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Multispectral imaging using a single 
bucket detector
Liheng Bian1, Jinli Suo1, Guohai Situ2, Ziwei Li1, Jingtao Fan1, Feng Chen1 & Qionghai Dai1

Existing multispectral imagers mostly use available array sensors to separately measure 2D data 
slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum 
range and high cost. To address these issues, we propose to conduct multispectral imaging using a 
single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low cost, 
small size and light weight. Technically, utilizing the detector’s fast response, a scene’s 3D spatial-
spectral information is multiplexed into a dense 1D measurement sequence and then demultiplexed 
computationally under the single pixel imaging scheme. A proof-of-concept setup is built to capture 
multispectral data of 64 pixels × 64 pixels × 10 wavelength bands ranging from 450 nm to 650 nm, with 
the acquisition time being 1 minute. The imaging scheme holds great potentials for various low light 
and airborne applications, and can be easily manufactured as production-volume portable multispectral 
imagers.

Multispectral imaging is a technique capturing spatial-spectral data cubes of scenes, which contain a set of 2D 
images under di�erent wavelengths. With both spatial and spectral resolving abilities, it is extremely useful and 
vital for surveying scenes and extracting detailed information1. Existing multispectral imagers mostly utilize 
dispersive optical devices (e.g., prism and di�raction grating) or narrow band �lters to separate lights of di�erent 
wavelengths, and then use an array detector to record them separately2–4. Utilizing compressive sensing tech-
niques, multispectral images can be multiplexed together to reduce requisite number of shots5. Another kind of 
multispectral imaging method is the Fourier spectroscopy technique6. �is approach uses an interferometer to 
divide the incoming beam into two halves, and change their optical path di�erence to generate varying interfer-
ence intensities at each spatial point. �en spectral information can be extracted by applying Fourier transform to 
these intensities measured by an array detector. Despite diverse principles and setups of the above multispectral 
imaging methods, photons are detected separately either in the spatial or spectral domain using array detectors. 
�erefore, these multispectral imagers are photon ine�cient and spectrum range limited. Besides, they are usu-
ally bulky4 and highly expensive (for example, more than $50,000 for a NIR-SWIR multispectral imager7). �ese 
disadvantages prevent them from wide practical applications.

Di�erently, single pixel imaging (SPI)8,9 provides a promising scheme being able to address the above issues 
of existing multispectral imaging instruments. Using a bucket detector instead of expensive and bulky CCD or 
CMOS, SPI systems are low cost, compact, and own wider spectral detection range10. Besides, SPI collects all the 
lights interacted with the target scene into a single detection unit, and thus is more photon e�cient11–13. What’s 
more, SPI is �exible, meaning that it attaches no requirement on the light path between the target scene and the 
detector, providing that all the interacted lights arrive at the detector14. In the past years, SPI has achieved great 
success in 2D imaging and various applications15–20.

To produce the advantages of SPI in multispectral imaging, there are two intuitional ways. One is to resolve the 
spectra of collected lights at the detector. Existing such methods include i) directly replacing the bucket detector 
with a spectrometer21,22, and ii) using light �lters23,24 or dispersive optical devices10,25 to separate lights of di�erent 
wavelengths before separately measuring them. Another straightforward way is to directly extend the 2D spatial 
modulation in conventional SPI to 3D spatial-spectral modulation using two spatial light modulators. However, 
this would largely increase requisite projections11 and corresponding computation complexity for reconstruction. 
In a word, since a single bucket detector cannot distinguish di�erent spectra, the above methods need either high 
commercial cost or geometrically increased projections and computational cost for multispectral imaging.

In this paper, we propose a novel multispectral imaging technique utilizing SPI, termed as multispectral single 
pixel imaging (MSPI), without increasing requisite projections and capturing time compared to conventional 
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SPI. �e main di�erence between MSPI and conventional SPI is illustrated in Fig. 1. Utilizing the fact that the 
response speed of a bucket detector (MHz or GHz) is magnitudes faster than that of a spatial light modulator (no 
higher than KHz)15,23,26, we encode the target scene’s spectral information into this speed gap. Speci�cally, the 
proposed MSPI technique introduces spectrum-dependent sinusoidal intensity modulation to illumination dur-
ing the elapse of each spatially modulated pattern. �us, di�erent spectrum bands are multiplexed together into a 
1D dense measurement sequence of the bucket detector in a frequency-division multiplexing manner. Since the 
response signals of di�erent wavelength bands display distinct dominant frequencies in the Fourier domain, we 
conduct a simple Fourier decomposition to separate the multispectral response signals from each other. �en a 
compressive sensing algorithm8 is separately applied to these signals of di�erent wavelength bands to reconstruct 
the latent multispectral images. �e spectral multiplexing and demultiplexing based on Fourier decomposition 
can suppress system noise e�ectively, and thus produces high robustness to measurement noise and ensures high 
reconstruction quality.

