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Abstract

With the increasing interest in pedestrian detection,

pedestrian datasets have also been the subject of research

in the past decades. However, most existing datasets focus

on a color channel, while a thermal channel is helpful for

detection even in a dark environment. With this in mind,

we propose a multispectral pedestrian dataset which pro-

vides well aligned color-thermal image pairs, captured by

beam splitter-based special hardware. The color-thermal

dataset is as large as previous color-based datasets and

provides dense annotations including temporal correspon-

dences. With this dataset, we introduce multispectral ACF,

which is an extension of aggregated channel features (ACF)

to simultaneously handle color-thermal image pairs. Multi-

spectral ACF reduces the average miss rate of ACF by 15%,

and achieves another breakthrough in the pedestrian detec-

tion task.

1. Introduction

Pedestrian detection is an active research area in the field

of computer vision, since it is an essential and significant

task for a surveillance or tracking system [6, 14, 24, 27, 28],

as well as for pedestrian safety [9, 13, 15]. Although many

researchers have studied various methods for a long time,

pedestrian detection is still regarded as a challenging prob-

lem, limited by tiny and occluded appearances, cluttered

backgrounds, and bad visibility at night. In particular, even

though color cameras have difficulty getting useful infor-

mation at night, most of the current pedestrian detectors are

based on color images.

To address these challenges for automobile applications,

generally two types of infrared sensors are used: near in-

frared (0.75∼1.3µm) cameras or long-wavelength infrared

(7.5 ∼ 13µm, also known as the thermal band) cameras.

Physically, pedestrians are more visible in thermal cam-

eras than in near infrared cameras. This is because long-

wavelength infrared cameras are more robust to the interfer-

ences produced by headlights and traffic signals. Even more

importantly, a human body radiates in the long-wavelength

Figure 1. Examples of our multispectral pedestrian dataset. It has

aligned pair of color (left column) and thermal (right column) im-

ages captured from day/night traffic scenes. The dense annotations

provided with the dataset such as green, yellow, and red boxes

indicate no-occlusion, partial occlusion, and heavy occlusion re-

spectively. Images are cropped for better visualization.

infrared light wavelength of 9.3µm [25], which supports the

suitability of thermal cameras for capturing humans.

Based on these facts, in this paper we introduce a mul-

tispectral pedestrian dataset1 which provides thermal im-

age sequences of regular traffic scenes as well as color im-

age sequences. This work is motivated by other computer

vision datasets such as Caltech 101 [19], Oxford build-

ings [23], Caltech pedestrian [10], and so on. These datasets

have been contributed to stimulate their respective research

fields. Likewise, our multispectral dataset designed to sup-

1Our multispectral pedestrian dataset is available online:

http://rcv.kaist.ac.kr/multispectral-pedestrian/
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port the study of appropriate use of color-thermal images

and to ultimately improve the accuracy of pedestrian detec-

tion.

Our contributions are threefold: (1) We introduce the

multispectral pedestrian dataset, which provides aligned

color and thermal image pairs. Our dataset has num-

ber of image frames as large as widely used pedestrian

datasets [10, 15]. The dataset also contains nighttime traffic

sequences which are rarely provided or discussed in previ-

ous datasets. (2) We analyze the complementary relation-

ship between the color and thermal channels, and suggest

how to combine the strong points of the two channels in-

stead of using the color or thermal channel independently.

(3) We propose several combinations of extended ACF with

the thermal channel. One of our extensions reduces the

average miss rate by 15% on the proposed multispectral

pedestrian dataset.

In constrast to most previous datasets utilizing a color-

thermal stereo setup, we use beam splitter-based hardware

to physically align the two image domains. Therefore, our

dataset is free from parallax and does not require an image

alignment algorithm for post processing. To the best of our

knowledge, this is the first work that provides aligned color

and thermal image pairs captured in day and night. Exam-

ples of our dataset are shown in Fig. 1.

We introduce our new dataset and analyze its statistics

in Sec. 2. With our new dataset, in Sec. 3 we discuss the ex-

tensions of ACF [9] to handle additional information from

the aligned thermal image. In Sec. 4, we evaluate the ef-

fectiveness of the additional channel in various conditions

by means of pedestrian detection performances. Lastly, we

summarize our findings and suggest future directions with

our dataset.

2. Multispectral Pedestrian Dataset

This section introduces our imaging hardware and the

calibration procedure for capturing the aligned multispec-

tral images. An analysis of the dataset is described in the

next section.

