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ABSTRACT

Capturing natural scenes with high dynamic range content using conventional RGB cameras generally results
in saturated and underexposed and therefore compromising image areas. Furthermore the image lacks color
accuracy due to a systematic color error of the RGB color filters. The problem of the limited dynamic range
of the camera has been addressed by high dynamic range imaging1,2 (HDRI): Several RGB images of different
exposures are combined into one image with greater dynamic range. Color accuracy on the other hand can be
greatly improved using multispectral cameras,3 which more accurately sample the electromagnetic spectrum.
We present a promising combination of both technologies, a high dynamic range multispectral camera featuring
a higher color accuracy, an improved signal to noise ratio and greater dynamic range compared to a similar low
dynamic range camera.

1. INTRODUCTION

Color accuracy in terms of exact reproduction of the electromagnetic spectrum is rarely the decisive factor for
consumers when purchasing a camera. Common digital RGB cameras provide a satisfying color reproduction
and – perhaps more importantly – are cheap and robust due to their mass-production state, therefore being
established in mobiles phones up to professional cameras. It is rarely known that they exhibit a systematic color
error4 as they violate the Luther rule,5 which states that the camera’s spectral sensitivities have to be a linear
combination of those of the CIE observer. This makes them unsuitable for the accurate measurement of color,
e.g. of art paintings.6

Another drawback of the most common camera type, namely the 1-chip RGB camera, is its need for spatial
interpolation of color information: Since 1-chip color cameras are equipped with a color filter array (CFA)
mapping three spectral sensitivities to the spatial domain, this results in a downsampled image for each color
channel. Though by using an interpolation algorithm,7 the separated color channels can be recombined into one
color image, interpolation artifacts remain. Another disadvantage of the CFA is the induced shift variance,8

which causes the image statistics to be dependent on the image shift.

Figure 1. Our multispectral camera (left) and a sketch of its internal configuration (right).
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Our multispectral camera shown in Fig. 1 offers a greatly improved color accuracy compared to 1-chip RGB
cameras since the complete spatial information is acquired for each of seven color channels: This is achieved by
placing a computer-controlled filter wheel with optical bandpass filters between lens and gray level imaging sensor.
For each filter wheel position, gray level images are acquired separately and are combined into a multispectral
color image afterwards. This enables a rough sampling of the electromagnetic spectrum, and the Luther rule
mentioned above is mostly fulfilled. However, only static scenes can be acquired by this technique.

A problem concerning all conventional cameras – including gray level cameras – is their limited dynamic
range. This means that the acquisition of scenes with a high dynamic range (HDR) results in saturated as well
as underexposed areas. The latter furthermore contain more noise and a lower signal to noise ratio. Since our
multispectral camera internally uses an industrial gray level camera, it is affected by the problem as well. We
extend the dynamic range by using high dynamic range imaging:1,2 For each filter wheel position, we acquire
several images with different exposures by varying the exposure time. The images are then combined into a
multispectral high dynamic range (MHDR) image.

An interesting approach9 of multispectral HDR imaging using two 3CCD RGB cameras is accomplished by
use of a half mirror to present the same view to both cameras, which are arranged perpendicularly. The ability to
acquire multispectral images is given by using different interference filters which split the original passbands each
into two halves. By doing so, e.g., the lower half of the red spectral sensitivity is acquired by the first camera
and the higher half by the second camera. High dynamic range imaging is enabled by placing an additional
neutral density filter in front of one camera. The outcome of this is that three passband halves are acquired
with full sensitivity, while the other ones are acquired with a reduced sensitivity due to the neutral density filter.
Therefore, the innovative concept in [9] offers only the limited number of two exposure levels, which may not
suffice for many HDR applications. Another limitation occurs when one half of a passband is saturated: In this
case, there is no estimation for that specific wavelength range at all, since the passband halves are shared by
both cameras. In contrast, our concept is not limited to a certain number of exposure levels, acquires the full
spectral range for each exposure level and thus provides a greater dynamic range.

We start by the derivation of a model for the image acquisition chain in section 2 with both a continuous and
discrete representation and describe the estimation of spectra. We explain the procedure of image acquisition
including calibration, address data export and describe our experiments in section 3 before we present our results
in section 4. We conclude with section 5.

