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Abstract

Many vision tasks such as scene segmentation, or the
recognition of materials within a scene, become consider-
ably easier when it is possible to measure the spectral re-
flectance of scene surfaces. In this paper, we present an
efficient and robust approach for recovering spectral re-
flectance in a scene that combines the advantages of using
multiple spectral sources and a multispectral camera. We
have implemented a system based on this approach using a
cluster of light sources with different spectra to illuminate
the scene and a conventional RGB camera to acquire im-
ages. Rather than sequentially activating the sources, we
have developed a novel technique to determine the optimal
multiplexing sequence of spectral sources so as to minimize
the number of acquired images. We use our recovered spec-
tral measurements to recover the continuous spectral re-
flectance for each scene point by using a linear model for
spectral reflectance. Our imaging system can produce mul-
tispectral videos of scenes at 30fps. We demonstrate the
effectiveness of our system through extensive evaluation. As
a demonstration, we present the results of applying data re-
covered by our system to material segmentation and spec-
tral relighting.

1. Introduction
One approach to tasks such segmentation, recognition

and classification is based on exploiting the variations in ap-

pearance due to the material composition of different scene

elements. The capability of detecting such variations is im-

portant well beyond vision. Fields such as medical imaging,

automatic inspection, and remote sensing have developed

methods to detect anomalies such as, respectively, skin dis-

ease, food contamination, and deforestation using specific

devices sensitive to corresponding spectral variations in sur-

face reflectance[20, 16, 2].

Recovery of surface reflectance is impossible exclusively

with conventional RGB cameras. The appearance of a cap-

tured image depends on both the illumination spectrum and

the spectral reflectances of objects in the scene. Even if

the illumination spectrum is known, an RGB camera pro-

vides only 3 measurements which is insuffcient to recover

the spectral reflectance.

A wide variety of methods have been developed for esti-

mating the spectral reflectance of a scene. For a static scene

with fixed illumination, the spectral sensitivity of the cam-

era can be varied over time. If the illumination spectrum

is known, the multispectral reflectance of the scene can be

determined. In the case of a dynamic scene, however, spec-

tral reflectance must be measured with high temporal reso-

lution. Today, there exist no methods for capturing multi-

spectral videos in realtime.

Instead of obtaining the spectral reflectance exclusively

with a multispectral camera, the spectrum of the illumina-

tion can be modulated temporally, to provide a multispectral

light source. From a practical standpoint, there are two crit-

ical advantages. First, it is easier to create an illumination

source with rapidly changing spectra than a camera with

rapidly changing spectral sensitivity. Second, if there are

M camera channels and N spectrally distinct illuminations,

the number of effective channels is MN . This multiplica-

tive effect dramatically increases the number of independent

measurements with a minor increase in system complexity.

Varying either the spectral sensitivity of the camera or the

illumination typically comes at the cost of lowering the spa-

tial resolution or the frame-rate of the acquired data. Our

approach is to view the multispectral imaging problem as

one of minimizing the number of measurements needed to

obtain spectral reflectance. This is done in two ways. First,

an illumination source is constructed using several sources

with different spectra. Rather than sequentially activating

these sources, we find the optimal way in which they can

be multiplexed so as to minimize the number of images ac-

quired while maintaining high signal-to-noise ratio. Sec-

ond, we use our finite number of spectral measurements to

recover a continuous spectral reflectance by using a set of

basis functions. The end result is a video-rate multispectral

imaging system.

The key technical contributions of our work can be sum-

marized as follows.

Spectral Illumination Multiplexing: For a given set

of sources with different spectra (some narrow and others

wide) and the number of allowable measurements, we de-
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termine the multiplexing sequence of the sources that mini-

mizes least squares error in spectrum estimation.

Model-Based Spectral Reconstruction: We apply a

simple, empirical linear model to estimate the full spectral

reflectance at each pixel from the small number of multi-

plexed measurements. Since the model is linear, the recon-

struction is efficient and stable.

Multispectral Imaging System: We present a practical,

low-cost system that is capable of capturing multispectral

videos at 30 fps. The system uses off-the-shelf components,

including a commodity RGB video camera and a set of LED

light sources.

We begin with a brief review of related work in Section 2.

Then, we present our model-based method for spectral re-

construction in Section 3. Section 4 describes our algorithm

for finding the multiplexing sequence that minimizes errors

in spectral reconstruction. In Section 5, we describe our

imaging system and verify its accuracy using surfaces with

known spectral reflectances. In Section 6, we present sev-

eral experiments with real scenes that demonstrate the ad-

vantages of using multispectral imaging. Finally, in Sec-

tion 7 we discuss the limitations of our approach and our

plans for addressing the limitations.

