
Lehrstuhl für Bildverarbeitung

Institute of Imaging & Computer Vision

Multispectral Filter-Wheel Cameras:
Geometric Distortion Model and

Compensation Algorithms

Johannes Brauers and Nils Schulte and Til Aach
Institute of Imaging and Computer Vision

RWTH Aachen University, 52056 Aachen, Germany

tel: +49 241 80 27860, fax: +49 241 80 22200

web: www.lfb.rwth-aachen.de

in: IEEE Transactions on Image Processing. See also BIBTEX entry below.

BIBTEX:

@article{Brauers2008d,

author = {Johannes Brauers and Nils Schulte and Til Aach},

title = {Multispectral Filter-Wheel Cameras:

Geometric Distortion Model and Compensation Algorithms},

journal = {IEEE Transactions on Image Processing},

publisher = {IEEE},

year = {2008},

month = {Dec},

volume = {17},

pages = {2368--2380},

number = {12},

}

© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in
other works must be obtained from the IEEE.

document created on: November 28, 2008

created from file: main.tex

cover page automatically created with CoverPage.sty

(available at your favourite CTAN mirror)





IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, DECEMBER 2007 1

Multispectral Filter-Wheel Cameras: Geometric

Distortion Model and Compensation Algorithms
Johannes Brauers*, Nils Schulte and Til Aach, Senior Member, IEEE

Abstract—Multispectral image acquisition considerably im-
proves color accuracy in comparison to RGB technology. A
common multispectral camera design concept features a filter-
wheel consisting of six or more optical bandpass filters. By
shifting the filters sequentially into the optical path, the elec-
tromagnetic spectrum is acquired through the channels, thus
making an approximate reconstruction of the spectrum feasible.
However, since the optical filters exhibit different thicknesses,
refraction indices and may not be aligned in a perfectly coplanar
manner, geometric distortions occur in each spectral channel: The
reconstructed RGB images thus show rainbow-like color fringes.
To compensate for these, we analyze the optical path and derive
a mathematical model of the distortions. Based on this model
we present two different algorithms for compensation and show
that the color fringes vanish completely after application of our
algorithms. We also evaluate our compensation algorithms in
terms of accuracy and execution time.

Index Terms—multispectral imaging model, geometric dis-
tortion, multispectral image processing, registration, chromatic
aberration, affine transform

I. INTRODUCTION

C
ONSUMER cameras in mobile phones or for digital

photography as well as many professional cameras use

mass-produced RGB sensors for color image acquisition.

These outperform multispectral cameras in terms of low costs,

robustness and ease of use but not in terms of color fidelity [1];

RGB cameras provide a “preferred reproduction [...], rather

than accurate one” [2], [3], which is perfectly acceptable for

most users.

However, RGB cameras produce a systematic color error

caused by violating the Luther rule [4], which states that for

faithful color reproduction, the camera’s spectral sensitivity

curves have to be a linear combination of the CIE observer’s

ones. Another drawback of the most frequently used 1-chip

RGB camera type is its need to interpolate missing color

information: The sensor of this camera type is covered with

a color filter array (CFA) which maps three spectral sensi-

tivities to the spatial domain, resulting in a downsampled

image of each color channel. An interpolation algorithm

called demosaicking [5], [6], [7] is required to estimate the

missing color information, but typically does not achieve a

perfect reconstruction of the original. Remaining interpolation

artifacts reduce the image quality and fidelity. A birefringent

blur filter [8] brought into the optical path may reduce aliasing

by lowpass filtering prior to the acquisition, but considerable
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Johannes.Brauers@lfb.rwth-aachen.de).

systematic limitations still remain. Another disadvantage of

the CFA is the induced shift variance [9], which causes

the reconstructed image to be dependent on spatial shifts.

In contrast to this, multispectral cameras mostly fulfill the

Luther rule and are not afflicted by the problems caused

by a color filter array. This makes them suitable for high

quality color inspection tasks in industry, acquisition of art

paintings [10] or imaging applications in medicine requiring

high color fidelity [11], [12].

One particular system used for multispectral image ac-

quisition divides the incoming visible electromagnetic spec-

trum into several spectral channels by application of spectral

bandpass filters [13], [14], [15], [16]. Typically, these filters

are mounted in a computer-controlled filter wheel located

between lens and gray level sensor. Acquisition of the entire

visible spectrum is done by sequentially placing the filters into

the optical path and grabbing an image for each filter. Our

multispectral camera (see Fig. 1) consists of seven spectral

bandpass filters which sample the spectral interval from 400nm

to 700nm in discrete steps of 50nm. This makes it possible

to differentiate between metamere colors, i.e., colors with

different spectra but whose color impressions are the same for

a human viewer or an RGB camera. A multispectral camera

thus extends the ability to differentiate between different light

spectra compared to an RGB camera in a similar way as

RGB cameras do in comparison to a gray scale camera,

where the latter one cannot differentiate colors which have the

same intensity but different hue and saturation values. Another

advantage is the ability to correctly generate reproductions

from one given acquisition for different light sources. Although

images acquired with three color channels can be adapted to

other white points, a realistic reproduction fails due to the

insufficient knowledge of the true underlying spectrum.

Fig. 1. Left: Our multispectral camera, using 7 optical bandpass filters.
Right: Sketch of its internal configuration.