2. MODEL

Fig. 2 shows our acquisition model for high dynamic range imaging. The variable symbols are chosen according
to [10,11] where applicable. The object β(λ) ∗ is illuminated by a light source and the reflected light passes
through the optics, aperture and is filtered by one of the – in our case – seven spectral bandpass filters which are
arranged in a computer-controlled filter wheel. The final camera value qi,j is further influenced by the camera
spectral characteristics, sensor size, exposure time and the camera transfer function (CTF), which describes the
opto-electronic conversion of the radiant energy to a camera value. By modeling and inverting this optical chain,
we derive an estimation of the object reflectance β(λ) by evaluating the camera output values qi,j .

2.1 Mathematical model of the imaging chain

The light source S(λ) emits light with the spectral irradiance S(λ) (unit: W
m2nm ). It is reflected by the spectral

reflectance β(λ), passes through the optics o(λ), which is normally assumed to be o(λ) = 1 and the aperture,
which reduces the spectral irradiance by a constant a ≤ 1†. The next optical element is our filter wheel, which
contains I optical bandpass filters, where each filter has a specific spectral characteristic curve τi(λ), i = 1 . . . I
(see Fig. 3a). Each optical bandpass filter passes only a part of the spectrum and enables us to acquire the
spectral color component for that specific wavelength range. The spectral irradiance reaching the sensor surface

∗In fact, our object is acquired with a spatial resolution βx,y(λ). Without loss of generality, our model does not
incorporate position-dependence and we use the simplified notation β(λ).

†In fact, the solid angle of the object with respect to the light source and camera has an additional influence on the
optical path, but is not considered here. It may be modeled by implicit integration into the aperture constant a.
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Figure 2. Diagram of our physical model using continuous variables; bandpass filters τi(λ) are responsible for spectral
resolution, exposure times Ti,j for the resolution in the range of values. Abbreviations: Hi(λ) = τi(λ)R(λ), k = Aa.
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(a) Joint spectral characteristics Hi(λ) of optical
bandpass filters τi(λ) and sensor R(λ).
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(b) Camera transfer function f of our internal
gray level camera Sony XCD-SX900; solid lines
denote measurements, the dotted line is a line fit,
and the dashed line marks the black level.

Figure 3. Spectral and radiometric characteristic curves of our multispectral camera.

is then derived by

Ei(λ) = S(λ) β(λ) o(λ) a τi(λ) , (1)

where the physical unit of Ei(λ) is W
m2nm , since the optical elements β(λ), o(λ), a and τi(λ) are unit-less. By

multiplication of (1) with the spectral characteristic curve R(λ) of the sensor and the sensor area A, the spectral
radiant power (unit: W

nm ) is computed by

φ(λ) = Ei(λ) R(λ) A . (2)

Integrating over the whole wavelength range yields the radiant power

φi =

∫

λ

φ(λ) dλ =

∫

λ

S(λ) β(λ) o(λ) a τi(λ) R(λ) A dλ (3)

for filter i with the physical unit W (Watts). φi represents a spectral sample, corresponding to a certain
wavelength range of our object and we also term it spectral channel i. To take different exposure times Ti,j with
a total number of J exposure levels into account, we compute the radiant energy

Qi,j = φiTi,j (4)



with the physical unit Ws = J (Joule). We implicitly assume that φi is not a function of time, i.e., we have a
still scene during the acquisition. The final camera value is derived by

qi,j = f(Qi,j) , (5)

where f is the camera transfer function (CTF), which describes the opto-electronic conversion of the radiant
energy Qi,j to a camera value qi,j . The CTF of our multispectral camera is depicted in Fig. 3b and covers
non-linearities of the camera’s internal analog/digital converter. It can be precisely measured by the procedure
described in section 3.1. Equations (1) to (5) can now be combined into

qi,j = f



Ti,j

∫

S(λ) β(λ) o(λ) a τi(λ) R(λ) A dλ



 . (6)

To simplify (6), we set o(λ) = 1, combine the sensor spectral sensitivity R(λ) and the filter spectral characteris-
tic τi(λ) into Hi(λ) = τi(λ)R(λ), set k = aA and obtain

qi,j = f



Ti,j

∫

k Hi(λ) S(λ) β(λ)dλ



 , (7)

which describes the complete acquisition procedure in the noiseless case. It depends on the selected bandpass
filter i and the exposure channel j.