2. Related Work
A multispectral video has two spatial dimensions, one

spectral dimension and one temporal dimension – it can be

viewed as a 3D volume of measurements that varies with

time. This 3D volume can be acquired using a wide variety

of imaging devices. These devices differ in the mechanisms

they use to separate (over space and/or time) the incoming

light into its spectral components. This separation is done

using prisms, diffraction gratings, tunable filters, or gel fil-

ters (see [10] for a survey of available technologies.) Exist-

ing systems differ in terms of how they trade off spatial and

temporal resolution to obtain multispectral measurements

for each point in the field of view.

For static scenes, the temporal dimension can be used to

measure the spectrum. For example, a spectrometer can be

used to measure the spectrum of a single point, and the en-

tire field of view is scanned over time [29]. Other devices

capture a set of monochrome 2D images by changing the

spectral sensitivity of the camera over time. A popular way

of changing the spectral sensitivity is by using tunable fil-

ters [9]. Some hybrid approaches can simultaneously scan a

static scene with respect to space and spectrum by modify-

ing a commodity camera [21]. High-cost devices that use

complex optics and custom photo-sensors have been de-

veloped for remote sensing that can acquire hyperspectral

videos of dynamic scenes (for example, see [7].)

All these systems trade off temporal and/or spatial res-

olution to capture spectral information. A noteworthy ap-

proach that avoids this trade-off is the IRODORI system

that can capture 6-band HDTV video using an optical split-

ter, color filters, and two RGB sensors [30]. However, the

system does not deal with how to recover the continuous

spectrum from the 6 color measurements. It should be noted

that our use of spectral multiplexed illumination is comple-

mentary to any multispectral camera.

Recovering reflectances from single illumination with

ordinary RGB sensors has been proposed [25, 15]. They are

based on restrictive assumptions on surface reflectance and

thus the achievable performance of reconstruction is lim-

ited.

In general, the space of spectral reflectance curves for

natural materials can be well-approximated with a low-

dimensional linear model [13]. A number of linear models

have been proposed based on measured spectral reflectances

(see [24] for a review.) A few non-linear models have also

been proposed [4, 27]. In our work, we account for the non-

linearities of our devices by pre-calibrating them. While

recovering the parameters of a linear model for spectral re-

construction, we need to enforce the constraint that spectral

reflectance is positive [3, 5, 23]. We enforce this constraint

in our reconstruction using quadratic programming.

Multispectral imaging has been used for color analy-

sis, color constancy, object recognition, and the analysis of

works of art (for examples, see [1, 17, 6].) There have been

a number of works that demonstrate the importance of using

spectral reflectance for image-based rendering and relight-

ing [19, 11, 28]. All the above works have relied on multi-

spectral imagers to measure the spectral curves. There has

also been some work combining mulitspectral illumination

with imaging. A hybird camera-LED system was developed

to match a target’s spectral reflectance with a database of re-

flectances using an image sensor that performs correlations

[12, 8]. Color illumination multiplexing using a projector

and a color camera was proposed to obtain data for RGB

relighting[22]. Vrhel [26] has developed a mouse-like de-

vice that uses LED illumination sources and photo-sensors

to measure the spectral reflectance of a point. In contrast

to these prior works, we use a conventional RGB camera to

recover the spectral curves for all points in an image. Fur-

thermore, our system uses multiplexed illumination and a

linear spectral reflectance model to produce multispectral

video at 30fps.

3. Model-Based Spectral Reconstruction
The concept underlying our active multispectral imaging

system is shown in Fig. 1. The scene is illuminated using
a sequence of distinct multiplexed illuminations and an im-
age is captured for each illumination using a synchronized
RGB camera. The value Imn measured at a pixel in the mth
channel, for the nth illumination, is given by

Imn =

∫
s(λ)cm(λ)pn(λ)dλ , (1)

where pn(λ) is the spectral power distribution of the nth

illumination, s(λ) is the spectral reflectance of the scene
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point, and cm(λ) is the spectral response of the camera’s

mth color channel. If there are M color channels and N
illuminations, then by stacking the N images together, we

obtain a multiplexed multispectral image with MN chan-

nels.