2.1. Imaging Hardware

Hardware specification. As shown in Fig. 2, we devel-

oped imaging hardware consisting of a color camera, a ther-

mal camera, a beam splitter, and a three-axis camera jig.

The beam splitter in the system transmits the thermal band

of the incident light and reflects the visible band. It also

helps the optical center of the two cameras to be coincident.

The beam splitter is made of Zinc coated Silicon wafer for

this optical purpose. We used the PointGrey Flea3, a global

shuttered color camera and the FLIR-A35 thermal camera.

The color camera has 640× 480 pixels of spatial resolution

with a 103.6◦ vertical field of view. The thermal camera

RGB Camera

Beam Splitter

Three-axis 
Camera JigThermal 

Camera

Figure 2. Our hardware configuration for capturing multispectral

images. (Left) Top view. (Right) Mounted on the rooftop of a car.

Figure 3. A hole pattern used for the color-thermal camera cali-

bration. (Left) thermal image. (Middle) color image having color

distortion due to beam splitter. (Right) after color correction.

has 320 × 256 pixels of spatial resolution with a 39◦ ver-

tical field of view. Note that the color camera has a larger

field of view than the thermal camera. We intended to use

the original thermal image in the aligned image domain by

sacrificing the border area of the color image. The frame

rate of the two cameras is equal to 20 fps.

Camera calibration. The concept for our hardware was

previously introduced by Bienkowski et al. [3] for nonde-

structive evaluation purposes. Since the calibration method

for aligning two image domains is not mentioned in [3], we

briefly introduce our calibration approach here. First, we

compute a translation between the two cameras mounted

on the hardware using stereo camera calibration. Here, we

can regard that the optical axes of the two camera beyond

the beam splitter are parallel due to the hardwired arrange-

ment. Therefore, there is only translation between the two

image domains, and we only adjust the camera positions

using the three-axis jig until the translation becomes zero.

After the adjustment, the two image domains are rectified to

have the same virtual focal length. After these procedures,

the two image domains share the same focal length and the

same principal point and there is no baseline. The virtu-

ally aligned image domain has 640×512 pixels of spatial

resolution, and has a 39◦ vertical field of view, which is as

similar to human vision. As a conventional checker board

pattern is not observable in a thermal camera, we used a

special calibration board [16, 17] having a number of holes.

When it is heated, there is a temperature difference between

the board and holes, which are therefore observable in the

thermal camera. Examples of the hole pattern images are

shown in Fig. 3.

Color correction. The captured color image shows color



Figure 4. Image pairs captured by our hardware. (Left) thermal

image. (Middle) color image. (Right) blending of the two images.

distortion because the reflection ratios of the visible band

from the beam splitter are uneven depending on the incident

light directions (shown as Fig. 3). To handle this problem,

we capture a reference which is an image of a white plane

but showing the color distortion. As our color camera has

a linear camera response function, the reference image is

equivalent to the per-pixel reflection coefficient of the vis-

ible band. Therefore, we alleviate the color distortion by

dividing the intensity level of captured images with these

reflection coefficients.

2.2. Data Collection and Ground truth

Data capture. The hardware is mounted on the roof of a

car, and used for capturing ego-centric images of the traf-

fic scenes. In particular, we captured various scenes at day

and night time to consider changes in light conditions. An

example of proposed dataset is shown in Fig. 4.

Ground truth annotation. Among the grabbed frames,

95,328 color-thermal pairs2 were manually annotated for

the total of 103,128 dense annotations and 1,182 unique

pedestrians. To annotate the ground truth, we used Piotr’s

Computer Vision Toolbox[8], but it was modified to display

color and thermal images simultaneously. The modifica-

tion helps with annotation because a distant pedestrian at

nighttime is rarely observable in the color channel. We also

modified the toolbox to give occlusion tags instead of oc-

clusion regions for each bounding box. Similar to Dollár et

al. [10], the object has one of four labels. Obviously an

individual pedestrian was labeled as a person. Not distin-

guishable individuals were labeled as people. People rid-

ing a two-wheeled vehicle were labeled as cyclist. In a

highly cluttered scene, even human annotators sometimes

cannot clearly determine whether a human shaped object

is a pedestrian or not. This object is labeled as person?

and it is ignored in the evaluation3. After the annotation,

the bounding boxes also have temporal correspondences in-

dicating the person index over the frames. In our dataset,

a person appears 74.80 frames on average (corresponds to

3.74 seconds).