Besides the above filter wheel approach [16], [15], other
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techniques for multispectral image acquisition exist: In [17],

a medium format 1-chip RGB camera in conjunction with a

customized spectral filter dividing each RGB color component

into two spectral halves enables the acquisition of six spectral

channels. Demosaicking is circumvented by applying a piezo-

driven pixel shift to the sensor, which ensures that each color

component is sampled by the complete sensor matrix. In [18]

and [19] this RGB-based concept is improved further by using

two 3CCD HDTV cameras with a similar customized spectral

filter as described above. The camera pair is able to record

multispectral videos and does not exhibit moving mechanical

components. Interestingly, a related principle called the “6-

Primary Display” [20], [21], [22] exists, which employs two

RGB projectors with additional appropriate spectral filters to

project images with higher color fidelity. To enable acquisition

with a higher dynamic range, a neutral density filter is also

attached to one 3CCD camera [19]. Another possibility to

avoid mechanical parts is the application of a liquid crystal

tunable filter (LCTF) [23], whose filter characteristics can

be adjusted by applying different voltages. A line scanning

approach splitting the spectrum using a prism is presented

in [24]: The spectrum is mapped along one coordinate of the

sensor while one spatial coordinate of the scene is mapped

along the other coordinate of the sensor. The remaining spatial

coordinate is acquired sequentially over time. Despite the

advantages of other acquisition techniques, the filter wheel

approach is a widely-used, low cost, almost temperature drift

independent 1 and mechanically manageable solution to mul-

tispectral image acquisition of static scenes.

A drawback of all multispectral camera types using more

than one optical filter is the alteration of the optical path by the

filters. Since it is practically unfeasible to align these filters

in a perfectly coplanar manner, the normal of each filter is

tilted by an individual angle with respect to the optical axis,

as shown in Fig. 2. As we will show quantitatively later

on, even small deviations between the optical axis and the

filter normals can cause noticeable distortions in the image.

Additionally, the filter thicknesses and refraction indices differ.

These differences cause two different types of optical aber-

rations: The transversal aberrations affect the displacement

of rays within the sensor plane and result in geometrically

distorted color components which, when all spectral channels

are combined into one color image, cause color fringes. Our

objective in this contribution is to derive a mathematical

model explaining these distortions and, based on this model,

to develop algorithms for their compensation.

On the other hand, longitudinal aberrations as mentioned

in [25] describe the divergence of rays through an optical

element. Since the rays emerging from a single object point do

not coincide on one focus point in the sensor plane, but on a

point beyond or before the sensor layer, the color channels are

blurred. In this paper, we focus on the transversal aberrations,

i.e., geometric distortions.

The geometric distortions between multispectral color chan-

nels were already observed by other researchers: Helling [16]

1The temperature drift of the center wavelength of our filters is stated to
be about 0.015nm/◦C at 400nm and 0.02nm/◦C at 700nm.

uses a local region-based registration algorithm to compensate

for the geometric inter-channel distortions. However, without

an underlying mathematical model, only regions with suffi-

cient structural information for registration can be corrected.

Also, the correlation-based similarity measure used in [16]

is not ideally suited because the values of different spectral

channels are generally related non-linearly. Another registra-

tion algorithm using a restricted affine model fitted by global

optimization of the model’s parameters is presented in [26].

Because of the global optimization, this approach does not

provide the ability to validate the underlying mathematical

model in a region-specific manner. In [27], a phase correlation

based algorithm for subpixel registration is used to perform

registration on, among others, multispectral images. Since the

phase-based similarity measure only supports translation, the

more complex distortions caused by the optical filters may not

be compensated satisfactorily. A registration algorithm for the

estimation of affine transformations in the frequency domain

is presented in [28]. The algorithm is, however, not suited for

our application since it requires a manual selection of features,

and does not consider the contrast inversions between the

spectral channels. Working on satellite images, Kern et al. [29]

improve the reliability of registration by using an extended

mutual information measure and utilize an affine model. Still,

the derivation in this paper is not based on a physical model,

and no further details about the search strategy are described.

Since the focus in [10] is on other topics, no details on

the registration algorithm are given. In [30], registration is

performed via the local adaptation of a filter mask. Since

the similarity criterion between the registered image and the

reference image is the quadratic error, typical brightness vari-

ations or contrast inversions between multispectral channels

are not accounted for. A feature-based similarity measure in

combination with an affine distortion model is used in [11].

Since the correction of geometric distortions is not the main

topic of the paper, neither implementation details nor results

concerning registration are provided. The template matching

algorithm for registering volumetric brain images from a PET

brain scanner in [31] exhibits some parallels to our approach:

Regions for local registration are first preselected using a

gradient measure. Then, template matching by full search is

carried out based on a model incorporating translation and

rotation. However, [31] has a different imaging background

and utilizes a model estimation algorithm, which may not be

able to cover stochastic errors in registration. Most important

to us is that none of the mentioned papers investigates the

physical background of a multispectral filter wheel camera to

derive a model.

In this paper, we start by deriving a physical model describ-

ing the distortions of optical bandpass filters and complement

it with an approximation for the chromatic aberrations caused

by the lens. Based on our model, we then develop two

registration algorithms in section III. Experimental results

with our multispectral camera are provided in section IV. We

conclude with a model validation in section V.

Compared to an earlier conference version of this work

in [32], we present here a more general derivation of the phys-

ical model using vector- and matrix notation. Moreover, we
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develop two registration algorithms which are both validated

in detail in the results section.

II. PHYSICAL MODELING
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Fig. 2. Optical bandpass filter between CCD sensor and lens (not shown;
the aperture is assumed to be very small). The lower solid ray a is refracted
twice by the filter (dotted ray). The upper dashed ray is normal to the filter
and thus not refracted. The displacement does not depend on the distance
between the filter and the sensor.