2.2 Discrete representation of the imaging chain

Because typical reflectance spectra are smooth, it is sufficient and common3,9, 12 to use sampled spectra, e.g.,
with a number of N = 61 spectral samples, which cover a wavelength range from λ1 = 400nm to λN = 700nm.
Towards this end, we write Eq. (4)-(5) in matrix notation

qj = f (Tjφ) . (8)

Inserting

φ = kHSβ , (9)

yields the complete model

qj = f (TjkHSβ) (10)

from Eq. (7). Note that the integration in (7) is now implicitely realized by a matrix multiplication according to

qi,j = f

(

Ti,j

N
∑

n=1

k Hi(λn) S(λn) β(λn)

)

. (11)

The bold symbols denote vectors or matrices defined by

qj = (q1,j . . . qI,j)
T

(I × 1)

φ = (φ1 . . . φI)
T

(I × 1)

Tj = diag (T1,j . . . TI,j) (I × I)

Hi = (Hi(λ1) . . . Hi(λN ))
T

(N × 1)

H = (H1 . . .HI)
T

(I × N)

S = diag (S(λ1) . . . S(λN )) (N × N)

β = (β(λ1) . . . β(λN ))
T

(N × 1) ,

and correspond to their continuous variables. The operator diag(·) derives a diagonal matrix from a vector, ()T

denotes a transpose operation and I is the number of bandpass filters of the multispectral camera.



2.3 Estimation

Given several camera responses qi,j for different spectral channels i = 1 . . . I and exposure channels j = 1 . . . J ,
our aim is to estimate the originating spectrum β(λ) and its discrete variable β respectively, i.e. the inversion of
Eq. (10). We split the solution into the HDRI part – namely the inversion of (8) – and the spectral estimation,
which corresponds to an inversion of (9).

In the ideal case, without quantization and camera noise and without saturation effects of our camera, we
could directly invert Eq. (8), yielding the correct values φ. But in reality, we have to use a weighted averaging

φ̂i =

J
∑

j=1

f−1(qi,j)
Ti,j

w(qi,j)

J
∑

j=1

w(qi,j)

=

J
∑

j=1

Qi,j

Ti,j
w(qi,j)

J
∑

j=1

w(qi,j)

, (12)

of sensor values qj . The inverse camera transfer function (ICTF) is denoted by f−1 and the weighting function
by w(·). The ICTF is the inversion of the CTF depicted in Fig. 3b and compensates camera-specific nonlinearities
as well as the black level of the camera. The weighting function w(·) favors values in the center of the range of
values over the ones at the borders, suppressing saturated values. Several weighting functions are suggested in
the literature; we actually use a Tukey window (see Fig. 4)

w(d) =

{

1.0 0 ≤ |d| ≤ αD
2

1
2

(

1 + cos
(

π
d−α D

2

2(1−α) D
2

))

αD
2 ≤ |d| ≤ D

2

(13)

with a length D + 1 = 256 and a taper ratio of α = 0.5, because it suppresses the unconfident values in the
upper and lower range of values: in the measured CTF in Fig. 3b, especially the border areas diverge from the
best fit straight line and the upper area exhibits a rougher quantization, since lesser sensor values are assigned
to a fixed irradiance interval. An alternative weighting function is the derivative of the CTF f ′(),1,13 which is
similar to our weighting function. However, since our CTF is rather linear, the critical border areas would have
a too strong influence and so we use the more stringent weighting function in (13) instead.

In practice, Eq. (12) corresponds to a combination of camera images with different exposures but the same
spectral channel to single grayscale HDR images. These images exhibit a greater dynamic range than the single
images and each one represents a different wavelength range because it was acquired through a specific optical
bandpass filter i.
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Figure 4. Windowing function w(·): Tukey window with length D + 1=256 and taper ratio α = 0.5.

In most cases, the spectral resolution N (e.g. N = 61) is higher than the number of acquired spectral
channels I (e.g. I = 7). Therefore, Eq. (9) can not be directly inverted as well, yet the reflectance vector β has



to be interpolated from the the radiant power φ̂. In other words, equation (9) cannot be inverted because the
matrix H maps an (N × 1) vector to an (I × 1) vector. In addition, the light source S is normally unknown and
is estimated from a reference target in our case. We furthermore approximate (9) by introduction of a (I × I)
diagonal light source matrix S′ and derive

φ = kS′Hβ . (14)

Since the real spectral resolution is limited to only I spectral channels, the approximation does not introduce
any limitations concerning accuracy, but allows for further simplification in (17).

