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Multispectral Video Fusion for
Non-contact Monitoring of

Respiratory Rate and Apnea
Gaetano Scebba, Giulia Da Poian, and Walter Karlen, Senior Member, IEEE

Abstract— Continuous monitoring of respiratory activity
is desirable in many clinical applications to detect respi-
ratory events. Non-contact monitoring of respiration can
be achieved with near- and far-infrared spectrum cameras.
However, current technologies are not sufficiently robust
to be used in clinical applications. For example, they fail
to estimate an accurate respiratory rate (RR) during apnea.
We present a novel algorithm based on multispectral data
fusion that aims at estimating RR also during apnea. The
algorithm independently addresses the RR estimation and
apnea detection tasks. Respiratory information is extracted
from multiple sources and fed into an RR estimator and an
apnea detector whose results are fused into a final respi-
ratory activity estimation. We evaluated the system retro-
spectively using data from 30 healthy adults who performed
diverse controlled breathing tasks while lying supine in a
dark room and reproduced central and obstructive apneic
events. Combining multiple respiratory information from
multispectral cameras improved the root mean square error
(RMSE) accuracy of the RR estimation from up to 4.64
monospectral data down to 1.60 breaths/min. The median
F1 scores for classifying obstructive (0.75 to 0.86) and
central apnea (0.75 to 0.93) also improved. Furthermore, the
independent consideration of apnea detection led to a more
robust system (RMSE of 4.44 vs. 7.96 breaths/min). Our
findings may represent a step towards the use of cameras
for vital sign monitoring in medical applications.

Index Terms— Respiratory rate, apnea, non-contact
physiological monitoring, nearables, multispectral fusion,
thermal imaging.

I. INTRODUCTION

MONITORING respiratory activity is critical for assess-

ing the state of health in humans. Respiratory rate (RR)

is an important vital sign and a strong predictor of severe ill-

ness [1]. While normal RR ranges between 12-20 breaths/min

in healthy adults at rest, RR outside of this range strongly

correlates with specific adverse events, such as congestive

heart failure [2]. Furthermore, monitoring respiratory activity

is used to diagnose breathing disorders and lung diseases, such

as pneumonia and central or obstructive sleep apnea. Despite

its clinical relevance, the continuous and accurate monitoring

of RR is highly undervalued [3].
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Fig. 1: Quantifying respiratory activity using far-infrared (FIR)

and near-infrared (NIR) cameras. Dedicated fusion models

exploit the respiratory information from the multispectral

cameras and estimate respiratory rate (RR) and detect apnea.

Current approaches to objectively assess respiratory activity

require direct contact with the patient. The obtrusiveness of

these approaches reduces their acceptability in the clinical

and telemedicine settings [4]. Therefore, there has been an

increased interest in developing nearables for non-contact,

unobtrusive monitoring of vital signs. One of these approaches

includes the estimation of RR using cameras [5]. The ubiqui-

tousness of cameras and the advancement in computer vision

enable physiological monitoring in more natural settings at

home or in emergency settings for triage of potentially conta-

gious patients [6]. Furthermore, the absence of direct contact

with the skin allows for the monitoring of pre-term infants and

other patients who suffer from skin irritations due to prolonged

use of electrodes [7]. Another advantage of using cameras is

the direct recognition of motion artifacts that reduce the vital

sign quality and trigger false alarms [8].

Currently, cameras to monitor RR are not widely adopted

in clinical settings as they lack accuracy during continuous

operation. The robustness of the measurement method is

impacted in many ways. RGB cameras operating in the vis-

ible spectrum require moderate illumination, preventing their

application in dark environments [9]. Most far-infrared (FIR)

cameras are high-end products and excessively expensive,

whereas consumer-accessible FIR cameras are challenged by

low pixel resolution and sampling rates, which makes the

localization of a specific region of interest (ROI) difficult [10].

An important limitation of most current algorithms for camera-

based respiration monitoring is that they have only been tested

under optimal conditions and with a low number of subjects.

Furthermore, many of these algorithms only implement a
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trivial apnea detection that fails under the presence of noise.

We propose a novel non-contact system to monitor res-

piratory activity by combining near-infrared (NIR) and FIR

cameras (Fig. 1). Our innovative approach extracts multiple

streams of respiratory information from independent video

modalities and then applies two dedicated data fusion models

to determine whether the subject is breathing (apnea detec-

tion), and at which frequency (RR estimation). We designed

and conducted a series of experiments to demonstrate that

fusing multispectral videos leads to a significant improvement

in the estimation of RR when compared to state-of-the-art

methods, and increases the robustness of RR estimates when

apnea events are present.

II. BACKGROUND

A. Multisensory fusion

Data fusion has been successfully implemented in biomed-

ical signal processing for RR estimation with conventional

contact sensors [11]. Numerous approaches fuse either the

RR from photoplethysmographic (PPG) [12]–[14] or electro-

cardiographic (ECG) waveform modulations [15]–[17]. Others

propose combining multiple sensor modalities, such as ECG

and PPG [18]–[20], ECG and thoracic impedance [21], and

ECG and accelerometry [22]. Fusing multiple vital signs is

also advantageous in detecting apneic events. Furthermore,

models exist that combine oxygen saturation with other modal-

ities, such as ECG [23], [24], electroencephalography [25],

respiratory effort and ECG [26], nasal airflow [27] or tracheal

sounds [28].