Fig. 2 shows a detailed sketch of the internal configura-

tion of a camera with a filter wheel. The incoming ray a

is refracted twice by the tilted filter glass, namely, when

entering the front side and when leaving the rear side of

the filter. It then hits the CCD sensor, which is positioned

at the image distance zb behind the projection center. The

filter normal n itself is tilted with respect to the optical axis.

The degree of refraction depends on the filter thickness d,

the refraction indices n1 and n2 and the incident ray angle.

As already mentioned in the introduction, the filters vary in

their thicknesses, orientations and refraction indices, causing

the incoming rays to be refracted differently by each filter.

The resulting misalignments between the color channels then

cause color fringes (see Fig. 9). Since the undisplaced and the

refracted ray are parallel, the distance between the filters and

the sensor has no influence on the model.

We define the optical axis of our setup as

ez =
(

0 0 1
)T

. (1)

A principal ray

a =
(

Bx By zb

)T
(2)

with its physical image coordinates Bx, By and the image

distance zb hits the optical bandpass filter with thickness d
under an angle

α = arccos (an · n) , an =
a

||a||
, (3)

with respect to the filter normal n. Here, the dot operator

denotes the scalar product of two vectors. After the ray is

an

bn

n

á
â

si
n

 á

si
n

 â

n cos â

n cos á

a’

n’

f

1 d

1
ad

bd ta

e

CCD

optical bandpass
filter ez

Fig. 3. Sketch of the plane spanned by the vectors an representing the
incoming ray, bn representing the ray after refraction by the filter, and
the filter normal n (horizontal axis). Obeying Snell’s law, these vectors
are coplanar. The incoming normalized ray in the direction of an, i.e.,
with the angle α relative to the normal n, is refracted to bn = a′ + n′

(∠(bn,n) = β). For a filter with thickness d, the displacement between
unrefracted and refracted ray on the filter exit surface is f = bd − ad. The
displacement on the CCD surface is e = f + ta. The optical axis ez is
perpendicular to the CCD surface.

refracted, its angle β with respect to the normal follows Snell’s

law

sin α

sin β
=

n2

n1
= n2 , (4)

where n1 = 1 is the refraction index of air and n2 the

refraction index of the optical filter. The refracted ray lies

in the plane spanned by the filter normal and the incoming

ray (see Fig. 3). Using vector notation, the refracted normal-

ized vector bn can be expressed as a weighted combination

bn = a
′ + n

′ of the filter normal n and the incident ray a

as shown in Fig. 3. With (4) and the theorem on intersecting

lines we derive

a
′ = an

sinβ

sinα
=

an

n2
(5)

for the component a
′ of bn parallel to an. The component

n
′ = n cos β − n

cos α

n2
(6)

finally leads to the (normalized) refracted ray vector

bn = a
′ + n

′ =
an

n2
+ n

(
cos β −

cos α

n2

)
. (7)

By using the theorem on intersecting lines

bd

d
=

bn

cos β

ad

d
=

an

cos α
(8)
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the distance vector f between the unrefracted and refracted

points on the filter exit layer is

f = bd − ad =

(
bn

cos β
−

an

cos α

)
d (9)

where f is perpendicular to the filter normal n. To compute

the final displacement e on the CCD surface, we project the

vector f onto the xy-plane, i.e., the z-component of e must

be zero (e · ez = 0). Since the refraction indices outside the

filter glass are identical on both sides of the filter, the second

refraction at the filter surface next to the CCD causes the

outgoing ray to be parallel to the incoming ray a. With a

shift

e = f + ta (10)

of f along a and the condition e · ez = 0 (we assume that the

CCD sensor is perpendicular to the optical axis) we finally

find

e = f −
f · ez

a · ez

a (11)

for the displacement on the CCD layer.

Equations (3) to (11) form our reference model for the geo-

metric distortion of one optical filter. The trigonometric terms

involved in these equations, however, make the necessary

computations more complex than it is desired for a fast cor-

rection algorithm. In practice, we therefore assume a paraxial

optical system and use approximations for small angles. Our

filter set consists of seven filters with two refraction indices,

being either n2 = 1.45 for the filters with center wavelengths

400nm and 450nm, or n2 = 2.05 for the filters with center

wavelengths 500nm, 550nm, 600nm, 650nm and 700nm. The

tilt angles for the optical filters are less than 0.5◦. The image

distance zb is greater than 50mm, and the sensor size is 6.4mm

× 4.8mm, yielding a maximum horizontal angle θx = ±3.7◦

and a maximum vertical angle θy = ±2.7◦ for the incident

ray a.

Under these conditions, simplifying our model using small-

angle approximations is justified, as will be verified in sec-

tion IV (see Fig. 20). With the approximations for small angles

cos β ≈ 1 , cos α ≈ 1 (12)

equation (7) simplifies to

b̃n =
an

n2
+ n

(
1 −

1

n2

)
. (13)

With (13), the displacement f in (9) on the filter exit surface

can be approximated to

f̃ = d

(
an

n2
+ n

(
1 −

1

n2

)
− an

)

= d

(
1

n2
− 1

)
(an − n) . (14)

Finally, by insertion of (14) into (11) we find

ẽ = d

(
1 − n2

n2

) (
n · ez

an · ez

an − n

)

= d

(
1 − n2

n2

)

︸ ︷︷ ︸
C

(
n · ez

zb

a − n

)
(15)

with zb = a · ez. Eq. (15) now establishes a linear relation

between the displacement ẽ in the image plane and the

filter parameters d, n2 and n. When the optical filter and

CCD sensor are aligned in a coplanar manner, i.e. n = ez,

the displacement ẽ depends multiplicatively on the image

coordinates Bx, By , contained in the incident ray a (see

Eq. (2)), and a factor C, consisting of the filter thickness d
and the refraction index n2. The case of an unrefracted ray

is considered by setting an = n: The ray then impinges on

the filter with the angle α = 0 and passes the filter with the

displacement ||e|| = 0.