MSPI owns a lot of potential applications in various �elds of science. Due to its high photon e�ciency and 
robustness to noise which bene�t from the spatial-spectral multiplexing and demultiplexing27, MSPI owns more 
advantages when used in low light conditions, such as �uorescence microscopy28 and Raman imaging12. Besides, 
the utilized SPI scheme enables MSPI systems to be of compact size and low weight compared to conventional 
multispectral imagers. �is is bene�cial for a lot of airborne applications, including geologic mapping, mineral 
exploration, agricultural assessment, environmental monitoring, and so on29. Moreover, MSPI applies to a wide 
spectral range and is of low cost (the same price level as commercial projectors), and thus can be manufactured as 
production-volume portable devices for daily use.

Results
Experimental setup. MSPI builds on the SPI scheme. In SPI, the incident uniform illumination from a bulb 
is patterned by a spatial light modulator (SLM), and then projected onto the target scene to encode its spatial 
information. Simultaneously, a bucket detector is used to record the multiplexed lights. Finally, a compressive 
sensing algorithm8 is applied to retrieve the scene’s spatial information. Under a similar architecture, MSPI adds 
additional spectral modulation to the incident illumination patterns to further resolve the target scene’s spectral 
information. Integrating both the spatial and spectral modulation, MSPI can resolve a spatial-spectral 3D data 
cube of the target scene from the bucket detector’s 1D measurement sequence.

We built a proof-of-concept setup to validate the functionality of MSPI, as shown in Fig. 2. A broadband light 
source (Epson white 230 W UHE lamp) is converged and collimated via a set of optical lenses for succeeding 
modulation. For spatial modulation, we use a digital micromirror device (DMD, Texas Instrument DLP Discovery 
4100 DLP7000), which can spatially modulate incident light and switch binary patterns at a given frequency 
(20 kHz of maximum) with clean-cut pattern transition. At this stage, the spatial illumination pattern’s light inten-
sity is temporally constant, as visualized in the top right inset in Fig. 2. �en the illumination pattern goes through 
a projector lens (Epson, NA 0.27) for subsequent spectral modulation. �e spectral modulation module is similar 

Figure 1. Illumination’s di�erence between conventional single pixel imaging (SPI)  and the proposed 
multispectral single pixel imaging (MSPI). Due to the response speed gap between a bucket detector (MHz 
or GHz) and a spatial light modulator (no higher than KHz), the detector can collect a dense sequence of 
measurements during the elapse of each spatially modulated illumination pattern. In conventional SPI, given a 
spatial pattern, its light intensity and corresponding measurements are constant. �us no spectral information 
can be extracted from the measurement sequence. Di�erently, both the illumination’s intensity and the 
measurements are time-varying in MSPI, because the light’s intensity of each spectral component changes 
sinusoidally over time with di�erent periods. �us we multiplex the target scene’s spectral information into 
the measurement sequence during the elapse of each spatial pattern, and can use Fourier decomposition to 
demultiplex these spectral information. �is is the main di�erence between conventional SPI and the proposed 
MSPI.
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to the agile multispectral optical setup in ref. 30, with the light path displayed in the top middle inset. Speci�cally, 
an optical transmission grating (600 grooves, 50 mm ×  50 mm) is placed on the focal plane of the illumination 
pattern. �en a convex lens collects the �rst order dispersed spectrum from the grating, and focuses it onto the 
rainbow plane, where a round �lm printed with sinusoidal gray annuluses owning di�erent periods is placed for 
spectral modulation. �e rainbow spectrum stretches along the �lm’s radius. Driven by an electric motor rotating 
at a constant speed (around 6000 r/min), the �lm realizes a wavelength-dependent sinusoidal intensity modula-
tion to the spectrum, i.e., di�erent wavelength bands own di�erent temporally sinusoidal intensity variations, as 
visualized in the top le� inset of Fig. 2. A�er both the spatial and spectral modulation, the illumination pattern 
interacts with the target scene, and the correlated lights are recorded by a bucket detector (�orlabs PDA100A-EC 
Silicon photodiode, 340–1100 nm) together with a 14-bit acquisition board (ART PCI8514). For reconstruction, 
as displayed in the bottom right inset of Fig. 2, we �rst conduct spectral demultiplexing using Fourier decompo-
sition (fast Fourier transform whose computation complexity is  n n( log )), and then reconstruct multispectral 
images using the linearized alternating direction algorithm31 (computation complexity is  n( )

3 ) to solve the com-
pressive sensing model8. Readers are referred to the Methods section for reconstruction details.