In this work, we build on several of these approaches

that have demonstrated the benefit of fusing multisensory

information to increase accuracy and robustness of the RR

estimation and apnea detection. However, while existing lit-

erature focused on vital signs obtained from contact sensors,

our data fusion algorithms leverage respiratory signs that can

be solely obtained from video data, thus enabling non-contact

estimation of respiratory activity.

B. Respiratory activity detectable with digital cameras

Respiratory activity and its absence are characterized by

specific patterns that can be extracted through appropriate

analysis of videos recorded with RGB, NIR or FIR cameras.

Four respiratory signs are directly observable: 1) respiratory

induced motion, 2) thermal airflow variation, 3) respiratory

plethysmographic modulation, and 4) apneic events.

1) Respiratory induced motion (RM): RM of the torso is the

most noticeable respiratory sign and is visible to the naked

eye. It is produced by the volume variation of the lungs

that generate the inflow and outflow of air. In particular,

the lungs can be expanded and contracted generating the

periodic motion of the torso in two distinct sections [29]. The

motion of the abdominal wall is caused by the diaphragm that

vertically lengthens and shortens the lungs, and the elevation

and depression of the rib cage increases and decreases the

anteroposterior diameter of the lungs [30]. When an obstruc-

tive apneic event occurs, the collapse of the upper airways

prevents air exchange, but a persistent respiratory movement

of the torso is still present [31]. However, during a central

apneic event, the RM is completely absent. Several algorithms

have been proposed to quantify the RM. Differential image

processing [32], [33] or motion tracking of salient points

extracted from the chest ROI with optical flow [34] and dense

optical flow [35] enable the extraction of respiratory activity.

2) Thermal airflow (TA) signal: The temperature fluctuations

of the airways due to airflow are a respiratory sign that can be

detected with FIR cameras [36]. The physical phenomenon is

based on the radiative and convective heat transfer component

during the breathing cycle [37], which results in a periodic

increase and decrease of the temperature at the tissues around

the nasal cavity. These observable temperature fluctuations

are quantifiable in a FIR video as pixel intensity variations

of the nostrils ROI [37]–[39]. During obstructive and central

apnea there is a suspension of the air exchange between lungs

and atmosphere and consequently, no temperature variation is

observable at the nostrils.

3) Respiratory plethysmographic (RP) modulation: The var-

ious respiratory modulations of the PPG waveform are well

described in literature [12]. The most prominent respiratory

sign observable with cameras is the PPG baseline modulation.

Each respiratory cycle causes variations of the intra-thoracic

pressure that induce changes in the blood exchange between

the pulmonary and systemic circulation. This phenomenon

results in a periodic variation of the baseline of the PPG

waveform. In the event of obstructive apnea, the persistent mo-

tion of the torso continues to induce the intrathoracic pressure

variations. During a central apnea event, the RP modulation

is drastically reduced in amplitude due to the absence of any

RM. The PPG baseline modulation can be quantified through

the linear combination of the RGB components in a video of

skin [5]. Other studies apply blind-source separation [40], [41],

continuous wavelet filtering [42], or auto-regressive models [4]

to extract the RP modulation.

4) Apneic events: Apneic events are defined as the suspen-

sion of respiratory activity lasting for more than 10 seconds

[43]. Apnea detection algorithms frequently focus on detecting

an absence of RR [5], [44]. However, this is not reliable as

frequency derived RR does not tend towards zero if there

is noise present. Furthermore, this simplistic view on apnea

detection prevents the distinction between the absence of

breathing and the absence of a respiratory signal, as well as

between obstructive and central apnea.

Pereira et al. have exploited the potential of combining

multiple respiratory sources of information obtained from

cameras [45]. They propose a black-box fusion approach, in

which the TA fluctuations and the RM obtained from high-end

FIR cameras are considered as independent data sources [44].

In contrast to the above described work, we present the

first camera-based approach to monitor a broader range of

respiratory activity by combining multiple types of respiratory

modulations extracted from multiple modalities. Our approach

simultaneously extracts multiple respiratory signals and with

specialized data fusion models estimates the RR and classifies

apnea. With a third fusion stage we combine that information

to produce an apnea-aware RR quantification.