2Note that the frame number was not enlarged by horizontal mirroring.

However, in the training stage of the baseline algorithm, we mirrored the

positive samples to make more general examples.
3In our dataset, the number of person? is only 1,434 (1.66%) compared

to a total of 86,152 person annotations. Therefore, it does not significantly

affect the reliability of the evaluation result.
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Figure 5. We define evaluation conditions with respect to the scale.

Considering the general driving speed and the braking distances,

we set 45 pixel and 115 pixel to the criteria of scale conditions.

More than 75 % of pedestrians belong to medium scale. It means

the detection algorithms try to focus on this condition.
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Figure 6. (a) Due to the right-handed traffic condition, most pedes-

trians appear at the right side of the image. (b) The proposed

dataset contains a lot of crowded scenes.

Train and Test sets. To divide annotated color-thermal im-

age pairs into train and test datasets, we used the follow-

ing criterion. First, the numbers of pedestrians appearing

in the two sets were similar. Second, the frame numbers of

day/night images in the two sets were similar. Third, the

two sets were not overlapped. Compared to random divi-

sion, this scheme helps to avoid data bias and over-fitting

on a certain scene.

2.3. Properties of Dataset

Scale. Since the key application of pedestrian detection

is accident avoidance, we classified the size of annotated

bounding boxes based on the braking distance of the vehi-

cles. In urban areas where pedestrians usually appear, we

regarded the general driving speed as 30 ∼ 55 km/h. The

expected braking distances under this driving condition are

11 ∼ 28 m (including braking delay due to the reaction of

drivers) [7]. That corresponds to 45∼ 115 pixels of height

in our aligned image domain if the height of the pedestri-

ans is around 1.7m. We classified the annotations within

these sizes as medium. As shown in Fig. 5(a), near and far,

which are smaller or larger than medium, were also deter-

mined. Figure 5(b) shows the relation between the pedes-

trian’s height in pixel units and its corresponding distance

in meters.
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Figure 7. Examples of annotated pedestrians with no occlusion tag.

It shows color and thermal image pairs at day and night times.

Occlusion. If a pedestrian is suddenly occluded by other

pedestrians or objects in the scene, we annotated it with one

of the three occlusion tags. Pedestrians who were never oc-

cluded were tagged as no occlusion; those occluded to some

extent up to one half were tagged as partial occlusion; and

those whose contour was mostly occluded were tagged as

heavy occlusion. Among the total annotations, over 75%
of pedestrians were tagged not occluded (78.6%), and the

remainder were partial occlusion (12.6%) and heavy occlu-

sion (8.8%).

Position. Figure 6 (a) shows the center of annotated pedes-

trians represented as the distribution of a Gaussian mixture

model. Our hardware was set up to cover the view of a gen-

eral driver. This setup constrains the appearance of pedes-

trians in certain regions. Therefore, pedestrians were dis-

tributed in a narrow band across the center of the image.

Pedestrians mostly appear at the right side of the image, be-

cause the car drives under the right-handed traffic condition.

We also show the number of pedestrians per frame in log-

normalized scale in Fig. 6 (b).

Appearance change. Figure 7 shows several examples of

pedestrians in the day and night time. The color image in

daytime shows a distinct human shape due to the strong

sunlight. On the other hand, the shape in the color image

at nighttime is not distinguishable due to the dark environ-

ment. However, the thermal image shows a distinct shape

at nighttime, because the temperature difference is greater

when the air temperature is cooler, so the pedestrians hav-

ing a fixed temperature, can be clearly captured in the night-

time. In the daytime, the strong sun radiation causes back-

ground clutters. For these reasons, we can expect to obtain
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INRIA [4] 1.2k 1.2k 566 741 2.5k X ‘05