In the following experiments, 3000 spatially modulated random patterns (each owning 64 ×  64 pixels) are 
sequentially projected onto the target scene. �e frame rate of DMD is set to be 50 Hz, and the sampling rate of 
the bucket detector is 100 kHz. We utilize the novel self-synchronization technique in ref. 26 to synchronize the 
DMD and the detector. In all, it takes around 1 minute for data acquisition.

Multispectral imaging results of MSPI. We �rst apply the proposed MSPI technique to capture mul-
tispectral images of a scene with rich color, to demonstrate its e�ectiveness. Here we use a printed “CIE 1931 color 
space” �lm (45 mm ×  45 mm) owning a wide spectrum range (see Fig. 3(a)) as the target scene. In this experi-
ment, the rainbow spectrum ranges from 450 nm to 650 nm, with the length being around 23 mm. We discretize 
the rainbow spectrum into 10 narrow bands by printing 10 2 mm annular rings onto the spectral modulation �lm, 
with their sinusoidal periods varying from 2 to 20 (as shown in Fig. 3(b)).

Given an exemplar spatial pattern, the recorded measurement sequence from the bucket detector is plotted 
in Fig. 3(c), and its corresponding Fourier coe�cients are displayed in Fig. 3(d). One can see that there exist sev-
eral dominant peaks in the Fourier domain, which locate at corresponding spectral modulation frequencies (the 

Figure 2. Schematic of the proposed multispectral single pixel imaging (MSPI) system. �e broadband 
light from a bulb is spatially modulated by a spatial light modulator (SLM) to generate a series of 2D 
random illumination patterns. Next, the spectra of these 2D patterns are stretched into a rainbow stripe 
using a di�raction grating and a set of lenses. �en the rainbow spectra are modulated by a rotating �lm 
before transformed back to 2D spatial patterns. A�er both the spatial and spectral modulation, the incident 
illumination is tailored structurally in three dimensions—random in the 2D spatial dimensions and sinusoidal 
along the spectral dimension. �en the patterns illuminate the target scene to encode both its spatial and 
spectral information. Finally a bucket detector is utilized to record the correlated lights. In the subsequent 
reconstruction process, di�erent spectral response signals are decoded by Fourier decomposition, while the 
spatial information are demodulated by a compressive sensing based reconstruction algorithm. Details of the 
modulations and demodulations are shown in the insets.
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60 Hz peak comes from lamp �icker due to voltage �uctuations). �ese peaks’ magnitudes are exactly the response 
signals’ strengths of corresponding spectrum bands. �e other small �uctuations of the Fourier coe�cients are 
caused by system noise. From this we can see that although these multispectral response signals are corrupted 
with system noise in the temporal domain, they are clearly distinguished in Fourier space. �erefore, we can easily 
demultiplex the multispectral response signals from each other and suppress system noise by a simple Fourier 
decomposition (see the Methods section for more details). �e demultiplexed results are shown in Fig. 3(e). �e 
frequencies match exactly with the sinusoidal annuluses printed on the �lm. A�er the spectral response signal 
demultiplexing, we can recover the target scene’s images at each wavelength band using a compressive sensing 
based algorithm. For spectral normalization, we place a Zolix OmniC 300 monochromator between the light 
source and the bucket detector as a �lter to pre-calibrate the incident light’s spectrum and the detector’s spectral 
response (see Supplementary Figure 5), and use them to normalize the reconstructed images. �e �nal recon-
structed multispectral images are shown in Fig. 3(f), which have been integrated with the Canon EOS 5D MarkII 
camera’s RGB response curves32 (see Supplementary Figure 6) for better visualization. �e positive results validate 
the e�ectiveness of the proposed MSPI.

Quantitative analysis on the performance of MSPI. To quantitatively demonstrate the performance 
of MSPI, we acquire multispectral data of an X-Rite standard color checker (see Fig. 4(a)) using MSPI, and con-
duct quantitative analysis on the reconstruction accuracy. In the implementation, we introduce a pair of cylinder 
mirrors to match the shape of the incident light beam with that of the color checker (125 mm ×  90 mm). For each 
swatch on the checker, we average all the pixels’ reconstructed spectra as the swatch’s reconstructed spectrum. �e 
reconstruction error in terms of root mean square error among the 10 spectral bands is calculated for each swatch, 
and the results of all the 24 swatches are shown in Fig. 4(b). For more direct comparison, we show the spectrum 
comparison between the reconstruction and the ground truth of several representative swatches in Fig. 4(c). From 
the small deviations compared to the ground truth, especially the ones with relatively large reconstruction error 
(e.g., ‘Orange’ and ‘Yellow’), we can see that the reconstructed spectra of the swatches are well compliant with the 
ground truth. �is experiment further validates the high reconstruction accuracy of MSPI, which bene�ts from 
the high precision of the spectral demultiplexing (clear-cut discrimination between the Fourier coe�cients of 
signals and noise), as well as the optimization algorithm for reconstruction.