SCEBBA et al.: MULTISPECTRAL VIDEO FUSION FOR NON-CONTACT MONITORING OF RESPIRATORY RATE AND APNEA (2020) 3

Input ROI Signal Extraction OutputFusion Models

RR
breaths/min

(a)

t

t

Multispectral 
Localization

FIR frameFIR video

NIR video NIR frame

(b)
TAFIR

NIR Chest ROI

(c)

(d)

t

t

t

S2Fusion

Apnea Detector

(f)Feature extraction

(f1)

SVM Ensemble

(f2)

f

(g) (h)

RMFIR

RMNIR

Nostrils ROI

SQb Fusion

RR

SNR

Frequency analysis

(e1)

Weighted median

(e2)

FIR Chest ROI

(e)

Fig. 2: Multispectral camera-based respiratory monitoring system. (a) The videos from far-infrared (FIR) and near-infrared

(NIR) cameras are processed with a (b) Multispectral Region of Interest (ROI) localization algorithm [10]. The localized ROIs

are used to extract (c) the Thermal Airflow (TA) signal from the nostril ROI, and (d) the Respiratory Motion signal both from

the FIR and NIR chest ROIs. (e) In the Signal Quality based fusion (SQb Fusion), (e1) Respiratory Rate (RR) and Signal to

Noise Ratio (SNR) are computed by the frequency analysis of the TA, and the Respiratory Motion from the FIR (RMFIR) and

the NIR (RMNIR). (e2) The weighted median combines all RR estimates using their singnal-to-noise-ratio (SNR) as weights

and calculates a RR estimate. (f) The apnea detector (f1) extracts time and frequency features from the TA, RMNIR, and RMFIR

signals and (f2) classifies the signals into apnea or breathing with an ensemble of support vector machines. (g) The smart

signal quality based fusion (S2Fusion) fuses the results from the SQb Fusion and the apnea classifier (h) to obtain an apnea

sensitive estimation of RR.

III. ALGORITHM DEVELOPMENT

We developed a system for estimating respiratory activity

from synchronized NIR and FIR cameras (Fig. 2). We chose

this pair as they can be operated independently of visible

light. Our algorithmic approach consisted of three main steps.

Firstly, we localized the nostril and chest ROIs in both the

NIR and FIR spectra. Secondly, three respiratory signals were

extracted from these ROIs. Finally, using our novel Smart Sig-

nal quality based Fusion (S2Fusion), a RR estimate obtained

from a modulation fusion model and an apnea classification

model were combined to obtain a more accurate quantification

of the respiratory activity.

A. Multispectral ROI localization

The detection and tracking of the ROIs was built upon a

multispectral ROI detector that we previously proposed in [10].

1) Image registration: In order to ensure the pixel-to-pixel

correlation between the FIR and NIR frames, we applied

a spatial image registration model, consisting of an affine

transformation T , such as

T =

[

sx 0 tx
0 sy ty

]

, (1)

where sx and sy specified the scaling factors and tx and

ty the translation factors. The definition of these factors was

dependent on the distance between the object of interest and

the camera [10]. Therefore, we defined the transformation

model during the calibration phase of the cameras and the

same factors were applied for all the recordings. The spatial

alignment between FIR and NIR frames enabled the projection

of the ROIs identified in the NIR frame to the FIR frame.

2) Detection and tracking: Five facial landmarks were de-

tected in the NIR frame by applying a cascade convolutional

neural network (CCNN) [46]. We obtained the nostril ROI as

a rectangle centered over the nose landmark, with 20 pixel

height and 15 pixel width. To locate the chest ROI, we used

the coordinates of the chin landmark, which were derived as

the bottom ordinate of the face box obtained from the CCNN

model. The final chest ROI was defined using frame size

dependent geometrical relations.

After successful ROI detection, an object tracker compen-

sated for the movements of the subjects during the recording.

As the chest ROI was defined by geometrical dependencies

between the nostrils and face position, we tracked the nostril

ROI on the NIR video only. The tracker first extracted feature

points from the ROI using the minimum eigenvalue algorithm

[47], then tracked these points with the Kanade-Lucas-Tomasi

single points tracker [48], followed by correcting potential

tracking failures with the method described by Kalal et al.

[49]. To further mitigate potential tracking errors, we re-

triggered the detection of the nostril ROI every 10 seconds.

B. Signal extraction

We extracted the RM from NIR and FIR and the TA

from FIR videos. As a preprocessing step, we applied median

filtering with a 3×3 mask to each NIR frame, and we enhanced
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the contrast in each FIR frame by normalizing the pixel value

to the interval [0, 1]. Following the preprocessing, we extracted

the respiratory signals from each of the ROIs. The signals were

then filtered and the RR was extracted from the maximal power

spectral density.

1) Thermal airflow: The thermal fluctuations at the nostril

ROI resulted in a pixel intensity variation in the FIR video.

Thus, given a correctly identified ROI at time t, we computed

the TAFIR signal as the spatial average of the pixel intensity

within the nostril ROI (Fig. 2 c) such as,

TAFIR(t) =
1

WH

W
∑

x

H
∑

y

IROI(x, y, t), (2)

where W and H are the width and height of the ROI, and

IROI(x, y, t) is the pixel intensity at pixel x, y at time t.