To determine the spectrum of the light source S(λ) and its discrete approximated variable S′ respectively, we
acquire a white balance reference card with a known spectrum βref. With knowledge of the camera response φref,
we compute

S′
ref = diag (φref ÷ (kHβref)) , (15)

where the operation “÷” denotes an element-wise division.

By insertion of (15) into (14), we derive

φ = k diag (φref ÷ (kHβref))Hβ (16)

and by further simplification

(φ ÷ φref) ◦ (Hβref) = Hβ , (17)

where the symbol “◦” denotes an element-wise multiplication. The division of φ by φref can be interpreted as a
multispectral white balance and cancels out the camera specific factor k. The validity of (17) can be checked by
inserting the white reference card β = βref: φ then becomes φref and the equality holds.

Since H is non-invertible because of its rectangular shape, we have to use an approximation

β̂ = Hinv ((φ ÷ φref) ◦ (Hβref)) (18)

by using the weighted pseudoinverse

Hinv = R−1
xx HT

(

HR−1
xx HT

)

. (19)

The matrix

R−1
xx =

















1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

ρ2 ρ 1
...

...
. . . ρ

ρN−1 ρN−2 · · · ρ 1

















(20)

models the reflectance β(λ) as being smooth,3 i.e., neighboring values are assumed to be correlated by a factor ρ.
By using the pseudoinverse without weighting, a strong oscillation of the solution might result. A typical value
for ρ is 0.98.

3. PRACTICAL CONSIDERATIONS

We used our multispectral camera shown in Fig. 1 for our experiments. The camera features I = 7 optical
bandpass filters in the range from 400nm to 700nm in steps of 50nm, which can be controlled via the IEEE-
1394 bus by the PC. The camera uses the internal grayscale camera Sony XCD-SX900 with a chip size of
6.4mm × 4.8mm and a resolution of 1280 × 760 pixel. We use a Nikkor AF-S DX 18-70mm lens on the external
F-mount, while the internal camera features a C-mount.

This section discusses four issues: The relative radiometric calibration of our camera, the practical acquisition
procedure, the multispectral data export and the tests we performed to measure the improvement of our MHDR
technique compared to conventional LDR multispectral imaging.



3.1 Measuring the camera transfer function (CTF)

The combination of camera values qi,j from J different exposures to a single estimated radiant power φ̂i as
described by Eq. (12) represents a key issue of multispectral high dynamic range imaging. An important condition
is the linearization of the camera values, since the direct combination of (non-linear) camera values would
introduce severe errors on the final measurement. The linearization requires the precise measurement of the
CTF in Eq. (5) and the application of the inverse CTF

Qi,j = f−1(qi,j) . (21)

To obtain the CTF or its inverse several estimation methods have been proposed. These estimates rely on a
series of different exposures from the same scene. By assuming to know the exposure ratios and introducing
a model for the CTF, e.g. a gamma curve, the parameters of the CTF model can be estimated from the
joint histograms of exposure pairs.14 Alternatively, a smoothness constraint has been incorporated instead of a
model to estimate the CTF.2 Other models investigated in the literature include a polynomial approximation,15

parametric functions,1,16,17 or a constrained piecewise linear model.18,19 However, in our case, we use a more
precise method, namely a relative radiometric measurement with our calibration stand shown in Fig. 5, which
allows a more exact measurement20 of the CTF than, e.g., chart-based measurement methods.21 We exploit the
relation

E ∼
r2

r2 + x2
L (22)

between the radiance L [W/(m2sr)] of the integrating sphere with opening diameter r and the distance x between
light source and camera sensor to vary the irradiance E [W/m2] impinging on the sensor of the camera, which
influences the sensor value qi,j as well. In practice, we position the camera at various distances x, which implicitly
correspond to a specific irradiances E and we capture the sensor values qi,j . The result of such a measurement
is shown in Fig. 3b: the abscissa denotes the irradiance and the ordinate the sensor value. Since the distances x
are measured with 50µm precision by our distance sensor, the measurement is very accurate.

Figure 5. Our camera transfer function (CTF) measurement stand: The integrating sphere (left) illuminates the camera
(right); the distance can be modified by shifting the camera and on a sliding carriage (bottom), while the exact position
is measured by a distance sensor (not shown).