Discussion
�is paper proposes a novel multispectral imaging technique using a single bucket detector, termed as multispec-
tral single pixel imaging (MSPI). Making use of the speed gap between slow spatial illumination patterning and 
fast detector response, MSPI extends conventional 2D spatial multiplexing to 3D spatial-spectral multiplexing 
via temporally sinusoidal spectral modulation within the elapse of each spatial pattern. �is technique success-
fully resolves the target scene’s multispectral information without introducing additional acquisition time and 

Figure 3. Multispectral imaging results of a color scene by MSPI. (a) is the target color scene, i.e., a printed 
�lm of the CIE 1931 color space. (b) is the spectral modulation �lm used in our setup. �e rainbow spectrum is 
converged along the radius of the �lm, thus di�erent wavelength bands are modulated with di�erent sinusoidal 
periods as the �lm rotates. (c) shows an exemplar recorded 1D measurement sequence corresponding to a 
speci�c spatial pattern. (d) is the Fourier decomposition of the measurements, which exhibits several dominant 
frequencies. �e coe�cients of these dominant frequencies are exactly the response signals’ strengths of 
corresponding wavelength bands. (e) shows the decomposed sequences of di�erent spectrum bands, and (f) 
presents the �nal reconstructed multispectral images (each owning 64 ×  64 pixels) corresponding to 10 narrow 
bands ranging from 450 nm to 650 nm.
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computational complexity compared to conventional 2D SPI. It holds great potentials for developing cheap, com-
pact and high-photon-e�ciency multispectral cameras.

Speci�cations of the spectral modulation module in MSPI setups are �exible and can be easily customized. 
First, the width of the printed annuluses on the spectral modulation �lm can be adjusted for di�erent spectral 
resolutions. Narrower annulus results in higher spectral resolution. Second, we can also use a di�raction grat-
ing with denser grooves to lengthen the rainbow stripe and thus raise the spectral resolution. One can refer to 
Supplementary Material 1.1 for more discussions about MSPI’s spectral resolution. �ird, the spectral multi-
plexing mode can change easily by designing other �lm graphs. �e sinusoidal spectral modulation utilized in 
current MSPI system is adopted due to its simplicity and robustness to noise. We refer readers to ref. 11 for more 
multiplexing methods.

Recalling that the proposed technique is a general scheme for multispectral imaging, it can be conveniently 
coupled with a variety of imaging modalities (both macroscopy and microscopy), by using corresponding suitable 
optical elements. Also, the scheme is wavelength independent, and thus can be applied to other spectrum ranges 
readily. �is is especially important for the wavelengths under which array sensors are costly or unavailable. In 
addition, similar to the system in ref. 24, the spatial-spectral modulation can be conducted a�er the incident light 
interacts with the target scene. �is enables us to analyze the scene’s spatial-spectral information without active 
illumination. One can refer to Supplementary Figure 7 for more details about MSPI under passive illumination, 
which is of much wider applicability.

Although MSPI owns many advantages over conventional multispectral imaging techniques, these bene�ts 
come at the expense of a number of projections as conventional SPI. In other words, MSPI makes a trade-o� of tem-
poral resolution for spatial and spectral resolution. As a reference, it takes us around 1 minute to project 3000 illu-
mination patterns using our proof-of-concept MSPI setup, to produce a 10-channel 64*64-pixel multispectral data 
cube. To improve the spatial resolution, we can utilize the novel patterning strategies proposed in refs 14 and 33,  
where the authors show that projecting structural and adaptive patterns instead of random ones is bene�cial for 
high spatial resolution imaging. Besides, the patterning strategies can also decrease projections and lower com-
putation cost for enhanced temporal resolution. Further, the temporal resolution can be improved using a faster 
rotation motor or denser sinusoidal patterns for faster spectral modulation.

As for the algorithmic reconstruction, considering there exists abundant redundancy among di�erent color 
channels34–36, we can utilize this cross channel prior in the algorithm to improve its reconstruction accuracy and 
reduce requisite projections. Also, since di�erent wavelength bands are reconstructed separately in current MSPI, 
the reconstruction time can be shortened by utilizing graphics processing unit (GPU) to reconstruct di�erent 
wavelength bands in a parallel manner.