ETHZ [14] 2.4k 499 12k 1.8k X X ‘08

Daimler [13] 15.6k 6.7k 56.4k 21.8k 28.5k X X X ‘09

Caltech [10] 192k 128k 155k 121k 250k XX X X X ‘09

KITTI [15] 12k 1.6k – – 80k XX X X ‘12

OSU-T [5] 984 1.9k – – 0.2k X X ‘05

LSI [21] 10.2k 6.2k 5.9k 9.1k 15.2k XX X ‘13

ASL-TID [24] – 5.6k – 1.3k 4.3k X X ‘14

TIV [28] – – – – 63k X X ‘14

OSU-CT [6] – – – – 17k XX X X ‘07

LITIV [27] – – 16.1k 5.4k 4.3k XX X X ‘12

Ours 41.5k 50.2k 44.7k 45.1k 95k XXXX X X X ‘15

Table 1. Comparison of several pedestrian datasets. The horizon-

tal lines divide the image types of the dataset (color, thermal, and

color-thermal) based on the image types. The first four columns

indicate number of pedestrian and images in the training and test-

ing dataset (k = 10
3). Properties column summarizes additional

characteristics of the datasets. Note that our dataset is largest

color-thermal dataset providing occlusion labels and temporal cor-

respondences captured in a non-static traffic scene.

better performance by using the strong points of the color

and the thermal images throughout the day.

2.4. Comparison to Existing Datasets

Table 1 provides a summary of existing pedestrian

datasets. According to the image type, the datasets are clas-

sified into: color, thermal, and color-thermal.

Most of the existing color datasets [4, 10, 13, 14, 15] pro-

vide color image sequences captured in daytime under fine

weather conditions. Caltech [10] and KITTI [15] in partic-

ular are the most widely used datasets having various real

driving scenarios. Caltech [10] has the largest number of

frames in the video format. They also have temporal corre-

spondences of the bounding boxes, which give an identifi-

cation index over the frame in the same target. KITTI [15]

is used for validating various computer vision applications

such as stereo vision, optical flow, visual SLAM, and object

detection using color images only.

Thermal datasets [5, 21, 24, 28] are usually designed

for object detection and tracking. The OSU-T dataset [5]

is made for benchmarking tracking algorithms, and some

datasets provide a trajectory instead of a bounding box [24,

28]. Olmeda et al. [21] provides a pedestrian detection

dataset captured by thermal camera on a moving vehicle.

Notable benchmark, referred to as TIV [28], provides multi-

view or multi-resolution image sequences, and have anno-

tated labels such as person, bat, runner, bicycle, motorcycle,



and car. In addition, TIV [28] provides a high resolution

thermal image (up to 1024×1024) and provides the largest

number of frames among the thermal datasets.

Our approach is classified as color-thermal dataset as

it provides aligned color and thermal images. Compared

to [6, 27], our dataset has an ego-centric moving view of

the traffic scene, and provides a much larger number of an-

notated frames. In addition, our approach provides tempo-

ral correspondences and occlusion labels, which are use-

ful information for pedestrian detection, identification, and

tracking. Our setup is also related to the pedestrian detec-

tion system [18] which consists of a pair of color cameras

and a infrared camera. However, compared to our system, it

requires additional stereo matching of the color images and

aligns color-thermal image pairs using a trifocal tensor.

3. Baseline Approaches

To handle the color and thermal channels effectively, our

baseline algorithm is built upon the aggregated channel fea-

tures (ACF) pedestrian detector [9]. This is natural choice

because the algorithm can accommodate multiple channels

showing different modalities. For instance, it uses chro-

matic and gradient channels augmented from a single color

image. In this manner, the thermal channel can be regarded

as another augmented channel in this algorithm. Here, we

benefit from our capturing hardware because the alignment

problem between color and thermal channels is removed. In

addition, the ACF pedestrian detector [9] is widely used as

a basis algorithm for the concurrent state-of-the-art pedes-

trian detectors [20, 22, 29].

With this idea, we first review standard ACF designed

for color images and introduce our extension to additionally

handle the thermal channel.

3.1. Standard ACF

For color image input, the standard ACF [9] have 10 aug-

mented channels (LUV+M+O): LUV denotes 3 channels

of CIELUV color space, M denotes 1 channel of gradient

magnitude, and O denotes 6 channels of gradient histogram

which is a simplified version of histogram of oriented gra-

dients (HOG) [4]. In ACF [9], they utilize the bootstrap-

ping procedure which is to mine hard negatives among a

tremendous number of negatives, and re-train the AdaBoost

classifier [1] several times. Finally, they apply an efficient

rejection method called soft cascade to boost detection time.

In this manner, a powerful pedestrian detection framework

is constructed.

3.2. Multispectral ACF

We utilized the ACF pedestrian detector [9] as our base-

line and extended it to encode the thermal intensity channel.

