry. The final stage of this process was to apply a correction
to the ground truth to account for the tide height at the time
of the IKONOS data collection.

Prior to the depth estimation, several preprocessing steps
were applied to the data. First, the data were radiometrically
calibrated to entrance aperture spectral radiance (EASR) using
coefficients provided by Space Imaging [12]. Second, a 3 × 3
contraction of the images was done to reduce noise while main-
taining an acceptable spatial resolution. Third, the images were
segmented into three categories: 1) land/clouds; 2) deep water;
and 3) shallow water, as described below. Fourth, the sun-glint
correction described in Section III was applied, and finally, the
mean radiance was estimated over optically deep water.

To segment the images, the NIR band is thresholded at
L = 2.5 mW/cm2 · sr · µm. Breakers and clouds are also in-
cluded in the nonwater category using this threshold. For the
purpose of defining a water mask, this is exactly what we want
since we will not be able to produce valid bathymetry estimates
over areas where the bottom-reflected radiance is obscured by
these effects. After the threshold is applied, the resulting binary
image is clustered to identify small water regions (or holes) that
are clearly not part of the coastal water body. These holes are
“filled” by masking them out. This process helps to correct for

Fig. 1. Example of sun-glint-correction procedure applied to a subset of the
Cancun image.

terrain shadows as well as small ponds that are not the focus
of the bathymetry process and may not have the same optical
properties as the nearby ocean or sea. Note that if one intends
to apply this algorithm to a small lake or pond, this process will
likely mask out the lake. The size threshold currently used is
0.25 km2; however, this value can be changed for inland lake
applications.

The second stage of the image segmentation procedure is to
separate optically deep from shallow water. A first estimate of
the mean deep-water radiance is calculated by first identifying
the tenth-percentile brightness magnitude (using all four bands)
within the water area of interest. A moving window is then
passed through the image to identify kernels that contain more
than 50% of pixels at or below the 10% brightness threshold.
These kernels are designated deep-water regions and contribute
to the calculation of the deep-water mean radiance and standard
deviation of radiance in each band.

Once this process is complete, the blue and green bands
are thresholded at the deep-water mean radiance plus three
standard deviations. If the radiance of both the green and blue
bands exceed their respective thresholds, the pixel is termed a
shallow-water pixel. If not, the pixel is added to the deep-water
category.

Having identified deep-water areas, the procedure discussed
in Section III can be applied in order to reduce sun-glint effects.
The result of applying this correction is illustrated in Fig. 1 for
a subset of the Cancun image. There is significant variation in
the NIR channel and this variation also appears in the green
channel. After applying the correction in (6), most of this
variation has been removed. Note that the ship wake in the
lower part of the image is also largely removed from the image.

VI. BATHYMETRY PROCESSING AND RESULTS

To derive the coefficients in (9), five data sets having a solar
zenith angle less than 30◦ (solar elevation > 60◦) were used.
Training areas were taken throughout the imagery wherever the
bottom was clearly visible in both the green and blue bands
(i.e., those classified as shallow-water areas, as discussed in the
previous section). In order to account for variations in the solar
zenith and observation angles, the coefficients αj in (12) were
modeled as

αj = κj [sec θ′s + sec θ′v] (16)

where θ′s is the solar zenith angle and θ′v is the nadir view angle
below the water surface. The least squares fitting procedure
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Fig. 2. Maps of estimated depth (upper panel) and ground-truth depth (lower
panel) for the Diamond Head data set.

discussed in Section IV was then applied, resulting in the
coefficients

h0 =
17.84 m

sec θ′s + sec θ′v
(17)

h1 =
−17.42 m

sec θ′s + sec θ′v
(18)

h2 =
26.7 m

sec θ′s + sec θ′v
(19)

where the subscript 1 refers to the IKONOS blue band, and
2 refers to the green band. These coefficients were then used
to calculate the depths for all of the remaining shallow-water
data points. Examples of the depth maps obtained from this
procedure are shown in Figs. 2 and 3 for Diamond Head,
Hawaii, and Cancun, Mexico. The depths estimated from the
IKONOS data are shown in the upper panel of each figure, and
the ground-truth depths are shown in the lower panels.

The estimated depths are plotted versus the ground-truth
depths for each of the data sets in Figs. 4–11. These plots
were generated by binning the estimated depths by the ground-
truth depths. Bins having a number of samples less than half
the average number of samples per bin were neglected, and
the populations of the remaining bins were equalized so as to
give each depth interval the same weight. The mean and root
mean square (rms) errors for each data set are shown on the
plots. The errors were reduced considerably by correcting for
solar and view-angle effects, as indicated in (17)–(19), although

Fig. 3. Maps of estimated depth (upper panel) and ground-truth depth (lower
panel) for the Cancun data set.

significant biases remain in several of the data sets. The rms
errors for each data set are plotted versus the solar zenith angle
in Fig. 12, along with the results obtained by scaling each data
set individually so as to minimize the rms error. The aggregate
rms error over all data sets is 2.3 m using (17)–(19), and 1.7 m
using the individually scaled data sets.