2) Respiratory induced motion: The periodic motion of the

torso was extracted using Farnebäck dense optical flow algo-

rithm [50]. In particular, we used the vertical velocity profiles

of each tracked pixel, which were obtained as the ratio between

the pixel displacement derived by the optical flow algorithm

and the time between two consecutive frames. In contrast to

estimating the optical flow for all the pixels of each frame [34],

we restricted the optical flow calculation to the pixels within

the chest ROI only. For this, we divided the ROI into a 5×7

cell grid and averaged the velocity profiles within each cell,

obtaining 35 velocity profiles (Fig. 2 d). To reduce the number

of the velocity profiles for further processing, we calculated

the standard deviation σp of each profile over a window of 12

s and then excluded the profiles that did not meet the criterion,

such as

σp < median(Σp) + 2 · IQR(Σp), (3)

where Σp is a vector containing the standard deviation of the

35 velocity profiles and IQR was the interquartile range. The

RM signal was obtained by averaging the remaining velocity

profiles. As the multispectral ROI localization enabled the

identification of the chest ROI in the NIR and FIR frames, we

extracted a RM signal from each spectral video, thus obtaining

the RMNIR and RMFIR signals (Fig. 2 d).

3) RR estimation: The TAFIR, RMNIR, and RMFIR signals

were processed to estimate the respective RR values. For each

signal, we applied the regularized least squares detrending

algorithm introduced by Tarvainen et al. [51], with the smooth-

ing parameter λ = 300. In the case of the TA signals, we also

applied a Butterworth band pass filter, with filter order set to

2 and frequency range to 0.015 – 0.75 Hz. We did not apply

any filter to the RMNIR and RMFIR signals to preserve their

information content for the apneic detection task. The signals

were then windowed and the Lomb-Scargle power spectral

density (PSD) [52], [53] computed. The frequency with the

highest power density in the range of 0.015 – 0.75 Hz was

selected and converted to breaths/min. The Lomb-Scargle PSD

estimator was chosen because cameras often have unstable

frame rates and it did not require an evenly sampled time

series.

C. Smart signal quality based fusion (S2Fusion)

The S2Fusion was designed as a multilevel data fusion

algorithm that processes respiratory signals extracted from

independent multispectral videos in order to quantify the res-

piratory activity. Practically, it consisted of three components:

1) a signal quality based fusion (SQb Fusion) to merge the

RR estimates computed from each respiratory signal, 2) an

apnea detector to extract temporal and spectral features from

the respiratory signals and classify them as either an apnea

or respiratory epoch, and 3) a final fusion to combine both

models into a respiratory activity estimation (Fig. 2 g).

1) Signal quality based fusion: The SQb Fusion algorithm

estimated the RR considering the signal quality from each of

the three respiratory signals (TAFIR, RMNIR, and RMFIR). The

signal-to-noise ratio was computed such as

SNRi =







∑fpeak+
k

2

fpeak−
k

2

P (f)

∑fpeak−
k

2

0 P (f) +
∑fs

f
peak+ k

2

P (f)







i

, (4)

where P (f) was the Lomb-Scargle PSD, fpeak was the

frequency of the peak with the highest power density,

k = 2 breaths/min was the margin parameter [54], and fs the

sampling frequency. RRSQb was obtained from the weighted

median using the RRi from each signal i and the weights wi

such as

wi =
SNRi

∑

i SNRi

·M, (5)

where M = 24 was an empirically determined scaling factor.

2) Apnea detector: We separated respiratory epochs from

apneic epochs with an ensemble of support vector machines

(SVMs, Fig. S1, Supplementary Material). In addition to the

SNR used for the SQb fusion, we extracted time domain

features such as the number of mean crossings, variance, and

standard deviation from the 12 s windows. These features

highlighted the morphological changes of the signals during

the apneic events. In contrast, the frequency domain feature

SNR described the periodicity of the breathing activity. All

features were standardized to have zero mean and unit variance

before they were fed into the SVM ensemble classifier. Test

features were standardized based on training data statistics.

The SVM consisted of one layer of regression models Ri

and one classification model C (Fig. S1, supplementary ma-

terial). Each Ri extracted the posterior probability Pr(Y =
apnea|Xi) for the set features Xi to belong to an apneic

epoch. This way, each Ri consisted of an expert model for

each respiratory signal. The purpose of C was to aggregate

the Pr from each expert Ri and to compute the final output

yapnea. The design of the SVM ensemble was inspired by the

work of Schwab et al. on multitasking networks [55].

IV. METHODS AND MATERIALS

We conducted a series of experiments to test whether 1) the

SQb Fusion algorithm is more accurate in estimating the RR

compared to a monospectral approach, 2) the combination of

respiratory sources extracted from independent multispectral

cameras increases the detection rate of apneic events, 3) the

S2Fusion algorithm produces robust RR during apneic events



SCEBBA et al.: MULTISPECTRAL VIDEO FUSION FOR NON-CONTACT MONITORING OF RESPIRATORY RATE AND APNEA (2020) 5

and can substantially improve the accuracy during recordings

that include central or obstructive apneic events, and 4) there

is a performance bias towards a subject’s sex.

