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Abstract: Climate change is increasing pest insects’ ability to reproduce as temperatures rise, resulting
in vast tree mortality globally. Early information on pest infestation is urgently needed for timely
decisions to mitigate the damage. We investigated the mapping of trees that were in decline due to
European spruce bark beetle infestation using multispectral unmanned aerial vehicles (UAV)-based
imagery collected in spring and fall in four study areas in Helsinki, Finland. We used the Random
Forest machine learning to classify trees based on their symptoms during both occasions. Our
approach achieved an overall classification accuracy of 78.2% and 84.5% for healthy, declined and
dead trees for spring and fall datasets, respectively. The results suggest that fall or the end of summer
provides the most accurate tree vitality classification results. We also investigated the transferability
of Random Forest classifiers between different areas, resulting in overall classification accuracies
ranging from 59.3% to 84.7%. The findings of this study indicate that multispectral UAV-based
imagery is capable of classifying tree decline in Norway spruce trees during a bark beetle infestation.

Keywords: unmanned aerial vehicle; remote sensing; Random Forest; pest insects; forest damages;
tree vitality; forest monitoring; Ips typographus; forest decline; bark beetle infestation; European spruce
bark beetle

1. Introduction

Unmanned aerial vehicles (UAVs) have recently been investigated and proven useful
for several forestry applications such as mapping and monitoring of trees and forests [1],
measuring forest canopy gaps [2,3] and tree structural attributes [4–6], tree species classifica-
tion [7,8], estimating biodiversity and conservation value [3,9] and monitoring regenerating
forest stands [10–12]. UAVs provide an advantage for collecting timely and spatially explicit
data with multiple spectral bands, which has filled a gap between terrestrial and airborne
(aircraft) or satellite measurements. UAVs can also remain operational for monitoring
abrupt changes such as forest fires [13,14], even in cloudy conditions when timely aerial or
satellite data is unavailable.

Bark beetles and other pest insects are causing widespread tree mortality in several
continents around the World [15,16]. In Europe, the European spruce bark beetle (Ips
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typographus L.) is causing the most severe damage and is jeopardizing economical, ecological
and societal ecosystem services of Norway spruce (Picea abies H. Karst.) forests all around
Europe [17,18]. In addition to losing the ecosystem services forests provide, dead trees
can pose a severe hazard in urban areas when the roots and lower parts of the trunk of
dead trees begin to rot, they can easily fall. Increasing mean temperatures combined with
more severe storm damage and droughts have enabled optimal reproduction conditions
that have led to large numbers of bark beetles [19,20]. Forest managers have been unable
to respond to the mass outbreaks of the bark beetle. Hence, there is an urgent need for
novel monitoring tools that can detect forest and tree decline that is caused by bark beetles,
especially in the early stages of infestation and enable development of efficient tools for the
management of bark beetle damage.

Remote sensing can be used to estimate tree condition remotely by using spectral data.
The spectral reflectance characteristics of tree canopies change when trees are stressed or
damaged and that information can be used to separate healthy and declined trees. For
example, a bark beetle infestation leads to discoloration and defoliation of tree crowns [21].
UAVs are viable for acquiring timely and spatially precise data for monitoring forest health
conditions [22,23]. One of the first studies to utilize UAVs for monitoring insect pests
was conducted in Germany by Lehmann et al. [24]. They used multispectral imagery to
detect an infestation by the oak splendor beetle (Agrilus biguttatus Fab.) in oak stands
(Quercus sp.). They achieved an overall kappa index of 0.77–0.81 within five classes: three
health classes in oak stands (infested, healthy and dead branches), canopy gaps and other
vegetation. Infestation of the European spruce bark beetle (Ips typographus L.) was studied
using UAVs in the work of Näsi et al. [25]. They used UAV-based hyperspectral imagery
and a k-nearest neighbor classifier for identifying different infestation stages of spruces
in Southern Finland. They concluded that higher spatial accuracy (GSD: 10 cm) captured
from a UAV provided better classification results than the lower GSD of 50 cm captured
from aircraft when spruces were classified to three health classes.

Recently, UAVs have been used to monitor bark beetle infestations especially in the
Czech Republic where millions of cubic meters of trees have been infested due to bark
beetles causing significant economic losses [26–30]. Klouček et al. [27] used a low-cost
UAV-based system with RGB and modified CIR cameras to capture multispectral time
series of a bark beetle (I. typographus) outbreak area in the northern part of the Czech
Republic. The results indicated that the system was capable of providing information of
various stages of bark beetle infestation across seasons; the classification accuracy was the
highest after the active life stages of the bark beetle in October and lowest in the beginning
of the invasion in mid-June. Brovkina et al. [30] studied the potential of UAV-based RGB
and normalized difference vegetation index (NDVI) data to monitor health conditions
of Norway spruces. They found that NDVI values differ statistically between spruces
with mechanical damage and resin exudation from healthy spruces (p < 0.05). In addition,
Minarik et al. [29] developed an automatic method to extract tree crowns from multispectral
imagery for bark beetle infestation detection.