Eq. (15) also allows to calculate the influence of the filter

orientations alone: for d = 5mm, n2 = 2.05, a sensor size

of 6.4mm×4.8mm and a resolution of 1280 × 960 pixels,

each degree of misalignment shifts the color component by

4.5 pixels. In other words, if two filters are each misaligned

by only 0.1 degrees in opposite directions with respect to the

optical axis, the induced shift between the corresponding color

components is already about one pixel.

Since each bandpass filter in the optical path exhibits its

own filter normal (or tilt angle) ni, refraction index n2,i and

thickness di, it causes individual geometric distortions ẽi in

the image plane. The difference between the displacements ẽi

for two filters with normal vectors ni and parameters Ci =
di(1 − n2,i)/n2,i, i = 1, 2 in the image plane then is

∆ẽ = ẽ2 − ẽ1

=
1

zb

[C2n2 · ez − C1n1 · ez]

︸ ︷︷ ︸
gF

a + C1n1 − C2n2︸ ︷︷ ︸
tF

. (16)

Eq. (16) again yields a linear relationship, which later serves

as the basis for our registration algorithm. It shows that the dif-

ferent filter angles, thicknesses and refraction indices generate

a global translation tF =
(

tx,F ty,F ǫ
)T

between color

components, which does not depend on the coordinates Bx, By

in the image plane. In addition, the different filter thicknesses

and refraction indices cause a position-dependent displace-

ment gF a. Moreover, the factor gF is identical for both x-

and y-direction. Writing the differential distortion between two

filters in homogeneous coordinates, (16) can be expressed as

∆ê
H
F =




gF 0 tx,F

0 gF ty,F

0 0 1







Bx

By

1


 = TF




Bx

By

1


 ,

(17)

thus integrating the additive translation into the matrix. The

superscript ()H in ∆ê
H
F denotes the use of homogeneous

coordinates. Also, we have added the subscript ()F to dis-

tinguish these filter-induced distortions from the ones caused

by chromatic aberrations, which are discussed next.

Even though we use an apochromatic corrected lens, there

is a slight amount of chromatic aberration (CA) caused by the

lens: CA causes a wavelength dependent pincushion or barrel

distortion of the image [33], [34], introducing an additional

circular displacement vector field. The description of this

circular displacement vector field cannot be separated for x-

and y-coordinates. As our results in section IV confirm, CA
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can be captured well by an affine transformation matrix

TC =




g00,C g01,C tx,C

g10,C g11,C ty,C

0 0 1


 . (18)

This model remains valid when, without loss of generality,

the effect of chromatic aberration is assumed to be located at

the position z = 0, i.e., at the projection center. Taking into

account CA, the distortion model (17) becomes

∆ê
(H) = TF TC




Bx

By

1




=




gF · g00,C gF · g01,C gF · tx,C + tx,F

gF · g10,C gF · g11,C gF · ty,C + ty,F

0 0 1







Bx

By

1


 ,

(19)

where TC mathematically precedes TF because the lens

(causing chromatic aberration) precedes the optical bandpass

filter. Amongst others, TC adds elements on the secondary

diagonal to the transformation matrix, which were equal to

zero in (17). As shown in section IV and Fig. 18, we measured

the effects caused by chromatic aberration alone to be below

0.2 pixels. The new matrix elements will therefore be quite

small. Defining

T =

(
g00 g01

g10 g11

)
=

(
gF · g00,C gF · g01,C

gF · g10,C gF · g11,C

)
(20)

and
(

tx
ty

)
=

(
gF · tx,C + tx,F

gF · ty,C + ty,F

)
(21)

yields the final physical model for the distortions between two

color components

∆ê = T

(
Bx

By

)
+

(
tx
ty

)
. (22)

III. REGISTRATION

The geometric distortions between two spectral channels

recorded through different optical filters can be estimated and

compensated with image registration. Additionally, we will see

that the obtained displacement vector fields verify our physical

model of the filter-induced misalignment and the CA model.

We develop two different approaches for registration: Our

region-based approach divides the images into small nonover-

lapping regions (size: 96 × 96 pixels) and computes a dis-

placement vector for each region via matching. The resulting

initial displacement vector field is then used to estimate the

parameters of our model in Eq. (22). Alternatively, our global

registration approach uses the entire image for registration

rather than splitting it up into regions. The model parameters

are computed by an iterative search algorithm which optimizes

similarity of the relevant spectral channels by applying tenta-

tive geometric transformations according to our model with

different parameter sets.

A. Similarity measurement

To align the spectral channels, one of them is selected as

reference image to which all other channels are registered by

optimizing a similarity criterion. Using cross correlation may

not be adequate since spectral channels may exhibit a “contrast

inversion” [29]. Also the camera may have a non-linear camera

transfer function [35] relating the incident radiation to gray

levels. Both issues may result in a non-linear relationship

between the reference image and the image to be registered,

as shown in Fig. 4b.