A. Experimental protocol

To evaluate the performance of our video-based respiratory

monitoring algorithm, we designed an experimental protocol

consisting of one task where participants were breathing

spontaneously and four tasks where they followed different

breathing patterns that included apneic events. Participants lay

on a bed in a supine position and for each task breathed

through the nose. During the tasks with apneic events, they

breathed following the rhythm of a metronome. We only

considered the supine body posture because it is the most

common position leading to apneic events during sleep [56].

To challenge our algorithms, all videos were recorded in a

dark environment (< 5 Lux).

Spontaneous Breathing Participants breathed sponta-

neously for 4.5 min. During this task, participants turned their

head 45o left and right for 2 min each (Fig. 3 a).

Central Apnea Participants breathed for 3 min with a

constant RR of 10 breaths/min and performed 3 central apneic

events, each lasting 20 s (Fig. 3 b).

Obstructive Apnea Participants breathed for 3 mins with a

constant RR of 10 breaths/min and performed 3 obstructive

apneic events, each lasting 20 s. For each apneic event

occurred, participants were instructed to simulate a blockage

of the airways, and to keep the thorax moving to mimic an

ongoing respiratory effort (Fig. 3 c).

Central Apnea - Blanket Participants breathed for 3 min

with a constant RR of 10 breaths/min and performed 3 central

apneic events, each lasting 20 s. During the entire duration of

this task, participants were covered to the chin with a blanket

to hide the chest contours (Fig. 3 d).

Central Apnea - Arbitrary duration Participants breathed

with a constant RR of 10 breaths/min and 2 central apneic

events whose duration was based on the participant’s breath

holding capacity (Fig. 3 e).

The study was conducted according to the ethical guide-

lines of Helsinki. Institutional research ethics board approval

was obtained (ETH Zurich EK 2017-N-60). After informed

written consent, healthy volunteers with no history of cardio-

respiratory disease were enrolled in the study.

B. Experimental setup

The setup consisted of two cameras interfaced with a

Raspberry Pi 3 B microcomputer (Raspberry Pi Foundation,

Cambridge, UK). Custom software was developed to ensure

simultaneous recording of the cameras, video compression,

and data storing on the SD card. NIR videos were recorded

with the See3cam CU40 (econ-Systems, Chennai, India) with

a frame rate of 15 Hz and a resolution of 336×190 pixels. FIR

videos were recorded with a FLIR Lepton version 3.5 (FLIR

Systems Inc., Wilsonville, United States) with an average

frame rate of 8.7 Hz and a resolution of 160×120 pixels.

We used a NIR LED array to enable recordings in insufficient

lighting.

Central
Apnea

Obstructive
Apnea

Spontaneous
Breathing

Arbitrary

duration
Arbitrary
duration

Arbitrary
duration

Central
Apnea

Obstructive
Apnea

Spontaneous 

Breathing

270

(s)

90 180

Central 

Apnea

Obstructive

Apnea

(s)
6030 12090 180150

Blanket(d)

(c)

(b)

(e)

(a)

Controlled
Breathing

Spontaneous
Breathing

30 s 30 s

Fig. 3: The experimental protocol consisted of 5 different

tasks: (a) spontaneous breathing for 4.5 minutes; constant

breathing at 10 breaths/min interrupted by apneic events that

simulated (b) central, (c) obstructive, (d) central while the

body was covered with a blanket, and (e) central with arbitrary

duration based on subject breath holding capacity.

Reference respiratory effort was recorded using a certified

ezRIP module (Philips Respironics, Pennsylvania, USA) at a

sampling rate of 50 Hz. The device used two elastic bands

equipped with piezo-resistive sensors placed over the thorax

and abdomen, which is one of the recommended setups for

measuring respiratory effort in clinical polysomnography [43].

Collected videos and reference respiratory signals were

transferred to a PC, where additional processing and analy-

sis were performed with Matlab R2018b (MathWorks Inc.,

Natick, USA). The sliding window size was set to 12 s for

all processing steps and was recomputed at the lowest camera

sampling rate (FIR, ~8.7 Hz).

C. SVM ensemble training and testing

The adoption of the SVM ensemble for apnea detection

implied a split of the dataset that could ensure a fair evaluation

of the model. For this reason, we applied the leave-one-sub-

ject-out validation scheme, which is a particular case of the

K-fold validation with K equal to the number of subjects. This

validation scheme allowed us to maximize the amount of data

used for training while accounting for potential high variance

problems [57]. At each run, the training and test sets included

the data of N-1 subjects and 1 subject respectively, with N

equal to the number of recruited subjects. The training set

consisted of the recordings obtained from Central Apnea and

Obstructive Apnea, whereas the test set included the recordings

obtained from all the tasks with apneic events. We did not

include the recordings obtained from the Spontaneous Breath-

ing, Central Apnea – arbitrary duration, and Central Apnea

– covered with blanket tasks in the training set because they

did not provide additional information regarding the signal

morphology of apneic events and would have increased the

class imbalance (Fig. S2, Supplementary Material).
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D. Evaluation

The performance of the SQb Fusion algorithm for RR esti-

mation was compared against algorithms that estimate the RR

from single respiratory signals before fusion. Additionally, we

implemented two baseline fusion algorithms based on mean

and median of the RR estimates obtained from RMNIR, RMFIR,

and TAFIR signals. The RR estimates of all the evaluated

algorithms were reported independently of their underlying

estimation quality.