Cessna et al. [31] compared performance of UAV-based multispectral approach and
aircraft-based hyperspectral imaging LiDAR data (G-LiHT system) in mapping a bark
beetle-affected forest area in Alaska, USA. They achieved the best classification accuracy
when they used both spectral and structural features; the overall accuracy was 78% (kappa:
0.64) when using UAV-based photogrammetric point clouds and multispectral image
mosaics and 78% (kappa: 0.65) when using Lidar-based structural and hyperspectral
features collected by the G-LiHT system. Safonova et al. [32] studied the detection of the
invasion of the four-eyed fir bark beetle (Polygraphus proximus Blandford) in fir forests
(Abies sibirica Ledeb) in Russia using a RGB camera from UAV. They proposed a two-stage
solution; first searching for the potential tree crowns and in the second stage using a
convolutional neural network (CNN) architecture to predict the fir tree damage stage in
each detected candidate region. However, the effect of phenology on mapping tree vitality
using UAV-multispectral imagery has not been investigated.
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The objective of this study was to investigate the capabilities of UAV-based multispec-
tral imagery in detecting declined trees at two different data collection times and compare
the effect of phenology and data acquisition timing on the classification accuracy of de-
clined trees. The tree decline was mainly caused by an ongoing bark beetle infestation. We
hypothesized that the data acquisition timing, phenology, and life cycle stages of the bark
beetle affect the detection accuracy of declined trees. To test this hypothesis, we collected
field and UAV-based data in four forest areas on two occasions in May and September
2020. We also investigated the transferability of tree decline detection classifiers between
the study areas. Transferable classifiers would greatly reduce the costs of tree decline
mapping by reducing the need for costly field work. Our overarching aim is to support the
development of remote sensing applications for detecting declined trees and mapping of
bark beetle infestation.

2. Materials and Methods
2.1. Study Area

The study areas, which consisted of four approximately 20 ha forest areas, were in the
Helsinki city central park area in Southern Finland (Figure 1). The forests were dominated
by mature Norway spruce (Picea abies H. Karst.) with admixtures of Scots pine (Pinus
sylvestris L.), Silver birch (Betula pendula Roth), European aspen (Populus tremula L.), rowan
(Sorbus aucuparia L.) and common juniper (Juniperus communis L.). The forest areas had
an ongoing infestation by I. typographus, which had started in 2017, and all the areas had
existing groups of dead trees before the study was conducted during 2020.
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Figure 1. The location of the study areas in Helsinki, Finland. The number depicts the number of the
study area. The coordinates are in WGS 84 coordinate reference system. The basemap was provided
by OpenStreetMap.

2.2. UAV Data Collection

Drone flights were carried out on 20 and 22 May (4 flights) and on 11 and 14 September
(5 flights) in the four test areas by the Finnish Geospatial Research Institute (FGI). Each
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of the areas were captured with RGB and multispectral cameras (Table 1). The Paloheinä
East datasets (Area 4) were collected using FGI’s custom build drone that was equipped
with Sony A7R digital camera with a Sony FE 35 mm f/2.8 ZA Carl Zeiss Sonnar T*
lens, Micasense Altum Multispectral camera and Applanix APX-20 UAV GNSS and IMU
system. The other areas were collected using Phantom 4 Pro V2.0 drone equipped with
Micasense RedEdge M Multispectral camera. The ground sampling distances (GSD) were
approximately 5 cm and 8 cm for Altum and RedEdge, respectively. The RedEdge and
Altum have five cameras capturing blue (central wavelength: 475 nm; bandwidth: 32 nm),
green (560 nm; 27 nm), red (668 nm; 14 nm), red edge (717 nm; 12 nm) and near-infrared
(NIR) (842 nm; 57 nm) spectral bands.

Table 1. Summary of flight times and flying conditions during the data acquisitions. FH denotes
flight height.

Area Date Time Cloud
Conditions

Sun
Azimuth (◦)

Solar
Elevation (◦) FH (m) Wind (m/s)

Paloheinä
East (Area 4) 20 May 2020 08:31–08:55 Mostly sunny 147.69 46.7 120 Mild

Paloheinä
West (Area 3) 20 May 2020 10:40–11:14 Sunny 193.78 49.33 120 Strong

Maunula
East (Area 2) 22 May 2020 06:30–06:52 Sunny 112.86 35.72 120 Mild

Maunula
West (Area 1) 22 May 2020 07:50–08:15 Sunny 133.37 43.51 120 Mild

Paloheinä
East Flight 1

(Area 4)

11 September
2020 07:13–07:37 Mostly

cloudy 129.96 24.9 120 Mild

Paloheinä
East Flight 2

(Area 4)

11 September
2020 08:32–08:58 Mostly sunny 152.87 31.44 120 Mild

Paloheinä
West (Area 3)

11 September
2020 11:28–11:46 Sunny 204.62 31.86 120 Mild

Maunula
East (Area 2)

11 September
2020 13:18–13:43 Mostly sunny 234.09 23.22 120 Mild

Maunula
West (Area 1)

14 September
2020 08:05–08:28 Sunny 145.15 28.49 120 Mild

Forward and side overlaps were approximately 80% and 80% for both multispectral
cameras. Those overlaps resulted in photogrammetric blocks that ensured the area of
interest was captured in more than nine overlapping images. All the areas included five
ground control points (GCPs) that were measured with RTK GNSS receiver.

