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Abstract—The problem of segmentation of multispectral
satellite images is addressed. An integration of rough-set-theo-
retic knowledge extraction, the Expectation Maximization (EM)
algorithm, and minimal spanning tree (MST) clustering is de-
scribed. EM provides the statistical model of the data and handles
the associated measurement and representation uncertainties.
Rough-set theory helps in faster convergence and in avoiding
the local minima problem, thereby enhancing the performance
of EM. For rough-set-theoretic rule generation, each band is
discretized using fuzzy-correlation-based gray-level thresholding.
MST enables determination of nonconvex clusters. Since this is
applied on Gaussians, determined by granules, rather than on
the original data points, time required is very low. These features
are demonstrated on two IRS-1A four-band images. Comparison
with related methods is made in terms of computation time and
a cluster quality measure.

Index Terms—Clustering, granular computing, minimal span-
ning tree, mixture modeling, rough knowledge encoding.

I. INTRODUCTION

SEGMENTATION is a process of partitioning an image
space into some nonoverlapping meaningful homogeneous

regions. The success of an image analysis system depends on
the quality of segmentation. Two broad approaches to segmen-
tation of remotely sensed images are gray-level thresholding
and pixel classification. In thresholding [1], one tries to get a
set of thresholds such that all pixels with gray
values in the range constitute theth region type. On
the other hand, in pixel classification, homogeneous regions are
determined by clustering the feature space of multiple image
bands. Both thresholding and pixel classification algorithms
may be either local (i.e., context dependent) or global (i.e.,
blind to the position of a pixel). The multispectral nature of
most remote sensing images makes pixel classification the
natural choice for segmentation.

Statistical methods are widely used in unsupervised pixel
classification framework because of their capability of handling
uncertainties arising from both measurement error and the pres-
ence of mixed pixels. In most statistical approaches, an image
is modeled as a “random field” [2] consisting of collections of
two random variables and . The
first one takes values in the field of “classes,” while the second
one deals with the field of “measurements” or “observations.”
The problem of segmentation is to estimatefrom . A
general method of statistical clustering is to represent the

Manuscript received November 28, 2001; revised July 12, 2002.
The authors are with the Machine Intelligence Unit, Indian Statis-

tical Institute, Calcutta 700 108, India (e-mail: sankar@isical.ac.in;
pabitra_r@isical.ac.in).

Digital Object Identifier 10.1109/TGRS.2002.803716

probability density function of the data as amixture model,
which asserts that the data are a combination ofindividual
component densities (commonly Gaussians), corresponding
to clusters. The task is to identify, given the data, a set of
populations in it and provide a model (density distribution) for
each of the populations. The Expectation Maximization (EM)
algorithm is an effective and popular technique for estimating
the mixture model parameters. It iteratively refines an initial
cluster model to better fit the data and terminates at a solution
that is locally optimal for the underlying clustering criterion
[3]. An advantage of EM is that it is capable for handling
uncertainties due to mixed pixels and helps in designing
multivalued recognition systems.

The EM algorithm has the following limitations.

• Number of clusters needs to be known.
• Solution depends strongly on initial conditions.
• It can only model convex clusters.

The first limitation is a serious handicap in satellite image pro-
cessing, since in real images the number of classes is frequently
difficult to determinea priori. To overcome the second, sev-
eral methods for determining “good” initial parameters for EM
have been suggested, mainly based on subsampling, voting, and
two-stage clustering [4]. However, most of these methods have
high computational requirement and/or are sensitive to noise.
The stochastic EM (SEM) algorithm [5] for segmentation of im-
ages is another attempt in this direction that provides an upper
bound on the number of classes, robustness to initialization, and
fast convergence.

Rough-set theory [6] provides an effective means for analysis
of data by synthesizing or constructing approximations (upper
and lower) of set concepts from the acquired data. The key no-
tions here are those of “information granule” and “reducts.” The
information granule formalizes the concept of finite-precision
representation of objects in real-life situations, and reducts rep-
resent thecoreof an information system (both in terms of ob-
jects and features) in a granular universe. An important use of
rough-set theory and granular computing has been in generating
logical rules for classification and association [7]. These logical
rules correspond to different important regions of the feature
space, which represent data clusters.

In this paper, we exploit the above characteristics of the
rough-set-theoretic logical rules to obtain an initial approxima-
tion of Gaussian mixture model parameters. The crude mixture
model, after refinement through EM, leads to accurate clusters.
Here, rough-set theory offers a fast and robust (noise-insensi-
tive) solution to the initialization, besides reducing the local
minima problem of iterative refinement clustering. Also, the
problem of choosing the number of mixtures is circumvented,
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Fig. 1. Block diagram of the proposed clustering algorithm.

since the number of Gaussian components to be used is
automatically decided by rough-set theory.