The performance of the SVM ensemble for apnea detection,

which was trained with the features extracted from all signals

(RMNIR+RMFIR+TAFIR), was compared to the performance

of three baseline SVM binary classifiers, trained with the

features extracted from the individual RMNIR, RMFIR, and

TAFIR signals (Fig. S3, Supplementary Materials).

We evaluated the performance of the S2Fusion to quantify

the respiratory activity on a combined experiment that includes

both the RR estimation and apnea detection tasks. In particular,

we compared it against the SQb Fusion using all the record-

ings that included apneic events. To guarantee an objective

evaluation without overlap between training and test set in the

S2Fusion evaluation experiment, we applied the same leave-

one-subject-out validation scheme introduced in section IV-C.

E. Performance metrics

In order to describe the performance of the evaluated algo-

rithms, we evaluated the accuracy (agreement between the RR

estimates and a reference) and robustness (accuracy distribu-

tion in challenging or altering situations, specifically apneic

events or differences in demographics).

To obtain accuracy, we calculated Bland-Altman plots, Pear-

son’s correlation coefficient, and the root mean square error

(RMSE). As reference RR, we used the RR estimates obtained

from the thorax respiratory effort sensor. For comparison, we

pooled all the estimated RRs within non-overlapping segments

of 15 s and computed the median thereof. Bias and limits of

agreement (LoA) for Bland-Altman analysis were calculated

using the formulas for repeated measurements [58]. Pearson’s

correlation coefficient r was computed using a 95% confi-

dence interval. The RMSE was computed between RRref and

each fusion algorithm across segments for each subject and

overall. F1 score, sensitivity, and specificity were calculated

to compare the apnea classification.

To describe robustness, across-subject RMSE distributions

were split by sex and displayed as boxplots. Also, we com-

pared the across-subject RMSE distributions between the RR

estimates obtained from the S2Fusion and the SQb Fusion al-

gorithms to evaluate each apneic event task. Middle, bottom,

and top horizontal lines of boxes depicted the median, lower,

and upper quartile, respectively, and crosses depicted outliers.

We tested the normality of the RMSE distributions using the

Shapiro-Wilk test and compared them with the Wilcoxon Rank

Sum test. Multiple distribution comparisons were Bonferroni

corrected. Significance levels were set to p < 0.001 (***) or

p < 0.05 (*) unless stated otherwise.
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Fig. 4: Comparison of respiratory signals from one subject

during a central apnea task for (from top) reference respiratory

effort from the thorax, the abdomen, TAFIR, RMFIR, RMNIR

signals, and respiratory activity (RA) estimations. SQb Fusion

and S2Fusion algorithm were only available after the first 12

s window was collected.

V. RESULTS

We obtained videos of 30 healthy participants (17 females

and 13 males, mean age: 27 ± 3 y). Subjects varied in facial

appearance with a Fitzpatrick skin tone between type I and

VI (I:2, II:7, III:19, IV:1, V:1, VI:0). Seven males had facial

hair. A total of 492 minutes of video were recorded and

available for analysis. An illustrative example of the signals

obtained from the reference contact sensors and cameras, as

well as estimation output, is depicted in Fig 4. Motion artifacts

substantially corrupted the recording of one subject.

A. Respiratory rate estimation performance

A total of 135 minutes (540 segments) of Spontaneous

Breathing task were evaluated for the RR estimation accuracy.

The SQb fusion showed the highest accuracy (Fig. 5). This

was supported by the highest correlation (r=0.92), lowest

RMSE (1.6 breaths/min), and the best agreement from the

Bland-Altman analysis. The bias was 0.47 breaths/min and

the LoA were 3.46 and -2.51 breaths/min, outperforming all
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15 s long segments. The dashed blue lines depict the limits of agreement, the solid red line the bias. The dotted yellow line

depicts the linear relation that best fits the data. r is the Pearson’s correlation coefficient and RMSE the root mean square error

across all segments.

TABLE I: Apnea detection performance for all apnea tasks

on the test set. Median (mean absolute deviation) for F1

score, sensitivity, and specificity were obtained for the SVM

ensemble trained with all the features, and features from the

individual respiratory signals RMNIR, RMFIR and TAFIR.