2.3. Multispectral Imagery Processing

The collected multispectral imagery was calibrated and processed using the Metashape
Professional software package into orthorectified reflectance factor mosaics. The radiomet-
ric processing of the Micasense dataset was performed in Metashape as recommended by
Micasense (2020a). Micasense data was loaded into Metashape as a multispectral camera,
where the metadata of the images holding information about camera GPS data, calibration
parameters, and radiometric parameters is recognized by the software. For the reflectance
transformation, images of the camera’s reflectance panel taken before and after the flight
were automatically located and identified by Metashape. In the orientation processing, full
resolution images were used, number of the key points per image were 40,000, for tie points
per image were 4000 and self-calibration options were used. Additionally, to speed up
the orientation processing, preselection of image pairs was performed using downscaled
images and their location information. The GCPs were measured on the images manually.
Automatic outlier removal was performed on the basis of the residuals, as well as standard
deviations of the tie point 3D coordinates and some outlier points were removed manually
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from the point cloud. After that, all interior (IOP) and exterior orientation parameters
(EOP) and sparse point clouds were optimized. Next, dense point cloud calculation was
carried out using full-resolution images and the mild point filtering feature and a further
digital elevation model was calculated from that dense point cloud. Finally, orthomosaics
were calculated with a GSD of 4.5 cm for the Altum imagery (Area 4) and 8.4 cm for the
RedEdge-MX imagery (Areas 1–3) using the orthomosaic blending mode (Figure 2).
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2.4. Tree Segmentation

The study areas were measured using airborne laser scanning (ALS) on 31 May 2015
by the city of Helsinki. This openly available data was used for tree segmentation, because
of the better penetration capability of the laser pulses. The forests are not managed, thus,
there were no forest operations between the ALS and UAV data collections. A digital terrain
model (DTM) was developed based on ground points using a k-nearest neighbor approach
(k = 10) with an inverse-distance weighting. The power for inverse-distance weighting was
set to two. Then, the point cloud was height normalized by subtracting the ground height
from each point above ground.

A pit-free canopy height model (CHM) at 50 cm resolution was produced using the
height normalized point cloud and the CHM was smoothed using a focal mean filter with
a 3 × 3 window [33]. Tree canopies were detected from the CHM using a local maximum
filter with a minimum tree height of 3 m and a circular window with a diameter of 4 m.
Individual trees were segmented using the CHM and the detected tree canopies using an
algorithm developed by Dalponte and Coomes [34]. All the processing of the ALS data
was conducted using the LidR package within the R software package [35,36]. To account
for the difference between the timing of the tree segmentation and multispectral imagery,
missing trees were visually identified from the orthomosaics and removed.

2.5. Reference Tree Data Collection and Tree Vitality Classification

The reference tree data was collected for training remote sensing classifiers, first from
18 May 2020 to 25 May 2020 and again from 11 September 2020 to 17 September 2020 in
all the study areas (Table 1). In total, 466 reference trees were assessed in May and 556
in September. The trees were randomly selected based on the canopy condition aiming
at a normal distribution of different tree vitality statuses. However, this was found to
be challenging due to the lack of declined trees in some areas. The assessment focused
on living mature Norway spruces that were in the upper canopy layer (i.e., dominant
trees). Existing orthoimagery from the city of Helsinki was utilized in the field to locate
individual trees and the vitality of Norway spruces was assessed by an expert based on
the condition of the crown and the stem. The canopy was assessed based on the color of
foliage into six different classes (points 0–5): healthy green, slightly faded green, yellowish,
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yellow, reddish/brown and grey. We also assessed defoliation into five classes (points 0–4):
0–10%, 10–25%, 25–50%, 50–75% and 75–100%, and the size of the canopy was examined.
A significantly smaller canopy vertical size was considered as an indication of decline
(points 0–1). Points were given based on the condition so that a zero was given for the
healthiest class and one point for each class towards more severe symptoms. Stems were
also assessed for recent thin flows of resin (indicating a bark beetle infestation) and bark
structural damage into three classes (points 0–2): not detected, moderate damage and
severe damage.

A health classification of the reference trees was conducted based on the symptoms
assessed in the field by multiplying the points of canopy symptoms discoloration and
defoliation with 1.5 and summing all the points together for each tree (Table 2). The canopy
symptoms were weighted, because they are easier to detect from an aerial point of view.
Every tree that had a point rating of two or under was classified as a healthy tree and every
tree with more than two points was classified as a declined tree. In addition to healthy
and declined trees, dead trees (n = 203) were located and classified visually from the RGB
orthoimagery that was collected for the study. The trees having reddish, brown or grey
crowns were considered as dead trees.

Table 2. Number of trees used for field reference in each class in each study area used for developing
Random Forest models.

Spring Field Reference Fall Field Reference

Area Healthy Declined Dead Healthy Declined Dead

1 57 25 55 39 28 64
2 24 30 22 35 7 26
3 47 43 36 33 56 36
4 38 29 47 87 49 82

total 163 127 160 194 140 208

2.6. Multispectral Imagery Features

A set of statistical features were calculated for each tree using the calibrated multispec-
tral reflectance factor orthomosaics, which are referred to as spectral features in this paper.
To avoid the influence of shadows on the features, pixels that had a sum of reflectance factor
values of all bands of less than 0.1 were excluded from the analysis [25]. This threshold
was visually identified to reduce the number of shadows. The features (Table 3), that
describe the reflectance distribution, were calculated for the tree segments for each band
and for each normalized difference index (NDI) that were calculated for each pixel using
the following equation:

NDI1,2 = (ρ1 − ρ2)/(ρ1 + ρ2) (1)

where ρ is the wavelength. The NDI was calculated using different combinations of
wavelengths: NIR + red, red-edge + red, red + blue, red + green and NIR + red-edge.
The different NDI spectral features were calculated due to their ability to reduce the
effect of bidirectional reflectance distribution function on the measured values, which
are challenging to account for in reflectance calibration [37]. Additionally, the changes
in tree canopy reflectance spectrum can be assumed to affect the ratios between different
bands [25].
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Table 3. Description of statistical features that were calculated for each tree based on the multispectral
imagery (each band and normalized difference vegetation index (NDI)). The i depicts the band or
NDI used for calculating the feature.