3.2 Acquisition procedure

Fig. 6 shows all images being acquired when using J = 3 different exposure times. The object being captured
is a GretagMacbeth ColorChecker with 24 color patches and has been illuminated non-uniformly to produce a
high dynamic range scene. In the figure, different exposures have been placed on the vertical axis, while different
spectral channels are arranged on the horizontal axis. The reconstruction of the multispectral HDR image is
done as follows: First, the geometric distortions between the spectral channels are corrected by an algorithm
described in [22]. Towards this end, one channel is defined as the reference channel and a model fit is performed
to geometrically adapt the other channels to the reference channel.



Figure 6. All images taken for an acquisition with seven spectral channels I = 7 (left to right) and three exposure
levels J = 3 (top to bottom).

After that, the inversion of the camera transfer function f(·) and combination to a high dynamic range
grayscale image is performed by applying Eq. (12). It can be interpreted as a merging of the images in Fig. 6
on the vertical axis. Fig. 7 visualizes the influence of each image on the HDR image for a series of J = 7
exposures: Each histogram represents a single image from the exposure time series, where image values have
been normalized with their corresponding exposure time. Images with small exposure times (top of figure)
contribute to the reproduction of bright areas of the image, since they occupy a large range of values – yet with
a limiting quantization. The rough quantization or rather the sensor’s limited resolution causes noise in the
dark areas. Images which have been acquired with longer exposure times (bottom of figure) are saturated in the
bright areas as the peak on the right indicates. But since they focus their dynamic range on the dark areas, the
fine resolution in that areas contributes to the reproduction of dark areas.

To adapt the acquisition to the current light source, a calibration capture of a white reference patch has to be
made shortly before the acquisition. The linearized camera response φref is extracted by cropping and averaging
the white balance patch. The calibration counterpart, namely the spectrum βref can be measured with a spectral
photometer.

The final estimation of spectra then is carried out by Eq. (18). The previously estimated white reference
data serves as calibration data for the estimation: The term (φ ÷ φref) of Eq. (18) represents a multispectral
white balance and ((φ ÷ φref) ◦ (Hβref)) adapts the acquired values to the spectrum βref of the white reference
patch. Finally, the matrix Hinv interpolates the I-channel camera data to N spectral sample points.

3.3 Multispectral data exchange

We use the .aix file format23 for storing multispectral HDR images, since it provides structures for multichannel
images and also copes with floating point data. The floating point data is produced when combining gray scale
images to one HDR image as shown in Eq. (12). Reducing the data to, e.g., 8 bit data would destroy the
details in dark and bright regions. An advantage of the .aix file format is the ability to store the reconstruction
matrix Hinv (see Eq. (19)) within the file. It is therefore not necessary to save the complete reconstructed

spectra β̂ with each e.g. N = 61 values but only I = 7 channels, resulting in considerable reduction of file size.
More precisely, we store the values

(φ ÷ φref) ◦ (Hβref) (23)

from Eq. (18) in the Frame table23 and the reconstruction matrix Hinv in the Samples2Spectrum table. The

spectrum β̂ is then reconstructed by using the stored matrix Hinv.

3.4 Experiments

For evaluation of the spectral and signal to noise ratio (SNR) performance we utilized a GretagMacbeth Munsell
Digital ColorChecker SG (see Fig. 8a) featuring 140 color patches with an overall size of 21.6cm × 27.9cm. An
intentionally generated shading introduced by halogen lamps causes the scene to exhibit a high dynamic range.
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Figure 7. Histograms of normalized images with different exposure times.

We placed the camera perpendicularly to the ColorChecker and acquired J = 7 different exposures for the I = 7
spectral channels, resulting in a total number of 49 acquisitions.

Because the chosen target also features white patches, we used the patch E5 for white balancing as described
in Eq. (15). The reconstruction is then carried out by the equations in section 2. For exact evaluation of each
color patch we crop an area inside each patch. To compare our HDR acquisition to an LDR one, we acquire two
multispectral images: The first one is an HDR image, where we acquire several exposure levels j = 1 . . . 7. The
second one is acquired by using only one exposure level J = 1.

4. RESULTS

Fig. 8 visualizes our analysis of the SNR improvement between LDR and HDR acquisition: We measured the
peak signal to noise ratio for each patch in both images and computed the differences between LDR patch and
HDR patch. We skipped saturated patches in the LDR image since they would seem to have no noise due to the
saturation, i.e., the mapping to a single value.