The problem of modeling nonconvex clusters is addressed by
constructing a minimal spanning tree (MST) with each Gaussian
component as nodes and Mahalanobis distance between them
as edge weights. Since MST clustering is performed on the
Gaussian models rather than the individual data points and since
the number of models is much less than the data points, the
computational time requirement is significantly small. A block
diagram of the integrated segmentation methodology is shown
in Fig. 1. Discretization of the feature space, for the purpose
of rough-set rule generation, is performed by gray-level thresh-
olding of the image bands individually.

Experiments were performed on two four-band IRS-1A
satellite images. Comparison is made both in terms of a
cluster quality index [1] and computational time, in order to
demonstrate the effect of the individual components.

II. M IXTURE MODEL AND EM ALGORITHM

The mixture model approximates the data distribution by fit-
ting component density functions , , to a

dataset having patterns and features. Let be a
pattern; the mixture model probability density function evalu-
ated at is

(1)

The weights represent the fraction of data points belonging
to model , and they sum to one ( ). The functions

, , are the component density functions
modeling the points of theth cluster. represents the specific
parameters used to compute the value of. We use Gaussian
distribution as the choice for component density function. The
quality of a given set of parameters ,

, is determined by the log-likelihood of the data,
given the mixture model. The EM begins with an initial estima-
tion of and iteratively updates it such that is nonde-
creasing. We outline the EM algorithm in the Appendix.

III. ROUGH SETS

We present some preliminaries of rough-set theory that are
relevant to this paper. For details one may refer to [6] and [7].

An information systemis a pair , where is a
nonempty finite set called theuniverse, and is a nonempty
finite set ofattributes. An attribute can be regarded as a func-
tion from the domain to some value set .

With every subset of attributes , one can easily asso-
ciate an equivalence relation on : : for
every . Then .

We now define the notions relevant to knowledge reduction.
The aim is to obtain irreducible but essential parts of the knowl-
edge encoded by the given information system; these would
constitutereducts of the system. Reducts have been nicely
characterized in [7] bydiscernibility matricesanddiscernibility
functions. Consider and
in the information system . By the discernibility
matrix, of means an matrix such that

(2)

A discernibility function is a function of Boolean variables
corresponding to the attributes , respec-

tively, and defined as follows:

(3)
where is the disjunction of all variables with .
It is seen in [7] that is a reduct in if and only if

is a prime implicant (constituent of the disjunctive
normal form) of .

IV. ROUGH SET INITIALIZATION OF EM PARAMETERS

A. Discretization of Feature Space

Discretization of the feature space is performed by gray-level
thresholding of the individual band images. Thus, each attribute
(band) now takes on values in , where is the
number of threshold levels for that band. The fuzzy correlation
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( , defined in the Appendix) between a fuzzy represen-
tation of an image ( ) and its nearest two-tone version () is
used. For details of the above method, one may refer to [8]. We
have considered correlation as a measure of thresholding, since
it is found recently to provide good segmentation in less com-
putational time compared to similar methods [1]. However, any
other gray-level thresholding technique may be used.

B. Generation of Rough-Set Reducts

Here we discuss the methodology for generating rough-set
reducts, which represents crude clusters in the feature space. Let
there be sets of discretized objects in the attribute-value table
having identical attribute values, and let their cardinalities be

, . Let denote the distinct
elements among such that

. Let a heuristic threshold function be defined as [9]

(4)

where is a constant ( 0.5, say), so that all entries having fre-
quency less than it are eliminated from the table, resulting in the
reduced attribute-value table. The value of is high if most
of the s are large and close to each other. The above condi-
tion occurs when a small number of large clusters are present.
On the other hand, if the s have wide variation among them,
then the number of clusters with smaller size increases. Accord-
ingly, attains a lower value automatically.

From the reduced attribute-value table obtained, reducts are
obtained using the methodology described in Section III. From
the reducts, one obtains a rule, viz. , where is
the disjunctive normal form (d.n.f) of the discernibility function.

Also, define the support factor for a rule as

(5)

where , , are the cardinality of the sets of
identical objects belonging to the reduced attribute-value table.

C. Mapping Reducts to Mixture Parameters

We describe below the methodology for obtaining the mixture
model parameters, namely, the number of component Gaussian
density functions () and weights ( ), means ( ), and vari-
ances ( ) of the components from the rough-set rules gener-
ated.

1) Number of Gaussians( ): Consider the antecedent part
of a rule . For each such conjunctive rule, assign a com-
ponent Gaussian. Let the number of such formulae be;
then we consider Gaussians.