Metric Description

i_mean Average reflectance factor
i_std Standard deviation of reflectance factors

i_p05, i_p10, i_p20, . . . i_p90, i_p95 Multiple-of-10 percentiles (10th through 90th) of the
reflectance factor distribution

i_max Maximum reflectance factor
i_min Minimum reflectance factor

i_kur Kurtosis of the reflectance factor distribution (Davies
and Goldsmith, 1976)

i_ske Skewness of the reflectance factor distribution (Davies
and Goldsmith, 1976)

i_entropy Shannon diversity index (entropy) of the reflectance
factor distribution (Shannon, 2001)

i_range Difference between maximum and minimum
reflectance factor

i_D05, i_D25, i_D50, i_D75 Density variables: the 95th percentile divided by 5th,
25th, 50th, and 75th percentiles, respectively.

2.7. Statistical Analysis

We used a t-test to investigate the difference in spectral reflectance factors between tree
vitality classes: healthy, declined and dead. p-value was used as a measure of significance
in difference. The t-test was also used to assess differences in spectral reflectance factors of
each tree vitality class between different areas. We used the mean value per tree segment of
each band and each calculated NDI to perform this assessment.

We used a machine learning algorithm, Random Forest, as a classification method for
classifying the different vitality classes due to its ability to handle high data dimensionality
and multicollinearity [38,39]. Vitality classification was conducted independently for the
May and September data. The datasets were randomly divided into a training set (75%)
and an independent test set (25%) using stratified sampling of each tree vitality class to
calculate the accuracy of the developed models. Model parameters were 1000 “decision
trees” (influences the stability of the model) and the maximum number of features was 19,
which is the square root of the total number of features [40]. Data division and Random
Forest classification was performed 30 times to assess the variation in the accuracy of
the models. The range of classification accuracies achieved is reported using the overall
classification accuracy, map-level image classification efficacy (MICE) and classification
accuracy of each tree vitality class [41]. MICE outputs a value that ranges between 0 and
1, where a zero value indicates an output as good as random classification and value of 1
indicates perfect classification. Variable importance was calculated for each Random Forest
model using mean decrease accuracy (MEA) and the mean of the MEA of all the 30 model
runs was calculated and reported.

Random Forest classifiers were also trained using each of the areas as a training dataset
and the other areas as test datasets to investigate the transferability of the developed
classifiers. In addition, a similar investigation was conducted for the areas that were found
to have the most similar spectral reflectance factors based on the conducted t-tests. Overall
workflow is presented in Figure 3.
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3. Results
3.1. Spectral Reflectance Factors of Different Vitality Classes

Average spectral reflectance factors of the different tree vitality classes showed signifi-
cant differences (p < 0.05) in both spring and fall datasets (Figure 4). The largest differences
in reflectance factors between the vitality classes were found in the blue and red bands.
Dead trees showed increased reflectance factors in the blue and red bands, but a decreased
reflectance factors in the red-edge and NIR bands in comparison to the healthy and declined
trees. The difference in reflectance factor between healthy and declined trees was greater in
the fall dataset. Declined trees there showed a significant increase in reflectance factors in
all bands except for the NIR band. In the spring dataset, the red-edge and NIR bands did
not show a significant difference.
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Figure 4. The mean and standard deviation (error bars) of spectral reflectance factors for each band
and tree vitality class for (A) spring and (B) fall dataset.

Considering reflectance factors of different areas (Appendix A), in the spring datasets,
the Area 3 had the lowest values and in the autumn datasets the Areas 1–2 had the lowest
values. These differences were most likely due to the non-optimal radiometric correction.
In Area 4, band 5 was brighter, relative to the other bands, than in the other areas. One
possible explanation for this could be that the datasets in Area 4 were collected using
the Micasense Altum while the other areas were collected using the Micasene RedEdge
M. In the spring dataset, in Area 4 the declined class appeared to have lower reflectance
factors than the healthy class, which is opposite to all other datasets. We could not find any
explanation for this behavior.

The results revealed differences in the similarity of spectral reflectance factors between
different areas (Figure 5). The areas that were closer to each other showed better similarity
in the spectral reflectance factors. The t-tests showed that Areas 1 and 2 had on average
smaller differences in spectral reflectance factors than each of Areas 3 and 4. Similarly,
Areas 3 and 4 showed smaller differences in spectral reflectance factors between each other
for the spring data, but not the fall data.

The similarity values between areas varied in spring and autumn. On average, greater
similarity in spectral reflectance factors between areas was observed for the fall data than
the spring data. However, the spectral reflectance factors were more similar between Areas
3 and 4 for the spring data.