Illumination Sequence

Sync Signal

Controller

LED Panel

Scene

c
m
(λ)

Camera

s(λ)

p
n
(λ)

Figure 1. Illustration of our active multispectral imaging system.

The scene is lit with a set of distinct illuminations and a synchro-

nized RGB camera captures the corresponding images. By using

rapidly changing multiplexed illuminations and processing the ac-

quired video, we obtain a multispectral video of the scene.

Some assumptions are needed to reconstruct the full con-

tinuous spectral reflectance s(λ) from a finite set of measue-

ments. If the spectral curves are arbitrarily complex, MN
must be large. However, in order to capture the spectral

reflectance of dynamic scenes (at video rate) with an RGB

camera (M = 3), the number of multiplexed illuminations

must be fairly small, with N = 2 or N = 3.
Fortunately, the spectral reflectance of most real-world

surfaces can be well-approximated using a low-parameter
linear model. One such linear model is the set of orthogonal
spectral basis functions bk(λ) proposed by Parkkinen et al.
[18]. These basis functions are eigenvectors of a correlation
matrix derived from a database consisting of the measured
spectral reflectances of 1257 Munsell color chips. We have
found empirically that this model gives fairly accurate spec-
tral reconstructions for a wide range of real-world materials.
The model can be written as

s(λ) =

Ks∑
k=1

σkbk(λ) , (2)

where σk are scalar coefficients and Ks is the number of
parameters of the model. By substituting Eq. 2 in Eq. 1, we
get a set of MN equations,

Imn =

Ks∑
k=1

σk

∫
bk(λ)cm(λ)pn(λ)dλ , (3)

which are linear in the parameters σk.
To estimate these parameters from a set of images, we

first determine via calibration the spectral response cm(λ)
of each of the camera’s color channels and the spectrum
pn(λ) of each of the multiplexed illuminations. This cali-
bration is done using a spectrometer and known reflectance

targets. We can then absorb the known quantities in Eq. 3
into MNKs coefficients: fmnk =

∫
bk(λ)cm(λ)pn(λ)dλ.

If we substitute fmnk into Eq. 3 and rewrite the equation in
matrix form, we obtain

Fσ = I . (4)

When FTF is invertible, we can get a least squares so-
lution: σ = (FTF)−1FTI. However, it is possible that
the least squares solution results in a recovered spectral re-
flectance that is negative for some wavelengths. Since any
spectral reflectance function must be positive, the following
condition must be satisfied:

s(λ) =

Ks∑
k=1

σkbk(λ) ≥ 0, for all λ . (5)

To this end, we reformulate the problem as a constrained
minimization as follows:

σ+ = arg min
σ

|Fσ − I|2 , subject to Aσ ≥ 0, (6)

where A�k = bk(λ�) with 1 ≤ � ≤ L, and 1 ≤ k ≤ Ks.

This optimization can be solved using quadratic program-

ming.

A solution to the constrained quadratic minimization in
Eq. 6 may not be numerically stable if F has rank lower than
Ks, or if F has a large condition number. In such cases,
we cannot expect a reasonable solution without imposing
further constraints. Since real-world spectral reflectances
tend to be smooth, we impose a smoothness constraint. We
do this by penalizing large values for the second derivative
of the spectral reflectance with respect to λ:

min
σ

[
|Fσ − I|2 + α

∣∣∣∣∂2s(λ)

∂λ2

∣∣∣∣
2
]

, (7)

where α is a smoothness parameter. Then, the optimization
can be written as

min
σ

∣∣∣F̃σ − Ĩ
∣∣∣2 , subject to Aσ ≥ 0, (8)

where F̃ = [ FT αPT ]T with P�k = ∂2bk(λ�)/∂λ2,

1 ≤ � ≤ L, 1 ≤ k ≤ Ks, and Ĩ = [IT 0]T. This regu-

larized minimization can also be solved with quadratic pro-

gramming. In our implementation, we used the quadprog
routine of Matlab.

Both the numbers of parameters Ks and α can be thought

of as different ways to regularize the spectral recovery. Ks

conditions the recovery based on the empirical reflectances,

while α simply forces the solution to be smooth. By using

a combination of both we can robustly recover a reasonable

estimate of the full spectrum, even with a small number of

channels (M = 3) and a small number of images (N = 2).
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4. Multiplexed Spectral Illumination
Capturing multispectral images at video rate (30 fps) re-

quires a minimum number of distinct illuminations. More-

over, to ensure our measurements have a good signal-to-

noise ratio, the irradiance received by the imager must be

high. We now describe a method for finding distinct illumi-

nations that satisfy these conditions.