Fig. 8a shows the difference between HDR and LDR patches in terms of SNR; positive numbers denote
improvements, negative numbers degradation. The latter ones are due to the introduction of new gray levels in
the HDR image: While the resolution in the LDR image is limited and several gray levels are combined into
a single level due to quantization, the HDR image provides a greater variety of gray levels. When computing
the PSNR, there seems to be more noise in that regions. In general, we derive from Fig. 8a that especially
dark patches benefit from HDR imaging. Fig. 8b gives a more statistical view of the SNR improvement and
demonstrates the reduction of noise for nearly all color patches. We computed the mean improvement to be
5.06dB for our test image.

Based on the acquired LDR and HDR images, we also investigated on measurements of the color accuracy.
The reference spectral data for comparison with the acquired images was collected by scanning the color patches
with a GretagMacbeth EyeOne spectral photometer. We measured the color difference between acquisition and
reference with the ∆E00

24 formula. To compensate for the shading of our acquisitions and because we are mainly
interested in the color components, we scaled the intensity of each image patch to match the original brightness.
The results are depicted in Fig. 9, where each point (∆E00,LDR,∆E00,HDR) corresponds to one color patch.
Points with ∆E00,LDR > ∆E00,HDR are marked with blue color and represent an improvement in terms of color
accuracy, the others denote a degradation. The chart therefore enables a direct impression on the color accuracy
improvement of HDR imaging since most of the points are below the diagonal line. More precisely, the color
accuracy of 104/140 color patches are improved.
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+1.2 −0.4 +3.6 +1.7 +0.3 +2.3 +3.5 +3.2 +8.0 +3.5 +13.8 +6.5 +5.3 +7.4

+2.0 +4.0 +0.5 +4.0 +7.0 +3.6 +3.4 +3.6 +3.9 +5.6 +5.1 +3.5 +11.0 +9.3

+3.4 +9.4 −0.8 +2.6 +10.0 +0.2 +6.2 +9.3 +2.0 +7.4 +8.6 +8.8 +4.3

(a) Chart overview. In general, dark patches benefit more from
HDR than light patches; saturated fields in the LDR image are
left blank.
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(b) Bar plot. Dotted line denotes mean improve-
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Figure 8. Comparison of the signal to noise ratio of LDR/HDR acquisitions of a ColorChecker with 140 color patches,
which has been illuminated non-uniformly to simulate a high dynamic range scene. Negative ∆PSNR values are due to
introduction of new gray levels in the HDR image.
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Figure 9. Comparison of spectral error ∆E00: in 104/140 cases, the color accuracy is improved; reference: GTMB EyeOne
spectral measure; some data points of ∆E00,LDR have been skipped because they are saturated.

To prove practical applicability, we also acquired outdoor scenes with our portable multispectral camera
(Fig. 10). Here, also seven exposures have been taken out for each of the seven spectral channels, resulting in a
total number of 49 acquisitions. The high image quality can be realized when examining detail crops of dark or
bright image regions. Fig. 11a shows a crop of one dormer of Aachen’s city hall roof. We artificially brightened
the crops to improve the expressiveness. The LDR acquisition exhibits a large amount of noise because the dark
regions are mapped only on a few values in the image. Using HDR imaging, the dark regions are also captured
with long exposure times, thus mapping the same range of values to more quantization levels (see Fig. 7). The
precise information from that exposures for the dark regions is incorporated into the final multispectral HDR
image and thus greatly improves image quality.

The improvement of light areas as depicted in Fig. 11b is clearer: While bright areas in the LDR image might
be saturated due to the limitation of dynamic range, the HDR image also acquires images with short exposure



Figure 10. HDR image of Aachen’s city hall.

(a) Brightened crops of a dark region: The image
noise is significantly reduced.

(b) Shaded crops of a bright region: The HDR
image shows more details which are lost in the
saturated area of the LDR image.

Figure 11. Detail crops of Fig. 10 showing the improvements of HDR imaging; left images: LDR, right images: HDR.

times coping with bright areas. In the figure, the HDR image therefore preserves the structure of the roof tiles,
while it is lost in the LDR image.

5. CONCLUSIONS

We have presented both theory and practice of multispectral high dynamic range (MHDR) imaging: We derived
the mathematical model of an MHDR camera and described the spectral estimation from a series of exposures.
We presented our camera and addressed several practical issues like the relative radiometric calibration and
the spectral calibration with a white patch. In a laboratory test, we compared our camera to a conventional
low dynamic range camera and proved the advantages in terms of color accuracy and signal to noise ratio.
Additionally, we showed the applicability of our camera by taking outdoor images and emphasized the advantages
with descriptive images.
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