3.2. The Prediction of Tree Vitality Classes

The repeated Random Forest model runs with all the areas pooled and with each area
separately revealed some variation in model accuracy (Table 4). The overall accuracy of
the tree vitality predictions varied between 73.9% and 89.1% for the spring dataset and
between 83.5% and 87.2% for the fall dataset. The MICE values varied between 0.58 and
0.82 for the spring dataset and between 0.72 and 0.78 for the fall dataset.
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Figure 5. The results of t-tests between spectral reflectance features of different areas of the spring (A)
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Class accuracies showed variation between classes (Table 5). The highest prediction
accuracies were achieved for the dead trees with a mean of 95.7% and 98.7% for spring
and fall datasets, respectively. Healthy trees were identified with a mean accuracy of 80.4%
and 82.8% for the spring and fall datasets, respectively. Declined trees showed the lowest
detection accuracies, with mean accuracies of 54.2% and 64.4% for the spring and fall
datasets, respectively. The poorest results were obtained for the declined class in the Fall_2
datasets that had a remarkably low number of reference trees. The predicted tree vitality
maps for each area and each dataset can be observed in the Appendix A.
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Table 4. Minimum (min), maximum (max) and mean of overall accuracy and MICE value for Random
Forest tree vitality class predictions for spring and fall datasets for all the areas together and each
area separately. All depicts that all areas were pooled into one dataset and the number depicts the
area number that was used as a separate dataset. Fall dataset of area 2 contained too few declined
trees for accuracy assessment. The cases with the best overall accuracy in the spring and fall datasets
are bolded.

Overall Accuracy (%) MICE Value

Min–Mean–Max Min–Mean–Max

Spring All areas 69.3–78.2–88.6 0.58–0.66–0.75
Area 1 80.0–89.1–97.1 0.67–0.82–0.93
Area 2 65.5–73.9–86.2 0.48–0.61–0.79
Area 3 65.6–80.5–90.6 0.49–0.72–0.85
Area 4 65.5–73.9–86.2 0.47–0.58–0.77

Fall All areas 77.2–84.5–89.0 0.64–0.76–0.82
Area 1 69.7–83.5–97.0 0.58–0.72–0.90
Area 2 76.5–86.7–94.1 0.62–0.77–0.85
Area 3 75.0–85.3–93.8 0.63–0.76–0.84
Area 4 78.2–87.2–92.7 0.66–0.78–0.86

Table 5. Minimum (min), maximum (max) and mean of class accuracies for the Random Forest
models for spring and fall datasets for all the areas together and each area separately. Fall dataset of
area 2 contained too few declined trees for accuracy assessment.

Healthy Declined Dead

Min–Mean–Max Min–Mean–Max Min–Mean–Max

Spring All areas 64.1–80.4–95.0 31.0–54.2–68.8 86.4–95.7–100
Area 1 73.7–91.4–100 0.0–58.7–100 100–100–100
Area 2 12.5–57.7–100 11.1–46.9–100 50.0–86.6–100
Area 3 50.0–76.8–100 33.3–70.4–100 88.9–98.0–100
Area 4 44.4–65.4–100 14.3–51.1–100 78.6–95.6–100

Fall All areas 67.4–82.8–92.7 45.0–64.4–82.9 95.9–98.7–100
Area 1 40.0–82.8–100 16.7–55.7–100 92.3–98.9–100
Area 2 76.9–92.2–100 0.0–8.0–100 100–100–100
Area 3 45.5–69.3–88.9 71.4–85.0–100 92.3–99.5–100
Area 4 76.2–88.5–100 38.5–65.4–90.9 94.4–99.2–100

3.3. Transferability of the Random Forest Classifiers between Areas

We tested how the tree vitality classification models are transferable between different
areas using a single area as training data and predicting the tree vitality classes for other
areas. The overall accuracies of the predictions (Table 6) were lower than when all the
areas used in the prediction models, ranging between 59.3% and 80.1%. However, larger
differences were found in the class accuracies (Table 7). Generally, the dead trees were
accurately classified with class accuracies above 92% for all models, but healthy and
declined trees showed high variability in their class accuracies depending on the area that
was used for training the model. Most of the trained RF models classified healthy trees with
decent accuracies, but very low classification accuracies were achieved when Area 4 was
used for training the model. Generally, the classification accuracy of healthy and declined
trees was not stable with few exceptions. The fall dataset of area 3 and spring dataset of
area 1 resulted in a more balanced classification accuracy of healthy and declined trees, but
fewer than 68% of the trees were correctly classified. The healthy, declined and dead class
accuracies were for the spring dataset 93.1%, 18.0% and 95.0%, respectively, and for the fall
dataset 65.1%, 63.7%, and 98.8%, respectively. More accurate results were achieved when
using those areas for training and testing that were identified as similar in the analysis
of spectral similarity in Section 3.1. In these comparisons the overall accuracies were
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68.5–83.7%. The classification accuracies for the cases with the highest overall accuracies
were 95.1, 45.5 and 96.2%, for the healthy, declined and dead classes, respectively, in spring
and 71.0, 78.6, 99%, respectively, in fall.

Table 6. Minimum (min), maximum (max) and mean of overall accuracy and MICE value for Random
Forest tree vitality class predictions using one area to train the model and other areas as test areas.
The numbers depict which areas were used for training and testing. The cases with the best overall
accuracy in the spring and fall datasets are bolded.