VII. DISCUSSION

The results presented in the previous section indicate that the
depth algorithm appears to compensate to some extent for the
variations in water optical properties and/or bottom reflectance
that are presumed to exist within each data set and among the
different data sets.

To gain further insight into the algorithm performance over
variable bottom and water properties, consider the scatter plots
shown in Figs. 13–15. Fig. 13 shows the log-transformed
signals in the blue and green bands plotted versus the ground-
truth depth for a set of points selected from the lower part
(lines 450–500) of the Cancun data set shown in Fig. 3, with
depths ranging from 4 to 12 m. From the tightness of the scatter,
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Fig. 4. Estimated depth versus ground truth for the Cancun data set.

Fig. 5. Estimated depth versus ground truth for the Duck, NC, data set.

it appears that the bottom reflectance and the water-attenuation
coefficients were both fairly uniform for this set of points. A
least squares fit yields diffuse attenuation coefficients of 0.056
and 0.074 m−1 in the blue and green bands, respectively.

Fig. 14 shows a scatter plot of the log-transformed signals in
the green band versus those in the blue band, for a set of points
taken from the upper part (lines 200–250) of the Cancun image.
Different symbols are used for points in the depth ranges from
2–4, 6–8, and 10–12 m. Clearly, there is a wide variation of
the signals within each of these depth intervals, which could
be caused by variations in either the water optical properties
or the bottom composition. We first consider the hypothesis
that these variations are due to changes in the water-attenuation
coefficient.

As discussed in Section IV, the form of the depth algorithm
(9) is such that variations in the water-attenuation coefficient

Fig. 6. Estimated depth versus ground truth for the Kahana data set.

Fig. 7. Estimated depth versus ground truth for the Carysfort data set.

have no effect on the calculated depth if these variations are
caused by constituents whose specific attenuation coefficients
satisfy (13). For the parameters shown in (17)–(19), this con-
dition implies that α∗1/α

∗
2 = 1.53. Qualitatively, the condition

α∗1/α
∗
2 > 1 is expected for constituents such as chlorophyll or

dissolved organic matter, which absorb more in the blue than in
the green region of the spectrum [13]. As an example, assume
that the specific attenuation coefficients in the blue and green
bands are α∗1 = 0.015 m2 · mg1 and α∗2 = 0.010 m2 · mg−1.
The values of the parameter α in (2) are then given by α1 =
2K1 + α∗1C, and α2 = 2K2 + α∗2C, where K1 and K2 are
the water-attenuation coefficients shown in Fig. 13, and C is
the concentration of the variable constituent. The radiances
calculated from (2) using these values are indicated by the
solid lines in Fig. 14 for various depths and for values of
C ranging from 0 to 10 mg/m3. There is a fair agreement
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Fig. 8. Estimated depth versus ground truth for the Pearl Harbor data set.

Fig. 9. Estimated depth versus ground truth for the Honolulu data set.

between the calculated and observed signals in the sense that
most of the data points fall between the lines corresponding
to the calculations for the appropriate depth limits. Thus, it
is possible to conclude that the observed variability is due to
water-attenuation variations as modeled above.

The alternative hypothesis that the observed variability is due
to changes in the bottom reflectance is illustrated in Fig. 15.
This figure shows the same set of data points, but the solid
curves in this case indicate lines of constant depth, as calculated
from the reflectance model using the water-attenuation coeffi-
cients shown in Fig. 13 and a bottom reflectance given by a
mixture of sand and vegetation. Specifically, the factor Lb in
(2) was assumed to be given by

Lb = Lsandfsand + Lveg(1 − fsand) (20)

Fig. 10. Estimated depth versus ground truth for the Diamond Head data set.

Fig. 11. Estimated depth versus ground truth for the Mauna Loa data set.

where Lsand = 12.2 mW/cm2 · sr · µm in both bands, Lveg =
0.4 mW/cm2 · sr · µm in band 1 and 1.2 mW/cm2 · sr · µm in
band 2, and 0 < fsand < 1 is the fraction of the bottom covered
by sand. This model fits the data points better than the lines
shown in Fig. 14, indicating that the variability observed in
this case is probably due to bottom-reflectance variations. It
is interesting to note, however, that the water-depth decision
boundaries for the two cases are fairly similar. Thus, the depth
algorithm expressed by (9), with the parameters shown in
(17)–(19), appears to be capable of correcting for at least some
range of bottom reflectance as well as water optical-property
variations.
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Fig. 12. RMS depth errors for each data set using (circles) a physically based
algorithm and (triangles) using empirical correction factors based on ground-
truth measurements.

Fig. 13. Scatter plots of blue and green signals versus depth for a subset of
the Cancun image in which the water and bottom optical properties appear to
be uniform.

VIII. SUMMARY AND CONCLUSION

This paper describes a simple method of estimating water
depths from multispectral imagery, based on an approximate
shallow-water reflectance model. A single set of coefficients
derived from a set of IKONOS images produces good per-
formance over a variety of conditions, with an aggregate rms
error of 2.3 m over all of the data sets. The algorithm corrects
for a range of variations in both water attenuation and bottom
reflectance using a linear combination of the log-transformed
radiances in the blue and green channels. A comparison of the
observed radiances with model predictions illustrates how these
corrections are made.
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