4.1. Finding the Multiplexed Illuminations
To rapidly vary the spectral illumination, we use a com-

pound light source made up of many source elements. Such
a light source can be constructed as a cluster of Q types of
sources, each type with a distinct spectral curve lq(λ). The
illumination used for the nth captured image is a weighted
sum of the Q sources. The weights are denoted by dnq,
where 0 ≤ dnq ≤ 1. In this notation, d11 = 0 and d11 = 1
correspond to the sources of the first type being fully turned
off and turned on in the first frame, respectively. The spec-
trum of the compound light source for frame n is

pn(λ) =

Q∑
q=1

dnqlq(λ). (9)

If we substitute the above expression for pn in Eq. 3, the
measured value at a pixel for camera channel m and frame
n can be written as

Imn =

∫ Ks∑
k=1

σkbk(λ)cm(λ)

Q∑
q=1

dnqlq(λ)dλ , (10)

=

Ks∑
k=1

Q∑
q=1

σkdnqgkmq , (11)

where gkmq =
∫

bk(λ)cm(λ)lq(λ)dλ. Note that gkmq does
not depend on the scene or the illuminations used. In partic-
ular, for a given basis {bk}, a set of camera channels {cm},
a set of light source spectra {lq}, and a fixed number of
frames N , we can find the weights d = {dnq} that mini-
mize the errors in the reconstruction of a representative set
of known spectral reflectances. In short, we can find the
optimal weights dopt given by

argmind1,··· ,dN

E∑
e=1

M∑
m=1

N∑
n=1

[
Ks∑
k=1

Q∑
q=1

σk,ednqgkmq − Imn,e

]2

,

(12)

where e is used to denote the representative materials

and Imn,e is the ideal image intensity for the material

e. The solution will depend on the representative materi-

als used. In our implementation, we used the known re-

flectance curves of common objects (available from NYU

at http://www.cns.nyu.edu/ftp/ltm/SSR/).

When dnq is an indicator variable (i.e., dnq ∈ {0, 1}), the

sources can only be fully on or fully off. In this case, dopt

can be found using brute force search over all the variables.

When the number Q of different types of sources is small,

the search can be done in reasonable time.
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Figure 2. The spectra of the 5 types of LEDs (solid lines) and the

spectral responses of the three color channels of the PointGrey

Dragonfly Express camera (dashed lines) used in our system.
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Figure 3. Spectra of an optimal pair of multiplexed illuminations

and the corresponding spectra sensed by the color camera.

4.2. Choosing the System Parameters
In our current implementation, the compound light

source is a cluster of “white,” “red,” “amber,” “green,” and

“blue” LEDs, i.e. Q = 5. To determine the multiplexed

illuminations, we need to specify the camera responses cm,

the basis bk, and the number of acquired frames N .

The power spectra of the five LEDs as well as the spec-

tral responses of the camera’s three channels (M = 3) are

shown in Fig.2. For spectral reconstruction from the mea-

sured image brightnesses, we use the first 8 components of

the Parkkinen basis (Ks = 8). The two multiplexed illumi-

nations with the lowest reconstruction error (highest rank)

for the object spectra were determined using Eq. 12. The

spectra of these two illuminations and the corresponding

spectra observed by the camera are shown in Fig.3.

The three pairs of multiplexed illuminations that were

found to have the highest three ranks are shown in Fig.4.

These illuminations were automatically found using the

search algorithm and they have the following desirable at-

tributes: (a) Full Utilization: The spectral response of each

camera channel overlaps with at least one component light

source (LED) in each of the two frames. (b) Independence:
For each camera channel, the spectrum of the illumination

is different for the two frames. (c) Normalization: The to-
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Figure 4. The highest ranking 2-frame multiplexed illuminations

(using 5 types of LED sources) found by the optimization algo-

rithm.
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Figure 5. Simulation results that show how the spectral reconstruc-

tion error varies as a function of the smoothness parameter α, for

different numbers Ks of basis functions. With just two multi-

plexed illuminations, we can get a spectral reconstruction error

that is close to what can be achieved with sequential illumination

and noiseless measurements (the lowest curve).

tal power of illumination in a frame is comparable to that

obtained when half the sources are on.