Training Dataset Test Dataset(s) Overall Accuracy (%) MICE Value

Min–Mean–Max Min–Mean–Max

Spring 1 2, 3 & 4 63.3–64.2–65.2 0.46–0.47–0.47
2 1, 3 & 4 60.2–61.9–63.7 0.41–0.42–0.44
3 1, 2 & 4 73.4–74.5–75.8 0.60–0.61–0.63
4 1, 2 & 3 59.3–60.6–61.4 0.39–0.40–0.42
1 2 74.2–75.0–75.6 0.36–0.39–0.42
2 1 67.6–68.5–69.3 0.35–0.39–0.41
3 4 80.8–81.6–82.1 0.72–0.73–0.74
4 3 70.0–70.6–71.3 0.60–0.60–0.61

Fall 1 2, 3 & 4 74.2–75.8–77.4 0.62–0.63–0.66
2 1, 3 & 4 71.5–72.0–72.2 0.57–0.58–0.58
3 1, 2 & 4 77.0–78.7–80.1 0.65–0.67–0.69
4 1, 2 & 3 66.1–66.1–66.1 0.49–0.49–0.49
1 2 80.8–81.7–82.7 0.71–0.73–0.74
2 1 75.3–75.5–75.7 0.63–0.65–0.66
3 4 82.1–83.7–84.7 0.74 –0.75–0.76
4 3 79.7–79.7–79.7 0.69–0.69–0.69

Table 7. Minimum (min), maximum (max) and mean of class accuracies for the Random Forest
models for spring and fall datasets using one area to train the model and the other areas as test areas.
The number depicts which area was used for training.

Training
Dataset

Test
Dataset(s) Healthy Declined Dead

Min–Mean–
Max

Min–Mean–
Max

Min–Mean–
Max

Spring 1 2, 3 & 4 45.9–47.6–49.5 44.1–46.9–49.0 98.1–98.1–98.1
2 1, 3 & 4 28.9–30.5–35.2 57.7–63.4–69.1 92.0–93.3–94.2
3 1, 2 & 4 89.1–93.1–95.8 14.3–18.0–22.6 93.6–95.0–96.0
4 1, 2 & 3 12.5–15.1–17.2 72.5–75.4–77.6 99.1–99.1–100
1 2 64.5–65.6–67.5 55.1–57.5–59.1 98.8–98.8–98.8
2 1 39.2–40.7–42.8 69.3–72.4–76.4 93.1–94.3–95.0
3 4 92.8–95.1–97.0 44.1–45.5–47.2 95.6–96.2–97.5
4 3 33.1–34.7–36.1 79.5–81.1–82.7 99.4–99.4–100

Fall 1 2, 3 & 4 87.7–88.5–89.0 22.3–28.2–33.9 99.3–99.3–99.3
2 1, 3 & 4 97.5–98.9–99.4 3.0–3.0–3.8 98.9–98.9–98.9
3 1, 2 & 4 59.0–65.1–67.7 59.5–63.7–66.7 98.8–98.8–98.8
4 1, 2 & 3 0–0–0 97.8–97.8–97.8 99.2–99.2–99.2
1 2 90.2–90.7–90.7 39.3–42.8–46.4 99.5–99.5–99.5
2 1 98.5–99.1–99.5 0.08–0.08–0.08 99.0–99.0–99.0
3 4 65.5–71.0–74.7 76.4–78.6–80.7 99.0–99.0–99.0
4 3 44.9–44.9–44.9 98.6–98.6–98.6 99.5–99.5–99.5

3.4. Variable Importance in Tree Vitality Class Predictions

The most important variables in predicting tree vitality class were in NDI spectral
features (Table 8). NDIedge-red spectral features showed the highest importance for both
spring and fall datasets. The most important features also included spectral features from
NDIred-NIR and NDIred-green.
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Table 8. Mean of decrease accuracy for tree vitality Random Forest model variables with all the areas
pooled. Normalized difference vegetation index (NDI) was calculated from the bands mentioned in
the subscript.

Spring Fall

Spectral Feature Mean Decrease
Accuracy Spectral Feature Mean Decrease

Accuracy

NDIedge-red_p40 11.2 NDIedge-red_p10 11.1
NDIred-NIR_D50 11.1 NDIedge-red_p20 11
NDIedge-red_p30 10.4 NDIedge-red_p05 10.7
NDIedge-red_p50 10.1 NDIedge-red_p30 10.0
NDIedge-red_p20 9.6 NDIedge-red_p40 9.5
NDIedge-red_p10 9.4 NDIred-green_p50 9.1
NDIred-green_p50 9.0 NDIred-green_p40 9.0
NDIedge-red_p60 9.0 NDIred-green_mean 8.8
NDIred-green_p60 8.7 NDIred-NIR_p95 8.4