Obstructive Apnea

Source F1 Sensitivity Specificity

RMNIR+RMFIR+TAFIR 0.86 (0.12) 0.91 (0.16) 0.78 (0.06)
RMNIR 0.76 (0.12) 0.75 (0.17) 0.82 (0.05)
RMFIR 0.76 (0.15) 0.80 (0.20) 0.69 (0.05)
TAFIR 0.75 (0.14) 0.74 (0.17) 0.72 (0.08)

Central Apnea

RMNIR+RMFIR+TAFIR 0.93 (0.02) 0.98 (0.03) 0.86 (0.04)
RMNIR 0.93 (0.08) 0.95 (0.13) 0.92 (0.06)
RMFIR 0.88 (0.04) 0.98 (0.06) 0.81 (0.06)
TAFIR 0.75 (0.10) 0.77 (0.13) 0.70 (0.07)

Central Apnea - Arbitrary duration

RMNIR+RMFIR+TAFIR 0.87 (0.07) 0.96 (0.10) 0.82 (0.08)
RMNIR 0.89 (0.08) 0.91 (0.09) 0.87 (0.08)
RMFIR 0.87 (0.08) 0.89 (0.11) 0.86 (0.07)
TAFIR 0.72 (0.12) 0.69 (0.14) 0.78 (0.08)

Central Apnea - Blanket

RMNIR+RMFIR+TAFIR 0.92 (0.03) 1.00 (0.09) 0.86 (0.05)
RMNIR 0.94 (0.04) 0.98 (0.10) 0.92 (0.07)
RMFIR 0.90 (0.05) 0.99 (0.11) 0.81 (0.08)
TAFIR 0.74 (0.15) 0.79 (0.19) 0.72 (0.07)

the algorithms based on individual respiratory signals from

single video modalities (Fig. 5 e-h). The SQb Fusion obtained

a median RMSE of 1.17 breaths/min across subjects, which

was significantly lower than the baselines (median fusion

1.60 breaths/min, p < 0.05 and mean fusion 1.96 breaths/min,

p < 0.01, Table S1, Fig. S4, Supplementary Materials).

The RMSE of TAFIR showed a significantly different dis-

tribution between female and male subjects (median RMSE

2.65 vs. 1.58 breaths/min, Fig. 6).

B. Apnea detection

A total of 357 minutes of video recordings containing apnea

were evaluated for apnea and respiratory activity detection.

Fusing the features extracted from multispectral videos led

to the best performance in detecting apneic events in the

Obstructive Apnea task (F1 score = 0.86, Table I). The

performance of the SVM ensemble trained with all the features

or using only those extracted from the RMNIR signal showed

similar results on the Central Apnea task (F1 score = 0.93 for

both sources).

C. Respiratory activity detection

The S2Fusion algorithm showed a statistically significant

reduction of RMSE compared to the SQb Fusion in all apnea

tasks (Fig. 7). The RMSE over all tasks was 4.44 breaths/min

for S2Fusion and 7.96 for SQb Fusion.
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VI. DISCUSSION

We presented a novel fusion approach for respiratory mon-

itoring from multispectral videos. Our algorithm features two

dedicated data fusion models that combine multichannel res-

piratory information to estimate the RR, and also to detect

the absence of respiratory activity. For the first time, these

two components are combined in a single system together

to be studied extensively. Our evaluation of videos from 30

subjects performing diverse breathing patterns showed that

multisensory respiratory information combined with apneic

events detection estimates RR with higher accuracy than

applying single camera-based approaches, therefore demon-

strating robustness during apnea events. The accuracy of the

fusion approach did not show a statistical difference between

male and female subjects. Moreover, in contrast to several

state-of-the-art methods developed for high-end thermal cam-

eras, our multispectral video fusion pipeline enabled low-end

mobile thermal cameras to satisfactorily perform the task of

respiratory monitoring.

A. Respiratory rate estimation

The SQb Fusion combined the RR estimates obtained from

the RM and TA signals. The key element of the proposed

fusion approach was the use of the SNR of each respiratory

signal within the fusion model. Redundancy was important for

improving the estimation of the RR, illustrated by a significant

improvement of the RMSE using fusion when compared to the

results from a single spectral camera.

We demonstrated that adopting multispectral sources pro-

vides an additional gain in accuracy. This expands the work

of Pereira et al., who combined multiple respiratory signals

from a single high-end video source to improve RR estimation

[44]. In combination, this enables new applications where ro-

bustness against noise and movement artifacts is essential. For

example, head or torso movements can cause the temporary

loss of one of the regions of interest and affect the quality

of the extracted respiratory signal leading to an inaccurate

estimation of the RR. We included such challenging situations

into our experimental data by asking the participants in the

Spontaneous Breathing protocol to rotate their heads. Our

analysis clearly showed that the SQb Fusion discarded the

deteriorated, motion artifact affected estimations and empha-

sized those with higher SNR. However, when the movement

involved both head and torso regions, as involuntarily occurred

in one subject, the respiratory signals from all sources were

deteriorated, resulting in a RMSE higher than 3 breaths/min.

To cope with motion artifacts, dedicated computer vision

methods could be further developed to quantify the motion of

the whole body and use these insights as a quality assessment

of the respiratory signals (e.g. by directly eliminating fusion

estimates [12]).