In order to understand how the parameters Ks and α
affect the performance of the spectral reconstruction algo-

rithm, we have performed extensive simulations using the

NYU common object spectra. Some of our results are

shown in Fig. 5. Each line represents the RMS error in the

recovered object spectra (using an optimal pair (N = 2) of

illuminations) as a function of α (regularization term), for

a given Ks (number of terms of the Parkinnen basis). For

all simulations, we added noise using a noise model that

was estimated for the PointGrey Dragonfly Express cam-

era1. A similar set of simulations were done for N = 3
frames. Perhaps surprisingly, the errors did not decrease.

In order to realize the benefits of using a larger number of

frames, a larger number of sources (with distinct spectra)

are required2.

1The variance of the Gaussian noise was found to be proportional to

the intensity level, similar to the results in [3]. For example, the variances

were found to be 0.64 and 3.6 at intensity levels 50 and 200, respectively.

The variances were also found to be slightly different for the three color

channels.
2 We have done some preliminary experiments with 8 off-the-shelf

LED lamps. The practical difficulty has been that the spectra of the 8 lamps

available were neither sufficiently distinct nor bright, to produce superior

measurements with all 8 sources versus a subset of 5.

camera

LED Cluster

controller

scene

illumination 1 illumination 2

Figure 6. Our system for capturing multispectral video at 30 fps.

It consists of two identical clusters of LEDs (each with 5 types of

LEDs), a controller, and a 60 fps RGB camera. The two LED clus-

ters emit the same multiplexed illumination spectra for each of the

two acquired frames (N = 2). The two multiplexed illuminations

are shown in the inset image.

We have done many more simulations to evaluate our

reconstruction algorithm. Here, we briefly summarize our

findings. We found that by carefully choosing the smooth-

ness parameter and the number of basis functions, we

could achieve accurate reconstructions of the spectral re-

flectances. We also found that the error could be further

reduced by using more spectrally distinct sources. How-

ever, in this case, more frames need to be acquired. This

can be done using a high-speed camera, but the resulting

reduction in exposure time lowers the SNR. For these rea-

sons, we decided to use just 2 frames and 5 types of light

sources. As we will see, this setting is sufficient for ac-

curately measuring spectral reflectances that are reasonably

smooth. We believe that such measurements are adequate

for a wide variety of application scenarios.

5. Multispectral Imaging System
We chose to use LEDs as the light sources as they are in-

expensive, compact, and easy to control. We built two iden-

tical clusters, each consisting of 5 kinds of LEDs: “white,”

“red,” “amber,” “green,” and “blue” (ItswellTM ). One of

our clusters is shown in Fig.6. The total number of LEDs

in the cluster is 12x12=144. Each cluster consists of 16

identical cells where each cell is composed of 9 indepen-

dently controllable LEDs. The LEDs at the same locations

in all cells are simultaneously controlled using a micropro-

cessor (AVRTM ). The power spectra of the different types

of LEDs were measured (see Fig.2) using a spectroradiome-

ter (Luchem SPR-4001TM ).

A CCD camera with external trigger (PointGrey Dragon-

fly Express) was used for capturing the scenes. This cam-

era works stably at 120fps. To increase image irradiance,

we operate the camera at 60fps and acquire multispectral

videos at 30fps (N = 2). The microprocessor controls the

timing of the LED clusters and provides a synchronization
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signal to the camera. The radiometric response of each cam-

era channel was calibrated using the method in [14]3.

The accuracy of the spectral estimation was verified by

using the Macbeth Color Checker chart. The number of ba-

sis functions Ks was 8. The smoothness parameter α was

set to 64.0. In Fig.7, we show the known spectra (red solid

lines) and the estimated spectra (dotted black lines) for a

few of the color chips. Note that the estimated and actual

spectra match very well. Similar results were obtained for

all the remaining chips on the chart (See Fig.8 for quantita-

tive results). These results provide strong evidence that our

system can measure full spectral reflectances with reason-

able accuracy.

Figure 7. Spectral reflectances of color chips on the Macbeth chart

measured using multiplexed illumination. The measured spectra

are shown as dotted black lines and the actual spectra (ground

truth) are shown as red solid lines.
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Figure 8. Average reconstruction errors in RMS for Macbeth chart.

6. Applications
Multispectral imaging can provide more measurements

at each pixel than is provided by conventional RGB imag-

ing. As a result, many vision applications stand to bene-

fit. We present just two example applications due to limited

space.

3Since the radiometric responses of the left and right sides of the CCD

(Kodak KAI-0340DC) are different (they use separate electronic process-

ing units), we performed the radiometric calibration for each of the sides.