Registration algorithms for medical images therefore often

use mutual information (MI) as similarity criterion [36], [37],

which addresses the mentioned problems. Denoting G as

reference region and F as examined region, the optimum

geometric transformation

T̃ = argmax
T

I(T)

= argmax
T

∑

f,g

pT(F )G(f, g) log2

pT(F )G(f, g)

pT(F )(f)pG(g)
(23)

is found by maximizing the mutual information I(T). The

term pT(F )G(f, g) denotes the joint probability density func-

tion (PDF) of the transformed input region T(F ) and the refer-

ence region G, with the corresponding pixel intensities f, g as

independent variables. pT(F )(f) and pG(g) denote the PDFs

of the regions.

Figure 4 shows two examples for estimated PDFs: On the

left side, an identity transformation T = I without correction

of the distortions has been applied, i.e., the regions are

unregistered. The mutual information measure thus takes a low

value. The lowest possible value occurs when the considered

regions are independent. The joint PDF then is a product of

the regions’ PDFs according to

pT(F )G(f, g) = pT(F )(f) · pG(g) . (24)

In this case, the numerator and denominator of Eq. (23) are

identical and the logarithm is zero.

The largest possible value for I(T) is generated by identical

regions F and G (or when they are related by a non-zero

scaling factor). The joint PDF then is a straight 45◦-angled

line and the mutual information is identical to the entropy

of the region. Since the regions used in figure 4b have

been registered, i.e., region F has been transformed with an

optimum transformation matrix T = T̃ to match region G,

the resulting PDF estimate is a narrow curve rather than

spread over a broad area. The mutual information therefore

is increased compared to Fig. 4a.

In our region-based approach, the transformation T is a

translation, which is computed for each region separately to

provide the initial displacement field from which the model pa-

rameters are then estimated. The global registration approach

directly employs the complete physical model (22) for the

entire image.

B. Mathematical model

We use the physical model (22) to characterize the geomet-

ric distortions between the different spectral channels. In our
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(a) Unregistered image pair, T = I

(identity matrix, no correction).
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(b) Registered image pair, T = T̃

(optimum transformation).

Fig. 4. Joint histogram p̂T(F )G(f, g) of image pairs.

implementation, the origin of the pixel 2 coordinates x, y is in

the left upper corner of the image plane (Fig. 5). The derivation

of the underlying physical model was based on centered image

coordinates Bx, By , i.e., coordinates with origin in the image

center Bx,c, By,c given by the intersection between image

plane and optical axis, as shown in Fig. 5. The relation between

the image coordinates and physical coordinates depends on the

pixel edge length s (which can be taken from the datasheet

of the sensor but is not needed for the registration), and the

unknown image center position Bx,c, By,c. By substituting the

image coordinates Bx = x · s − Bx,c, By = y · s − By,c and

the displacements ∆ẽx = ∆x · s, ∆ẽy = ∆y · s in (22) we

derive
(

∆x · s
∆y · s

)
= T

(
x · s − Bx,c

y · s − By,c

)
+

(
tx
ty

)
. (25)

s

s

Bx,c

By,c Bx

By

x [Pixel]

y
 [

P
ix

el
]

CCD

lens

Image
center

Fig. 5. Coordinate transform: The physical coordinates Bx, By , which origi-
nate in the image center (Bx,c, By,c), are transformed to pixel coordinates x,
y by shifting and scaling with the pixel edge length s.

To convert (25) to a mathematical form similar to (22), we

divide by the pixel edge length s and reorder the term elements

∆x =

(
∆x
∆y

)
= T

(
x − Bx,c/s
y − By,c/s

)
+

1

s

(
tx
ty

)

= T

(
x
y

)
+

(
xc

yc

)
(26)

2We use subpixel accuracy to account for the small displacements.

with

xc =

(
xc

yc

)
=

1

s

(
tx
ty

)
−

1

s
T

(
Bx,c

By,c

)
. (27)

Eq. (26) shows that the coordinate origin shift only in-

duces an additive term, but does not influence the parametric

form of the affine displacement model in (22). Using the

notation x
′ = (x′, y′)T for points in the input image to be

transformed and x = (x, y)T for reference points, we perform

correction of our image with

x
′ = x + ∆x

=

(
x
y

)
+ T

(
x
y

)
+

(
xc

yc

)
. (28)

Rewriting Eq. (28) with homogeneous coordinates by com-

bining all terms into one matrix yields the compact notation

(
x′

y′

)
=

(
g00 + 1 g01 xc

g10 g11 + 1 yc

) 


x
y
1




= Tc




x
y
1


 . (29)

C. Region-based model fit

The block diagram of our region-based model registration

algorithm including fitting of the model is shown in Fig. 6.

The vector field is computed by dividing the image into

nonoverlapping regions (region size: 96 × 96 pixel) and

performing registration with the similarity measure described

in section III-A. Since our affine distortion model indicates a

smooth displacement vector field, we choose a relatively large

region and estimate only translation between the correspond-

ing regions. The result of this first step is a displacement vector

field V = {v(x, y)} with one vector v(x, y) for each region.

Fig. 7. Subpixel interpolation of similarity measure; stems denote pixel-
precise measures, the triangle marks the analytic maximum.

Since we evaluate mutual information between reference

image and transformed image only at integer shift positions,

the displacement so far is not subpixel-precise. Subpixel

accuracy is obtained by interpolation of the mutual information

“grid” (see Fig. 7) around the pixel-precise maximum with a

second order two-dimensional polynomial “surface”

I(dx, dy) = A1 +A2dx+A3dy +A4dxdy +A5dx2 +A6dy2

(30)
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Fig. 6. Region-based algorithm. See Eq. (36) for estimation of iteration count k.

and analytic computation of the exact maximum. We compute

the parameters A1 . . . A6 by fitting the polynomial to the MI

surface values of the positions in the 3 × 3 neighborhood of

the pixel-precise maximum. The same interpolation algorithm

is used in [31] for refinement of 3D registration.