We analyzed the performance of the investigated RR al-

gorithms for potential differences linked to the subjects’ sex

(Fig. 6). We found that estimating the RR using only the

TA signals lead to a significantly higher RMSE for female

subjects. A deeper analysis revealed that the higher estimation

error on the female group was caused by an incorrect ROI

localization, likely related to long hair. No significant differ-

ence was observed for the performance of the RR algorithms

based on motion signals from both NIR and FIR videos. Most

importantly, no significant difference was observed in the SQb

Fusion, suggesting that the fusion algorithm was reducing

the bias seen in the TA signal effectively and robust to sex

differences. The small size of each group (17 female and 13

male) does not allow a conclusive statistical evaluation on all

algorithm components or demographic sub-features (such as

facial hair or skin colour), but we believe that computer vision

algorithms for physiological monitoring should systematically

be tested for potential sex and other biases.

B. Apnea detection

Our apnea detector utilized a SVM ensemble classifier

with a set of features extracted from multiple respiratory

signals as input. This enabled the detection of apneic events
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independently from the RR estimation and without requiring

any pre-calibration steps. We demonstrated that detecting

apneic events by fusing multiple respiratory signals extracted

from multispectral independent videos provided higher F1

scores than adopting single spectral cameras. The importance

of fusing multiple respiratory signals was underlined by the

higher performance in detecting obstructive apneic events.

During obstructive apneic events when the occlusion of the

upper airways blocks air exchange, the respiratory movements

of the torso were still present and could lead to a misdetection.

However, the combination of the features extracted from the

RMNIR, RMFIR, and TAFIR signals enabled the SVM model

to accurately discriminate breathing from obstructive apneic

events. Fusing the features from all the respiratory signals

showed a marginal impact on the central apnea detection

tasks. Interestingly, the RMNIR signal showed similar results

to the fusion of all the features which was in contrast to its

low performance in the RR estimation task (Fig. 5 b, f). A

possible explanation could be that the two tasks had different

requirements for signal quality. While the RR estimation task

depended on high quality signals, the detection of apnea may

only require processed features that were also available from

low quality RMNIR signals.

Our research and algorithm design focused on nighttime

applications with monitoring of respiration in bed. This real-

world scenario could easily be challenged by a body partially

covered by a blanket. In Li et al. RM is reliably extracted

from NIR videos without being negatively influenced by the

presence of a blanket texture [34]. Our experiments confirmed

these findings also for the S2Fusion and expanded the appli-

cation to the task of apnea detection. In fact, we demonstrated

that motion tracking applied to both NIR and FIR videos is a

valid methodology to detect apneic events, even if one channel

is unreliable.

C. Respiratory monitoring system

To the best of our knowledge, the S2Fusion is the first

published fusion model that addressed the task of estimating

the RR and detecting apnea in a single system. By combining

the RR estimates obtained by the SQb Fusion and the apnea

detection score obtained by the apnea detector, we forced the

S2Fusion to account for abnormal breathing events, therefore

increasing the robustness of the RR estimation from video

recordings during apneic events. The modular architecture of

the fusion could enable a more granular detection of apnea

events, such as the distinction between the type of apnea with

a more sophisticated, non-binary classifier.

While the presented work demonstrated the feasibility of

the approach and is a significant step forward for the design

of reliable non-contact respiratory monitors, it is also evident

that further validation in clinical settings with patients is

needed. While we have put great effort into diversifying data

collection with a comparatively large number of subjects and

a broadly defined protocol including spontaneous breathing,

various apneic events and confounding factors such as blanket

coverage and head movements, the dataset is not fully repre-

sentative of future applications. First, our subjects were healthy

and breathing in the expected range of 6–22 breaths/min.

Therefore, we did not investigate the performance of our

algorithm for higher RR ranges as would occur during disease

or in a pediatric population. We believe that guiding healthy

subjects to breathe with a RR in the range of 25-35 breaths/min

can result in accentuated respiratory signs and could make

the validation of any video-based algorithm for RR estimation

highly biased. Furthermore, our recordings only contained

simulated apneic events. The respiratory motion signals ob-

tained by the reference measurement systems visually showed

a lot of similarity to those of real patients suffering from cen-

tral and obstructive sleep apnea. Nevertheless, full overnight

recordings from healthy subjects and patients suffering from

sleep apnea are needed to fully assess the value of non-

contact respiratory monitoring for use as a telemedicine apnea

assessment tool. There is significant potential for a system

like ours to be implemented in overnight polysomnography

screenings where cameras are already part of the standard

equipment, but play a minor role in the overall assessment.

VII. CONCLUSION

We presented a unique approach to monitor respiratory

activity based on the fusion of multispectral videos. It ex-

plored the idea of extracting multiple respiratory signals from

independent multispectral videos and strategically combining

them to address RR estimation and apnea detection. Our

findings demonstrated that fusing multiple respiratory signals

from multispectral cameras increases the accuracy of respi-

ratory activity when compared to single camera modalities.

In addition, our S2Fusion further highlighted the advantage

of addressing the tasks of estimating RR and detecting apnea

independently. We experimentally demonstrated that low-cost

multispectral mobile cameras could potentially be used to

monitor respiration. We, therefore, are confident that our

results constitute a step towards the implementation of camera

sensors to unobtrusively and robustly monitor respiratory

activity both in the clinic and in remote locations.
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