2) Component weights( ): Weight of a each Gaussian is
set equal to the normalized support factor [obtained
using (5)] of the rule ( ) from which it is derived,

.
3) Means( ): A rule consists of conjunction of a number of

literals. The literals are interval variables of pixel values
of a feature (band). The component of the mean vector

along that feature is set equal to the center () of the cor-
responding interval. Note that all features do not appear
in a formulae, implying those features are not necessary
to characterize the corresponding cluster. The component
of the mean vector along those features that do not appear
are set to the mean of the entire data along those features.

4) Variances( ): A diagonal covariance matrix is consid-
ered for each component Gaussian. As in means, the vari-
ance for feature is set equal to half the width of the in-
terval corresponding to that feature appearing in the rule.
For those features not appearing in a formulae, the vari-
ance is set to a small random value.

V. CLUSTERING OFGAUSSIAN COMPONENTSUSING MST

In this section, we describe the methodology for obtaining the
final clusters from the Gaussian components used to represent
the data. An MST-based approach is adopted for this purpose.
The MST is a graph that connects a set ofpoints so that a com-
plete “tree” of edges is built. (A tree is a connected graph
without cycles.) The tree is “minimal” when the total length of
the edges is the minimum necessary to connect all the points. An
MST may be constructed using either Kruskal’s or Prim’s algo-
rithm. The desired number of clusters may be obtained from an
MST by deleting the edges having weights above a threshold.
The threshold is selected from maxima of the derivative of the
edge weights.

Instead of using individual points, we construct an MST
whose vertices are the Gaussian components of the mixture
model, and the edge weights are the Mahalanobis distance ()
between them. is defined as

(6)

where and are the means and variances of the pair
of Gaussians.

Note that each cluster obtained as above is a mixture model
in itself. The number of its component Gaussians is equal to the
number of vertices of the corresponding subgraph. For assigning
a point ( ) to a cluster, the probability of belongingness ofto
each cluster (submixture models) is computed using (1), and the
one with the highest probability is assigned to , i.e., we
follow the Bayesian classification rule.

VI. EXPERIMENTAL RESULTS

Results are presented on two IRS-1A (four-band) images. The
images were taken usingthe LISS-II scanner in the wavelength
range 0.77–0.86m, and it has a spatial resolution of 36.25 m

36.25 m. The images are of size 512512. They cover areas
around the city of Calcutta and Bombay, respectively.

For the Calcutta image, the gray-level thresholds obtained
using the correlation-based methodology (described in Sec-
tion IV-A) are band 1: {34, 47}, band 2: {20, 29}, band 3:
{24, 30}, and band 4: {31, 36}. For the Bombay image, the
corresponding values are {36, 60}, {22, 51}, {23, 68}, and
{11, 25}. After discretization, the attribute-value table is
constructed. Eight rough-set rules (for the Calcutta image)
and seven rules (for the Bombay image), each representing a
crude cluster, is obtained. The rules are then mapped to initial
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TABLE I
COMPARATIVE PERFORMANCE OFDIFFERENT CLUSTERING METHODS

FOR THECALCUTTA IMAGE

parameters of the component Gaussians and refined using
the EM algorithm. The Gaussians are then merged using the
MST-based technique discussed in Section V; thereby resulting
in five clusters (from original eight and seven Gaussians). For
both images, progressive improvement was observed from
the initial gray-level thresholding of the individual bands,
clustering using crude mixture model obtained from rough-set
rules, clustering using the refined mixture model obtained by
EM, and finally to graph-theoretic clustering of the component
Gaussians.

The performance of the proposed hybrid method is com-
pared extensively with various other related ones. These involve
different combinations of the individual components of the
proposed scheme, namely, rough-set initialization, EM and
MST, with other related schemes, e.g., random initialization
and -means algorithm. The algorithms compared are

1) randomly initialized EM and -means algorithm (EM,
KM) (best of five independent random initializations)

2) rough-set-initialized EM and -means (centers) algo-
rithm (REM, RKM)

3) EM initialized with the output of -means algorithm
(KMEM)

4) EM with random initialization and MST clustering
(EMMST)

5) fuzzy -means (FKM) algorithm.
For the purpose of qualitative comparison of the segmentation

results, we have considered an index[1], which measures the
ratio of total variation and within-cluster variation. The higher
the value is the better is the segmentation. The detailed defini-
tion of the index is provided in the Appendix. We also present
the total CPU time required by these algorithms on a DEC Alpha
400-MHz workstation. It may be noted that except for the algo-
rithms involving rough sets, the number of clusters is not auto-
matically determined.

Comparative results are presented in Tables I and II. Seg-
mented images of the city of Calcutta obtained by these algo-
rithms are also presented in Fig. 3, for visual inspection. For
the Bombay image, we show the segmented versions only for
the proposed method and KM algorithm having the highest and
lowest values. The following conclusions can be arrived at
from the results:

1) EM versus KM:It is observed that EM is superior to KM
both with random and rough-set initialization. However,

-means requires considerably less time compared to EM.