NDIedge-red_mean 8.7 NDIred-green_p60 8.3

4. Discussion

The aim of this study was to investigate the capabilities of UAV-based multispectral
imagery in detecting declined trees at two different data collection times when bark beetle
infestation had separate active statuses based on a life cycle of the species. Further, we
aimed to compare the effect of data acquisition timing on the detection accuracy of declined
trees. We hypothesized that the data acquisition timing and tree phenology affect the
detection accuracy of declined trees. We also investigated the transferability of the trained
Random Forest models in the detection of tree decline classes between the four study areas.
To test how data acquisition timing and phenology affects the detection accuracy of declined
trees, we developed a Random Forest based classification approach for classifying Norway
spruces into various health classes, including healthy, declined and dead. The average
overall accuracy and MICE value were 78.2% and 0.66, respectively, in spring and 84.5%
and 0.76, respectively, in fall. When considering all the study areas, the mean accuracies of
the healthy, declined and dead classes were 80.4%, 54,2% and 95.7%, respectively, for the
spring dataset, and 82.8%, 64.4% and 98.7%, respectively, for the fall dataset. Considering
the area-specific results, the best results were 91.4%, 58.7% and 100%, respectively, in Area
1 in spring, and 88.5%, 65.4% and 99.2%, respectively, in Area 4 in fall. Based on our results,
it seems that data acquired during fall or the end of summer before winter dormancy
provides more accurate tree vitality classification compared to data acquired during the
spring.

There were differences between spring and fall reflectance factors, which were at least
partially due to the non-optimal radiometric correction. In Area 4, band 5 was brighter
in relation to the other bands than in the other areas. One possible explanation for this
could be that in datasets in Area 4 were collected using the Micasense Altum while the
other areas were collected using the Micasene RedEdge M. In the spring dataset, Area 4
the declined class appeared to have lower reflectance factors than the healthy class, which
is opposite to all other datasets. We could not find any explanation for this behavior. The
differences in reflectance factors are also a likely explanation to the high importance of NDI
type reflectance features in classifying tree vitality classes, because vegetation indices are
able to partly reduce the effect of varying illumination conditions. The NDIedge-red spectral
features showed the highest importance in classifying tree vitality in both spring and fall
datasets; thus, the feature selection was similar between the data acquisition timings.

The results of this study were in line with previous studies that used UAV-imagery for
monitoring of tree vitality conditions. For example, Näsi et al. [25] obtained with the SVM
classifier using hyperspectral images, collected in August, showing producer’s accuracies
of 89%, 47% and 58%, for healthy, infested and dead classes, respectively. When using the
independent test dataset, the leave-one-out producer’s accuracies were 86%, 67% and 81%,
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respectively. The results of this study are also in line with the study of Kloucek et al. [27]
where the best results were obtained in the end of the infestation period (overall accuracy:
96%) 78%–96% with a Maximum Likelihood classifier with less than 55 reference trees. In
the study of Honkavaara et al. [42], there was not such a high difference in classification
accuracies between different dates. The comparison to this study is not as straightforward
since the time span was shorter (August–October), when all trees stayed in the green-attack
phase during the data collection period, indicating a low colonization rate. Further, many
trees in the area were suffering from root rot. Potential explanations for the better accuracies
in the present study were the larger number of reference trees that managed to explain the
data more comprehensively as well as the potentially better performance of the Random
Forest classifier than SVM or Maximum Likelihood classifiers.

Considering the data collection timing and phenology aspects, it appeared that the fall
dataset provided better results than the spring dataset. For example, the overall accuracy
for the combined classifier was 78.2% in spring and 84.5% in fall and the corresponding
averages for the area-specific classifiers were 79.4% and 85.7%. Similar conclusions could
be obtained from the analysis of the health classification results. The better results in fall
could be explained by the smaller deviation in the autumn dataset as the spectral response
of the new growth approaches the response of the growth in earlier years, whereas in
spring the varying amount of bright green colour causes variability for the spectral values.
The growth of needles and leaves was only starting in the spring dataset, thus, there may
be considerable variation in the spring phenology of individual trees due to differences
in microclimate, soil temperature and aspect in relation to the sun, which could cause
increased variation in spectral responses.

The illumination conditions influence the reflectance factors due to the anisotropic
behaviour of the canopy reflectance. The solar elevation was 35.7–49.3◦ in the spring dataset
and 23.2–31.9◦ in the fall dataset, the larger variation in the spring dataset might have
contributed to the larger reflectance factor differences in comparison to the fall dataset.
Furthermore, the illumination conditions varied between mostly cloudy and completely
sunny, which could also have an impact. For example, the large solar elevation differences
of 24.9–31.44◦ and variation from mostly cloudy to sunny conditions might have caused the
great differences in the comparison for fall datasets of Area 3 and 4. The best similarities
were obtained between Area 1 and 2, which were captured in sunny conditions within
two hours in spring as well as in mostly sunny conditions and only with approx. 5◦ solar
elevation difference in fall.