Depending on the image, large areas may not contain

sufficient structure to enable reliable registration, such as

homogeneous areas. To speed up computation and avoid

registration errors in these critical regions, we determine them

by evaluation of an entropy measure for each region Ω. All

regions with an entropy value below the 40% percentile are

skipped for the initial displacement estimation.

Now the iteration starts, being initialized with the estimated

translation vector field. We use the “Random sample con-

sensus” (RANSAC) algorithm [38] for removal of stochastic

errors in the displacement vector field. First, three randomly

selected point pairs x0,x
′

0, x1,x
′

1 and x2,x
′

2 are selected

from the vector field V(x, y), since three pairs are required to

compute the transformation matrix T in Eq. (29). With

x =
(

x y 1
)T

x
′ =

(
x′ y′

)T
(31)

and

XS =
(

x0 x1 x2

)
X

′

S =
(

x
′

0 x
′

1 x
′

2

)

(32)

we compute the transformation matrix to

T = X
′

SXS
−1 (33)

for cases where det(XS) 6= 0. When XS is not invertible, i.e.,

det(XS) = 0, the set of point pairs is regarded as degenerated

and another set is selected.

Now a consistency assessment of the estimated model

parameters is carried out, which detects stochastic errors in

the displacement vector field caused by registration failures

in the corresponding regions. Towards this end, the current

estimated transform T is applied to all points xi, yielding the

transformed points Txi. Then the distances

li = |Txi − x
′

i| (34)

to the corresponding points of the initially estimated displace-

ment vector field are computed for all point pairs. The ones

with distances below a certain threshold τ (e.g., τ = 0.5) are

regarded as inlier pairs.

Several iterations are carried out for different transforms T

and the one with the most inliers is finally taken. The number

of iterations k is computed [38] from the probability

P0 = 1 − (1 − wn)
k

(35)

of obtaining at least one point set which has n = 3 inlier pairs,

because we need three pairs to compute the transformation

matrix. The inlier probability w can be computed from the

number of inlier vectors normalized by the number of all

vectors. It is updated each time a new optimum of inlier

vectors has been found. Then, wn denotes the probability

of selecting at least n point pairs passing the threshold τ ,

and 1−wn describes the probability of obtaining a corrupted

point set, i.e., a set with less than n good points pairs. The

term (1 − wn)
k

is the probability of retrieving solely poor

point sets after k iterations and P0 denotes the opposite, viz.

the probability of obtaining at least one good data set after k
iterations. The number of iterations to be carried out thus is

k =
log 1 − P0

log 1 − wn
. (36)

The algorithm so far reduces stochastic noise by identifying

outlier vectors. However, since the transformation is computed

from only three vectors pairs, noise might still compromise

the accuracy of the transformation matrix. Therefore, the

transformation matrix

T = X
′

PXP
+ (37)

is re-estimated by the pseudoinverse ()+ with all inlier vec-

tors XP and X
′

P
, which are computed similarly as in (32).

D. Global model fit

Our global registration algorithm performs registration di-

rectly on the whole image rather than on regions, thus taking

the affine model in section III-B into account from the begin-

ning.

As Fig. 8 shows, we start with an initialization of the

parameters by, e.g., the identity matrix (no distortion), which

are used to transform the input image, if needed with subpixel

accuracy using linear interpolation. Starting from the initial-

ization, the model parameters are estimated by optimizing

the mutual information criterion described in section III-A

by the Nelder-Mead simplex method [39]. Actually, we use a

variant of Matlab’s® fminsearch function, which performs

optimization in a restricted parameter search space. Since the

geometric transformation has to be performed for evaluation of

each parameter set, a gradient descent search algorithm would

entail a high computational cost and is therefore not used here.

One critical issue regarding the geometric interpolation with

subpixel precision is the occurrence of artifacts in the similar-

ity measure “surface” [40]. These are produced by averaging

the image noise [41] and introduce false local maxima, which
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Fig. 8. Global registration algorithm.

(a) (b)

Fig. 9. Detail crop of RGB images, which have been reconstructed
from unregistered (a) and registered (b) multispectral color components. The
reconstructed spectra within the square and within the circle are shown in
Fig. 10.

could lead to an erroneous registration. However, in most cases

the global maximum is by far larger than the local ones. In

our region-based approach we avoid this problem by using

pixel-precise registration and polynomial interpolation.

IV. RESULTS

A. Experimental setup

Fig. 1 shows our multispectral camera system which in-

ternally features a Sony XCD-SX900 CCD camera with a

chip size of 6.4mm × 4.8mm and a resolution of 1280 ×
960 pixels. We use a Nikkor AF-S DX 18-70mm lens on

the external F-mount, while the internal camera is a C-mount

camera. The thread of this camera has been shortened to

place the optical filters as close as possible to the sensor.

The filter wheel holds seven optical bandpass filters in the

range from 400nm to 700nm in discrete steps of 50nm with a

bandwidth of 40nm respectively. Without geometric distortion

compensation, the resulting images exhibit clearly visible

rainbow-like artifacts as depicted in Fig. 9a. The misalignment

between two spectral channels may be up to ±10 pixels.

Our compensation algorithm makes the color fringes vanish

completely, as shown in Fig. 9b.

B. Impact on multispectral imaging

The typical workflow for multispectral image reconstruction

transforms the acquired color components into an image in the

sRGB color space (Fig. 9) or other color spaces [16]. Briefly,

the processing chain includes a linearization of the image data,

a spectral calibration, an estimation of the spectrum for each

spatial position with a Wiener inverse and the transformation

to the target color space.