Figure 4. Quantitative analysis on the imaging accuracy of MSPI. (a) is the target scene—an X-Rite standard 
color checker, which consists of 24 swatches owning di�erent spectra. We use MSPI to image the color checker 
and obtain 10 multispectral images (450 nm–650 nm). �en we calculate the average of all the pixels’ spectra 
in each swatch as the swatch’s �nal recovered spectrum. (b) presents the spectral reconstruction error of each 
swatch in terms of root mean square error. (c) shows direct comparison between the recovered spectra and their 
ground truth counterparts on several representative swatches. �e standard deviation of each wavelength band 
is also calculated and denoted by blue bars. Both the small reconstruction error and deviation validate MSPI’s 
high imaging accuracy.
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Methods
Reconstruction of the proposed MSPI technique consists of two main steps, namely spectral demultiplexing and 
multispectral reconstruction.

Spectral demultiplexing. Due to the sinusoidal spectral modulation, for each spatially modulated pattern, 
its measurement sequence from the bucket detector consists of several response signals corresponding to di�erent 
wavelength bands. �ese response signals own sinusoidal intensity variations of di�erent periods. �us in the 
Fourier domain, the measurement sequence presents coe�cient peaks at corresponding dominant frequencies. 
Also, there exists system noise in the measurements, we assume which to be stochastic and zero-mean. In the 
Fourier domain, the noise mainly locates at high frequencies. �us by applying simple Fourier decomposition37, 
we can separate the response signals from each other as well as the noise.

Mathematically, the Fourier decomposition describes a time series as a weighted summation of sinusoidal 
functions at di�erent frequencies. A captured measurement sequence 
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urements, and bi indicates the energy of the i th sinusoidal function at frequency i
T

. As stated before, each wave-
length band corresponds to a specific sinusoidal modulation frequency. Thus, the above coefficients at the 
dominant frequencies are exactly the response signals corresponding to di�erent wavelength bands. Here we 
adopt fast Fourier transform (FFT) to transfer the measurements into Fourier space, with computation complex-
ity being n n( log ) . �en we demultiplex these response signals by �nding local maximum coe�cients around 
corresponding dominant frequencies.

By doing FFT to each measurement sequence of the spatial illumination patterns, we obtain a set of response 
signals for each wavelength band. Mathematically, assuming that the light at the wavelength λ is modulated with 
the sinusoidal frequency j

T
, we can obtain a response signal bj from the measurement sequence corresponding to 

one projecting pattern. Considering that we project m patterns, we get m response signals of the wavelength λ. In 
the following, we indicate the response signal set as a row vector ∈λb m. Each entry in bλ corresponds to a 
response signal of the band λ for one pattern.

Multispectral reconstruction. A�er demultiplexing the response signals of di�erent wavelengths, the sub-
sequent multispectral reconstruction is implemented separately in each wavelength band. In the reconstruction, 
we assume the spatial pixel number of each illumination pattern is n, and denote the pattern set as ∈ ×A m n 
(each pattern is represented as a row vector in the matrix). �e reconstructed multispectral images own the same 
spatial resolution as the illumination patterns, and are denoted as ∈λx n for the wavelength λ. With the above 
denotations, the multispectral reconstruction is performed by solving the following optimization problem8:
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�e de�nition of the objective function comes from a sparsity prior: natural images are statistically sparse 
when represented with an appropriate basis set (e.g. the discrete cosine transform basis)38. We use ψ(xλ) to denote 
the coe�cient vector, and aim to minimize its l1 norm to force its sparsity. Note that ψ is the mapping operator to 
the transformed domain. �e constraint is the formation of the response signals. Equation (2) is a standard l1 
optimization problem, and we solve it using the linearized alternating direction method31 considering its satisfy-
ing performance (computation complexity is n( )

3 ). �is results in the reconstructed scene image corresponding 
to the speci�c wavelength band λ. A�er applying the above reconstruction to all the wavelength bands, we get 
multispectral images of the target scene. Note that these reconstructed multispectral images consist of three spec-
tral components including the illumination’s spectrum, the scene’s spectrum and the bucket detector’s spectral 
response. �erefore, to produce �nal multispectral images of the scene, the images need to be normalized by both 
the pre-calibrated spectrum of the illumination and the spectral response of the detector. Here we place a Zolix 
Omni–λ 300 monochromator as a light filter between the light source and the bucket detector for the 
pre-calibration. We refer readers to Supplementary Material 3 and Supplementary Figure 5 for more details.
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