For the extension, we suggest three baselines as follows:

(1) ACF+T (2) ACF+T+TM+TO (3) ACF+T+THOG. Here,

(a) ACF (b) Multispectral ACF

Figure 8. Linear discriminant analysis (LDA) on the ACF and mul-

tispectral ACF features. The high dimensional features are pro-

jected into 2D domain using LDA. In the above two figures, red

and blue dots indicate positive and negative samples respectively.

By adding thermal channels, the positive and negative samples be-

come more distinctive.

ACF is the aforementioned feature defined for the color

channel. T, T+TM+TO, and T+THOG indicates the addi-

tional channel features augmented from the thermal chan-

nel. The individual explanations follow.

T. This channel feature uses the thermal intensity directly.

To improve the detection performance, we enhanced the

contrast of the image using histogram equalization.

T+TM+TO. This extension consists of three channels: T,

TM and TO. T is the aforementioned thermal channel, TM

is the normalized gradient magnitude of the thermal images,

TO is the histogram of oriented gradients of the thermal im-

ages. The TM and TO are acquired from the same method

as standard ACF.

T+THOG. This extension uses the T and HOG feature [4]

of the thermal image (denoted as THOG). Compared to TO

which computes 6 directions of histograms, THOG com-

putes more gradient orientations and has additional normal-

ization steps on the local histograms.

Note that the three extensions utilize the intensity and

gradient information of the thermal channel. We were mo-

tivated by recent work [26] which utilized gradients of a

thermal image as an important cue. We self-evaluated these

extensions on various conditions: different scales, occlu-

sion tags, and capturing time (day or night). The result in

Fig. 10 indicates that the three extensions outperforms ACF,

and ACF+T+THOG shows the best performance. This is

because ACF+T+THOG has most elaborate representation

of the human shape. Based on this observation, we selected

ACF+T+THOG as a desirable combination for the channel

feature, and we name it multispectral ACF for the ramain-

der of this paper.

3.3. Analysis of Multispectral ACF

We compared the multispectral ACF to standard ACF to

observe the benefits that resulted from the thermal channel.
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Figure 9. Average images of annotated pedestrians using (a) color

channel and (b) thermal channel. (c, d) voting maps indicating

frequently used feature grid. The voting map of multispectral ACF

is more concentrated around the upper part of human body.

Distinctiveness of multispectral ACF. For the qualitative

analysis, we trained the AdaBoost classifier [1] using ACF

and multispectral ACF, respectively. After the training, each

classifier had two groups of features belonging to either

the hard negative class or the positive class. Here, we ap-

plied linear discriminant analysis (LDA) [11] to the two

groups of features to visualize their distribution. LDA finds

an optimal projection vector which minimizes a variance

of the same class and maximizes a variance of the differ-

ent classes. In this manner, features are projected into 2D

spaces, and one of the results are shown in Fig. 8.

For the quantitative analysis, we introduce the following

steps to measure the distance between positive and negative

features. The analysis was separately applied to the two

feature groups obtained from ACF and multispectral ACF.

First, for each of the feature groups, we applied k-means

clustering [12]. Second, we made histograms of positive

and negative features by binning the corresponding cluster

labels. Third, we measured the distance between the posi-

tive and negative histograms. As a result, the Bhattacharyya

distance [2] using multispectral ACF was found to be larger

(0.65) than the distance using the ACF (0.43). This implies

that the multispectral ACF shows more distinctiveness than

the ACF.

Frequently used local features. Figure 9 (a-b) show the

average images of the positive samples. In our baseline al-

gorithm [9], weak classifiers select few cells in the regular

grid of the bounding box and classify positive and negative

samples using the most discriminant cell. Based on the av-

erage image, the classifier can be regarded as well-trained if

the features around the human shape regions are frequently

used. To observe locations of frequently used features, we

made voting maps in the regular grid as shown in Fig. 9

(c-d). In Fig. 9 (c), a learned model with color images (us-

ing ACF) has many features located outside of the human

shape. This is caused by the significant background clut-

ter, which is common in color images. On the other hand,

the voting map of the multispectral ACF, shown in Fig. 9

(d), displays gathered votes in the upper part of the human

shape. This visualization implies that the multispectral ACF

can build a more spatially concentrated feature set.