TABLE II
COMPARATIVE PERFORMANCE OFDIFFERENT CLUSTERING METHODS

FOR THEBOMBAY IMAGE

Fig. 2. Convergence of log-likelihood of EM with rough-set and random
initialization.

The performance of fuzzy-means (FKM) is interme-
diate between KM and EM, though its time requirement
is more than EM.

2) Effect of Rough-Set Initialization:Rough-set-theoretic
initialization (REM, RKM) is found to improve the
value as well as reduce the time requirement substantially
for both EM and KM. Rough-set-initialized EM is seen
to converge in much fewer steps compared to randomly
initialized EM (Fig. 2). Rough-set initialization is also
superior to KM initialization (KMEM).

3) Contribution of MST:Use of MST adds a small compu-
tational load to the EM algorithms (EM, REM); however,
the corresponding integrated methods (EMMST and the
proposed algorithm) show a definite increase invalue.

4) Integration of all the three components, (EM, rough set,
and MST) in the proposed algorithm produces the best
segmentation in terms of value in the least computa-
tion time. This is also supported visually if we consider
Figs. 5 and 6, which demonstrate the zoomed image of
two man-made structures,viz., river bridge and airport
strips of the Calcutta image corresponding to the pro-
posed method and KM algorithm providing the highest
and lowest values, respectively.

5) Computation Time:It is observed that the proposed algo-
rithm requires significantly less time compared to other
algorithms having comparable performance. Reduction
in time is achieved due to two factors. Rough-set ini-
tialization reduces the convergence time of the EM al-
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Fig. 3. Segmented IRS image of Calcutta using (a) proposed method, (b) EM with MST (EMMST), (c) fuzzyk-means algorithm (FKM), (d) rough-set-initialized
EM (REM), (e) EM withk-means initialization (KMEM), (f) rough-set-initializedk-means (RKM), (g) EM with random initialization (EM), and (h)k-means
with random initialization (KM).

gorithm considerably, compared to random initialization.
Also, the MST, being designed on component Gaussians
rather than individual data points, add very little load to
the overall time requirement, while improving the perfor-
mance significantly.

VII. CONCLUSION AND DISCUSSION

The contribution of the paper is twofold. First, rough-set
theory is used to effectively circumvent the initialization and

local minima problems of the EM algorithm. This also im-
proves the clustering performance, as measured by thevalue.
Besides, the number of clusters is automatically determined.

The second contribution lies in the development of a method-
ology integrating the merits of graph-theoretic clustering (e.g.,
having the capability of generating nonconvex clusters) and it-
erative refinement clustering (e.g., having a low computational
time requirement). At the local level, the data are modeled by
Gaussians, i.e., asa combination of convex sets, while globally
these Gaussians are partitioned using a graph-theoretic tech-
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Fig. 4. Segmented IRS image of Bombay using (a) proposed method and (b)k-means with random initialization (KM).

Fig. 5. Zoomed images of a bridge on the river Ganges in Calcutta for
(a) proposed method and (b)k-means with random initialization (KM).

Fig. 6. Zoomed images of two parallel airstrips of Calcutta airport for
(a) proposed method and (b)k-means with random initialization (KM).

nique, thereby enabling fast and efficient detection of the non-
convex clusters. The reduction in time is due to the merits of
granular computing. Although the methodology of integrating
rough sets, fuzzy sets, MST, and the EM algorithm has been ef-
ficiently demonstrated for segmenting remote sensing images,
the concept can be applied to other unsupervised classification
problems, even for mining large datasets.

It may be noted that the role of the threshold function of (4) is
to reduce the size of the mixture model by eliminating the noisy
pattern representatives (having lower values of) from the re-
duced attribute-value table, thereby reducing the computational
time. If no such reduction is performed, the computational time
increases, but the final mixture model obtained remains almost
the same, since the initial insignificant Gaussian components get
merged with the larger ones when the EM algorithm converges.

APPENDIX

EM ALGORITHM

Given a dataset with patterns and continuous features,
a stopping tolerance , and mixture parameters at itera-
tion , compute at iteration as follows.

Step 1) -Step:For pattern : Compute the member-
ship probability of in each cluster

Step 2) -Step:Update mixture model parameters.

Stopping Criterion: If , stop. Else
set and go to Step 1). is given by

(7)
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Fuzzy Correlation: Fuzzy correlation is defined
as [8]

(8)

with and
; is the maximum gray level; and

is the frequency of theth gray level. Themaximaof the
represent the threshold levels.

Index : is defined as [1]

(9)

where is the number of points in theth
cluster; is the feature vector of the th pattern

in cluster ; is the mean of pat-
terns of the th cluster; is the total number of patterns; and
is the mean value of the entire set of patterns.
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