Object Detection/Segmentation: Fig. 9 shows an

example of our system’s ability to separate metameric

radiances[11]. A star-shaped cosmetic patch has been ap-

plied to skin on a women’s cheek. Scene points on the cos-

metic patch and on the skin are virtually indistinguishable in

the RGB images. Instead we consider a 6-component image

obtained from two RGB images with the two images lit by

optimal multiplexed illumination. From these two images

the areas become easily distinguishable in 6-dimensional

space. When the spectral reflectance is estimated using our

reconstruction algorithm from Eq. 8 separation of the two

types of scene point is enhanced as we see in the Fig. 10.

We conjecture that the gain of multispectral imaging over

the two RGB case comes from the empirical linear model

providing a more spectrally balanced metric.

Relighting: Using the spectral reflectance s(λ) esti-

mated by our system at each scene point the scene can be

spectrally relit accurately. Figs. 11 and 12 show the advan-

tage of multispectral relighting over RGB relighting.

7. Discussion
We conclude by discussing the limitations of our ap-

proach and our plans for future work.

Temporal Resolution: Our current system captures

multispectral video at 30fps. In principle, the frame-rate

can be increased using high-speed cameras. However, as

the frame-rate increases, the integration time of the detec-

tor decreases requiring more light to maintain the SNR. It is

possible that we can obtain our multiplexing sequence from

a bright uniform white light source which passes through

a tunable filter. One way to address this problem without

changing the light source is to use the observation that the

spectral reflectances of neighboring scene points tend to be

highly correlated. This spatial coherence is commonly ex-

ploited for color demosaicing algorithms, and hence could

also be applied here to reduce noise at higher frame-rates

without significantly compromising spatial resolution. At

any frame-rate, rapid enough object motion can result in ar-

tifacts at occlusion boundaries. We are currently working

address this problem by applying a motion compensation

algorithm.

Assumption of Smooth Spectra: Our model-based

spectral recovery assumes the reflectance at a point to be

reasonably smooth in the spectral domain. However, there

are many applications where high spectral resolution is im-

portant. To this end, we are exploring the use of a much

larger number of LED types. This requires us to have a

more efficient way (than brute-force search) of finding the

best multiplexed illuminations. Furthermore, in our imple-

mentation, the sources are either fully on or fully off. We

would like to explore the benefits of finding the optimal

brightnesses of the LEDs as well.

Limited Working Volume: Currently, the working vol-

ume of our system is a bit larger than the size of a human
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Figure 9. Distinguishing metameric appearances. A metameric

cosmetic has been applied to a woman’s cheek in a star-shaped

area within an ROI. The black and white images show the relative

distance to the means of the two classes. Both the multispectral

reconstruction and two raw RGB images from multiplexed illu-

mination show far superior distinguishablity than the conventional

RGB measurement.

Figure 10. The Receiver Operating Characteristic curves for sep-

aration of metameric appearances using our multispectral recon-

struction (MSI), measurements from two RGB images using mul-

tiplexed illumination (RGB×2), and a conventional RGB mea-

surement (RGB).

head. In order to increase the working volume, we need to

build larger panels of LEDs. There are several practical hur-

dles in achieving this. While large LED panels can be easily

constructed, we need to ensure that the radiometric proper-

ties of the panel remain uniform within the entire working

volume.
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Figure 11. Top Row: The scene shown here was first captured using the proposed system and then spectrally relit to continuously move

through four types of illuminations with very different spectra. Bottom Row: The first image (far left) was captured under incandescent

illumination with an RGB camera. The second image shows the result of RGB relighting (based on per-channel transformation) the first

image using fluorescent illumination. This image has a green tinge and its colors are dull compared to the third image which was captured

with an RGB camera under fluorescent illumination (ground truth). The fourth image is the result of relighting with fluorescent illumination

a multispectral image captured by our system. This image closely matches the ground truth.

Illumination Spectrum LF
(Metameric to Fluorescent )

Multispectral Relit Image to LF
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Figure 12. Image comparing RGB and multispectral relighting applied to a scene with three real fruits (on the right) and a printed image

of the same fruits (on the left). The printed and real fruits are used as examples of metamers. (left) This target illumination spectrum

LF is constructed to be metameric to fluorescent illumination. (center, left) Image obtained by multispectral relighting with illumination

LF . Note that the real and printed fruits appear different. (center, right) The real and printed fruits remain indistinguishable after RGB

relighting with LF , the real image of the scene (right) captured under fluorescent illumination.
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