4. Experimental Results

To measure the effectiveness of the thermal channel in

various conditions, we evaluated the ACF and its extended

candidates as described in Sec. 3.2. For all these experi-

ments, the detectors were trained and tested on the proposed

dataset using the public ACF implementation[8]. Since our

focus was on evaluating the effect of the thermal channel,

the parameters were fixed in all experiments. We plotted

the miss rate using a per-image evaluation scheme (FPPI)

and summarized the performance with a single value by us-

ing log-average miss rate over the range of [10−2
, 100] as

suggested by Dollar et al.[10] Figure 10 shows the evalua-

tion results for the various subsets of the test set described

below.

Day and night. For this experiment, we used a sub-

set named reasonable which is a representative subset of

the proposed dataset. The reasonable subset consists of

not/partially occluded pedestrians which are larger than 55

pixels. The dataset is divided into reasonable day and rea-

sonable night based on the capturing time. In Fig. 10 (a), all

three extensions using a color-thermal channel performed

better than ACF using only the color channel. This is valid

regardless of daytime or nighttime as shown in Fig. 10 (b),

(c). Apparently, in case of the nighttime when the pedes-

trian is hardly distinguishable in the color image, the ther-

mal channel seems to be dominant at detecting pedestrians.

Scale. In this experiment, we examined trained detectors

using three subsets of the dataset which were defined based

on the size of the bounding box. As shown in Fig. 6, these

were classified into near (∼28 m, 115 pixels∼), medium

(11∼28 m, 45∼115 pixels) and far (28 m∼, ∼45 pixels).

These subsets contain non-occluded pedestrians captured

in daytime and nighttime. As shown in Fig. 10 (d)-(f),

the multispectral ACF generally outperforms ACF on the

three scales. In general, as the height of a pedestrian gets

smaller, the miss rate gets larger. Our detector also fol-

lows this tendency (near: 50.09%, medium: 70.67% and

far: 91.42%). Interestingly, the performance gap between

ACF and multispectral ACF gets larger if the scale increases

(near: 17.63%, medium: 13.41% and far: 5.67%). We be-

lieve this is due to the low-resolution of the thermal camera,

which can capture a human shape better if the pedestrian is

not too distant.

Occlusion. For this experiment, we made three subsets

based on the occlusion tags: no-occlusion, partial-occlusion

(∼50% of area occluded) and heavy occlusion (50%∼ of
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Figure 10. False positive per image (FPPI) versus miss rate in various conditions. Our multispectral ACF is denoted as ACF+T+THOG.

the area occluded). The dataset contains daytime and night-

time images with various scales. The evaluation results are

shown in Fig. 10 (g)-(i). The performance of our multi-

spectral ACF acceptably degrades as the occlusion level in-

creases. However, the performance of stadard ACF drops

significantly even under partial occlusion. This implies that

the additional thermal channel is helpful in case of partial

occlusion as well.

Summary. Through our experiments, we validated the ef-

fectiveness of the joint use of color-thermal images. Our

trained detectors showed consistent improvements for all

conditions compared to the color image based detector. The

thermal image was helpful even when visual information

was lacking, in far scale (Fig. 10 (f)) or occluded cases

(Fig. 10 (h), (i)).

5. Conclusion

We introduced an multispectral pedestrian dataset of real

traffic scenes. The proposed dataset has rich information

involving thermal images, various real traffic scenes, lots of

annotations with occlusion tags, and temporal correlations

of the annotations. In addition, we thoughtfully defined the

subsets of the dataset in terms of day/nighttime, braking dis-

tances, and occlusion levels.

We analyzed the effects of the thermal channel with re-

gard to the distinctiveness of channel features. We also veri-

fied our extension of ACF, called multispectral ACF, in var-

ious conditions. Through the experiments, we determined

that the aligned multispectral images are very helpful for

resolving pedestrian detection problems in various condi-

tions. We expect that the proposed dataset can encourage

the development of better pedestrian detection methods.



D
ay

1
D

ay
2

N
ig

h
t
1

N
ig

h
t
2

(a) Detection using ACF [9] (b) Detection using our multispectral ACF
(trained by color images) (trained by both color (left) and thermal (right) images)

Figure 11. Examples of detection results at FPPI 1. (a) Detection results of ACF [9] trained by color images only. (b, c) Detection results of

the multispectral ACF (described in Sec. 3.2) trained by both color and thermal images. The ACF misses some pedestrians which are hard

to distinguish from background and produce some false positives. On the contrary, the multispectral ACF can detect pedestrian correctly

even in the challenging nighttime images. Images are cropped for better visualization.
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