We also investigated the transferability of the developed RF-model in classifying
tree decline classes. The best overall accuracies of the transformed models were 74.5%
and 78.7%, and the best MICE values were 0.61 and 0.67, respectively, for the spring and
autumn, and these were obtained using the Area 3 data to train the classifier, which might
be due to forest structural and spectral similarity to other areas. When training and testing
with the datasets observed to be statistically similar, the results improved, providing the
best overall accuracy of 81.6% and 83.7% and MICE values of 0.73 and 0.75, respectively
to the spring and fall datasets. Although the results seem promising, they were not stable
and further improvements in the methodology are needed to make this approach more
reliable. Particularly, there appeared quite large differences in reflectance values in different
datasets, which were likely to be at least partially due to the non-modelled factors in the
radiometric processing of the standard radiometric processing chain that was used in this
study. The recent review by Aasen et al. [43] suggested various techniques for radiometric
processing. The state-of-the-art techniques provide tools for atmospheric correction [44,45].
However, the methods for accounting for the reflectance anisotropy are still missing from
most of the presented processing chains; one of the existing solutions is the radiometric
block adjustment presented by Honkavaara et al. [46]. By solving the deviations caused
by the illumination, the amount of reference data for the classifiers could be decreased
and this way better efficiency could be obtained for the tree vitality mapping processes.
It is also interesting to notice that there were not great differences between the results of
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the combined classifier or the average/median values from the separate area classifiers.
This indicates that the Random Forest could explain differences due to solar elevations
and illumination conditions. However, in further studies also the novel algorithms such
as convolutional neural networks and the deep learning techniques will be of interest.
For example Safonova et al. [32] obtained promising results by using a RGB camera for
classifying tree decline classes caused by a bark beetle (P. proximus) in fir forest.

We assigned various trees having symptoms to the “declined” class, thus we did
not separate the spruces in the “green-attack” phase and the more yellowish phases. We
will continue the analysis to evaluate if the “green-attacked” trees could be separated
from the other phases, which would enable the efficient management of the bark beetle
infestation, e.g., by enabling sanitation cutting of colonized trees before the swarming of the
following generation. Particularly the novel narrow-band hyperspectral sensors suitable for
UAVs are highly promising tools for identifying small changes in tree vitality even before
they can be observed via visual assessment of the crown as stated Einzmann et al. [47]
using hyperspectral needle reflectance measured in the ground and hyperspectral crown
reflectance measured from aircraft. Utilizing the proposed approach, it will be possible
to generate tree vitality maps cost efficiently from forest areas. By optimizing the timing
of data collection, one can improve tree decline classification accuracy, and transferable
machine learning models increase the cost-efficiency of UAV-based tree decline monitoring.
The information on tree decline is also relevant for developing risk models to estimate
potential forthcoming disturbance and knowledge considering the distribution spread
of the bark beetle infestation in forests. The frequent maps will provide information for
decision makers and forest managers to support their forest management towards climate
and pest insect resilient forests.

5. Conclusions

The use of UAV-multispectral data for classifying tree vitality to dead, attacked, and
healthy classes was explored using data collected in spring and fall to investigate the effect
of acquisition timing on classification results. We found that data acquisition in the fall
(early September in this case) resulted in more accurate tree vitality classification indicating
that multispectral image data has more value for tree vitality mapping in the end of the
growing season. We conclude that multispectral UAV-based imagery provides benefits for
mapping spruce tree decline when acquired close to end of season compared to imagery
acquired during spring.

Moreover, the transferability of the trained RF-models was investigated by applying
the trained models to a sub-study area to others and vice versa. When we tested the
transferability of tree decline detection classifiers between the study areas, the obtained
classification accuracies decreased only slightly. However, the obtained classifications were
not stable and further improvements in the methodology are needed to make transferability
more reliable.
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Appendix A

The appendix contains figures of spectral reflectance factors of each tree vitality class
for each area and each data collection (spring: Figure A1, fall: Figure A2) and maps of
classified tree vitality (healthy, declined and dead) for each area and each data collection
(Figures A3–A10).
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Figure A1. The mean and standard deviation (error bars) of spectral reflectance for each band and 
tree vitality class for each area in the spring dataset. 

Figure A1. The mean and standard deviation (error bars) of spectral reflectance for each band and
tree vitality class for each area in the spring dataset.
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Figure A2. The mean and standard deviation (error bars) of spectral reflectance for each band and 
tree vitality class for each area in the fall dataset. 

Figure A2. The mean and standard deviation (error bars) of spectral reflectance for each band and
tree vitality class for each area in the fall dataset.
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Figure A3. Tree vitality classification to healthy, declined and dead classes for the spring data col-
lection for Area 1 with RGB orthomosaic of the fall dataset in the background. 
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collection for Area 1 with RGB orthomosaic of the fall dataset in the background.
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for Area 1 with RGB orthomosaic of the fall dataset in the background. 
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Figure A5. Tree vitality classification to healthy, declined and dead classes for the spring data col-
lection for Area 2 with RGB orthomosaic of the fall dataset in the background. 
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Figure A6. Tree vitality classification to healthy, declined and dead classes for the fall data collection 
for Area 2 with RGB orthomosaic of the fall dataset in the background. 
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Figure A7. Tree vitality classification to healthy, declined and dead classes for the spring data col-
lection for Area 3 with RGB orthomosaic of the fall dataset in the background. 
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collection for Area 3 with RGB orthomosaic of the fall dataset in the background.
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Figure A8. Tree vitality classification to healthy, declined and dead classes for the fall data collection 
for Area 3 with RGB orthomosaic of the fall dataset in the background. 
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Figure A9. Tree vitality classification to healthy, declined and dead classes for the spring data col-
lection for Area 4 with RGB orthomosaic of the fall dataset in the background. 
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Figure A10. Tree vitality classification to healthy, declined and dead classes for the fall data collec-
tion for Area 4 with RGB orthomosaic of the fall dataset in the background. 

Figure A10. Tree vitality classification to healthy, declined and dead classes for the fall data collection
for Area 4 with RGB orthomosaic of the fall dataset in the background.
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