The images in Fig. 9 of the ColorChecker DC test chart

were acquired and processed with the described procedure.

The spectra shown in Fig. 10 were reconstructed from the

data within the square and circle regions in Fig. 9. As Fig. 10

illustrates, the spectra reconstructed from the homogeneous

area within the square region are not affected by the color

channel misalignments and result in the same spectra for

unregistered and registered color components. However, when

reconstructed from within regions with edges or other details,

as highlighted by the circle in Fig. 9, unregistered color

components generate a considerable spectral error.

400 450 500 550 600 650 700
0

0.5

1

Wavelength (λ)

R
ef

le
ct

an
ce

Fig. 10. Comparison of spectra derived from unregistered (solid lines) and
registered (dashed lines) images. Symbols (squares and circles) correspond to
Fig. 9.

C. Verification of our model

We verified our model with the multispectral acquisition and

registration of graph paper shown in Fig. 11. Since the 550nm

channel has the best signal to noise ratio and is the center

channel of our system, we selected it as reference channel. For

the 500nm spectral channel, we determined the transformation

matrix in (29) to

Tc =

(
1.0022 −0.0007 −0.2372

−0.0006 1.0027 −0.7797

)
(38)

and the matrix T in equation (28) to

T =

(
0.0022 −0.0007 −0.2372

−0.0006 0.0027 −0.7797

)
(39)

by subtracting the identity matrix. In the matrix T, the

elements on the main diagonal represent mainly the distor-

tions caused by the optical filters, whereas the influence of

chromatic aberrations is comparably low. The elements on the

secondary diagonal correspond to chromatic aberrations, and

are of three to four times lower magnitude. The point of zero

distortion can be computed by an eigensystem analysis of
(

Tc

0 0 1

)
x = λx . (40)

and selecting the eigenvector corresponding to the eigenvalue

λ = 1, thus indicating the identity transform. In the depicted

case, this eigenvector is (x, y, 1)T = (214.9, 336.53, 1)T , as

can be verified in Fig. 11. The first term in (40) represents

the full homogeneous version of Tc. Because of the ho-

mogeneous coordinates, the resulting eigenvector has to be

normalized such that its last component is one.

To compare the resulting model with the measured vector

data, we computed a synthetic displacement vector field by

∆x =

(
x′ − x
y′ − y

)
= T




x
y
1


 −

(
x
y

)
(41)
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Fig. 11. Model verification: Scaled displacement vector field between channel
3 (λreg =500nm) and 4 (λref =550nm), measurement data (−→), model data
(−→), background: spectral channel at 500nm.

and inserted our estimated transformation matrix (38). The

resulting error between the model vector data and the measure-

ment vector data is only 0.13 pixel and will not be noticeable

in a registered image.

D. Reduction of stochastic errors

Figure 12 shows the effect of the entropy detection al-

gorithm (see section III-C), which excludes homogeneous

regions since they are likely to contain no valuable registration

information. Thick arrows in the figure denote regions with

a high entropy measure, thin ones regions with too low an

entropy, which were determined by the lower 40%-percentile.

This threshold has been derived experimentally from a set

of test images, and was used for all our experiments. Most

parts of the sky and the roof in the figure are excluded from

estimation.
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Fig. 12. Homogeneous regions (low entropy, thin arrows) are not considered
for further computation; figure setup: see Fig. 11.

Even though homogeneous regions are excluded from the

vector field used for final estimation of the transformation

matrix, there may be still regions where registration fails. Here

the RANSAC algorithm integrated into our algorithm (see

Fig. 6) detects probably incorrect vectors and rejects them.

We set the threshold τ = 0.5, i.e., vectors with an Euclidean

distance of less than half a pixel to the computed vector

field are regarded as inlier vectors. Figure 13 demonstrates

the effectiveness: Vectors which are classified as inliers are

marked with thick lines, the outliers are marked with thin

lines. All vectors being evidently false in the vector field are

correctly classified – they are not included in final transforma-

tion matrix estimation. This – in combination with previous

entropy detection – filters out stochastic noise robustly. Since

the application of the transformation intrinsically computes the

displacement vector field for each pixel coordinate based on

the transformation matrix, the displacements in the excluded

regions are interpolated consistently. To improve the accuracy

of the estimation, statistical noise is reduced by taking all inlier

vectors and computing a final transformation matrix using the

pseudoinverse according to Eq. (37).
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Fig. 13. Registration failures (thin arrows −→, 47 outlier vectors) are
excluded from computation of the final vector field (−→) by the RANSAC
algorithm, λreg=600nm, λref=550nm.

The performance of our global registration algorithm from

section III-D is illustrated in figure 14: The initial transfor-

mation matrix of the algorithm is set to the identity matrix,

i.e., it does not yield any displacement (not shown in figure).

Further iteration results are depicted with a color fade of the

vectors from red to blue. The latter color denotes the final

transformation matrix result

T =

(
1.0024 −0.0006 −0.3165

−0.0006 1.0030 −0.9210

)
. (42)

As Fig. 15 shows, 145 iterations have been performed, while

241 similarity measurements, i.e., comparisons of the actual

transformed image and the reference one, were needed.
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Fig. 14. Iterative operation of global algorithm: −→ denotes vectors from
the iteration start, −→ the final ones; the cropped detail view shows unscaled
vectors on pixel level; λreg=500nm, λref=550nm.
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Fig. 15. Evolution of the mutual information function over iteration number;
after 145 iterations the stopping criterion is fulfilled. Corresponds to Fig. 14.

E. Comparison between both algorithms

To compare both registration algorithms, viz. the region-

based model fit in section III-C and the global one in sec-

tion III-D, we fed them with synthetically distorted images.

Towards this end, we transformed, e.g., a spectral image

at 550nm with the inverse transformation matrix of (38),

simulating the distortions between bandpass channels 500nm

and 550nm. We thus can compute a ground truth vector field

from the transformation matrix and compare it to the results

of both algorithms. A slight drawback is that the original

geometric distortion might not be simulated perfectly.

The comparison is depicted in Fig. 16 for λreg = 400nm:

The original vector field is estimated quite well by both

algorithms. However, the region-based one slightly outper-

forms the global algorithm: The mean Euclidean vector error

between original vector field and the one estimated with our

region-based algorithm is 0.04, compared to 0.13 for the

global one. The maximum Euclidean vector errors are 0.13
and 0.28, respectively (see Table I). We also logged the

execution time of our Matlab® implementations on a Pentium

2.8 Ghz computer: The region-based algorithm needs about

60% of the global one’s execution time. These results pertain

to the registration and correction of all spectral channels;

and for the worst case that no regions are excluded by the

region-based algorithm. Additional speedup of the latter one

is achieved when excluding the most homogeneous regions as

described in section III-C. The execution time of the global

algorithm can be reduced by initialization with the previous

optimization results; when focus and zoom remain unchanged,

the geometric transformation parameters should be estimated

quite fast.

algorithm / measure mean error max error execution time [s]

region-based 0.04 0.11 64.74

global 0.13 0.28 108.64

TABLE I
COMPARISON OF REGION-BASED AND GLOBAL REGISTRATION

ALGORITHM.
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Fig. 16. Ground truth vector field (−→), estimation by region-based approach
(−→) and global one (−→), λreg=400nm, λref=550nm.

F. Verification of the chromatic aberration model

The effects caused by chromatic aberration alone can be

measured by acquiring two images of the same scene but with

different wavelength ranges passing the lens. Towards this end

we use the setup sketched in Fig. 17: A fixed bandpass filter of

our filter wheel, e.g., with λc = 550nm, is selected to ensure

that displacements are not caused by the properties of different

filters. The light source is filtered by an additional spectral

bandpass filter with wavelength λf = 500nm or λf = 600nm

placed directly in front of it. Since the passbands of these

filters with a bandwidth of ∆λ = 40nm overlap with the one

selected from the filter wheel, the effective spectral ranges

reaching the CCD are the intersection areas shown shaded in

Fig. 17. Their center wavelengths are around λi = 525nm
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and λi = 575nm, thus differing by ∆λ = 50nm. Since the

optical filter in front of the CCD chip is the same for both

acquisitions and the acquired scene is constant, any differences

between the images are caused by the different wavelengths

passing the lens. We measured a displacement vector field be-

tween both images by the region-based registration algorithm

presented in section III.

Calibration target Multispectral camera

Additional optical filter 350 400 450 500 550 600 650 700 750
ë / nm

Light source

Fig. 17. Experimental setup of our chromatic aberration measurement: the
wavelength of incoming light is changed using two different filters placed in
front of the light source, while the filter wheel position in the camera remains
unchanged.

The results are depicted in Fig. 18: Chromatic aberration

causes a pincushion-like effect on the image. Even though the

maximum vector length is only 0.2 pixel, we are still able

to measure a systematic displacement vector field. Using an

affine model for this vector field as suggested in section II, the

remaining error between measurement data and the model fit

drops to 0.076 pixel. Compared to the displacements caused

by the optical filters of the filter wheel, the remaining errors

almost vanish. Consequently, we can state that chromatic

aberrations are modeled quite well for our application.

G. Verification of approximations

We verified the approximations in section II with our optical

raytracer, whose results are shown in Fig. 19. The path of

rays is simulated in 3D coordinate space and all refractions

are computed with the exact equations (3) to (11) instead

of the approximated one (15). The resulting displacement

vector field between the unrefracted and refracted image points

is compared with the one computed with the approximated

equation (15). The resulting approximation error vector field

is shown in Fig. 20 and exhibits a rotational symmetry. The

reason is that the exact displacement vector field also obeys to

a rotational symmetry, but the approximated one is separable.

The maximum error is below one tenth of a pixel, thus

confirming the validity of our approximations.

V. CONCLUSIONS

We derived a physical model for the geometric distortions

caused by the optical bandpass filters of a multispectral cam-

era. We also investigated chromatic aberration and showed that
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Fig. 18. Chromatic aberration between spectral channels with approx. 525nm
and 575nm; measured vector field (−→), affine model fit (−→); remaining
maximum error between both fields: 0.076 pixel.

Fig. 19. Results of our optical raytracer: unrefracted rays are depicted with
(−→), refracted ones with (−→). The sketch is true to scale concerning our
optical setup: pixel size 4.65x4.65µm2, image size 1280x960 pixel, refraction
index n2 = 2.05, filter thickness d = 4mm, image distance zb = 50mm,
γx = 0.5◦, γy = −0.5◦.

it can be modeled with an affine transformation matrix quite

well. Based upon these models, we presented two correction

algorithms and compared them in terms of accuracy and ex-

ecution time: The region-based algorithm, which pre-registers

small regions and estimates the final transformation matrix on

vector field data slightly outperforms the one which estimates

the transformation by tentatively applying transformations

controlled by an parameter optimization algorithm. Detailed

results are presented for both algorithms. After applying each

one of our algorithms, the color fringes of the uncorrected

image vanish completely.
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