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Abstract: Ensuring the quality of fresh-cut vegetables is the greatest challenge for the food industry
and is equally as important to consumers (and their health). Several investigations have proven
the necessity of advanced technology for detecting foreign materials (FMs) in fresh-cut vegetables.
In this study, the possibility of using near infrared spectral analysis as a potential technique was
investigated to identify various types of FMs in seven common fresh-cut vegetables by selecting
important wavebands. Various waveband selection methods, such as the weighted regression coeffi-
cient (WRC), variable importance in projection (VIP), sequential feature selection (SFS), successive
projection algorithm (SPA), and interval PLS (iPLS), were used to investigate the optimal multispectral
wavebands to classify the FMs and vegetables. The application of selected wavebands was further
tested using NIR imaging, and the results showed good potentiality by identifying 99 out of 107 FMs.
The results indicate the high applicability of the multispectral NIR imaging technique to detect FMs
in fresh-cut vegetables for industrial application.

Keywords: fresh-cut vegetables; foreign materials; near infrared spectroscopy; waveband selection

1. Introduction

Fresh-cut fruits and vegetables refers to ready-to-eat or ready-to-cook plant products
that have been slightly physically modified by slicing, cutting, peeling, or trimming and
then packed as 100% edible products. The International Fresh-Cut Produce Association
(IFPA) reported that since 1930, fresh-cut products have been available in retail supermar-
kets [1]. In the beginning, fresh-cut production companies were established for supplying
products to hotels, restaurants, and catering services. However, this industry has become
popular in the last few years because of the growing need for fresh fruit and vegetables for
consumption [2].

Now, fresh-cut fruit and vegetables are among the most popular commodities in
industrialized countries’ food markets, remaining the most demanded plant-derived prod-
ucts to meet the needs of modern consumers. Moreover, in the last decade, because of
technological advancements, this specialized industry has been successively growing and
is better organized [3].

The main challenge of this industry is to ensure the freshness and quality of the
fresh-cut products. Quality is dependent upon physical, chemical, and biological contami-
nation. Several studies have been conducted regarding chemical and biological hazards
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and changes in fresh-cut produce [4–7]. Fecal contamination and different types of for-
eign materials (FMs) are the major concerns of physical contamination [7]. In physical
contamination, a wide range of foreign materials has been the main source of consumer
complaints in the fresh-cut industry. A comprehensive study conducted as a part of the
Food Standards Agency (UK) showed that around 20% of incidents concerning foreign
materials were reported for vegetables and vegetable products, which is the highest among
all food products. The study also found that plastics, glass, metal, wood and plant parts,
and insects are the most frequent foreign materials found in vegetables [8].

The presence of FMs in food can cause health risks for the consumer and also affect
the reputation of the manufacturer. It is mandatory to ensure the removal of all types
of foreign bodies from foods. Several studies have been conducted to identify FMs in
different types of food, including X-ray, near infrared spectroscopy, hyperspectral imaging,
thermal imaging, ultrasonic, and terahertz methods [9]. Metal detectors, magnets, electrical
impedance, and surface-penetrating radar are some of the commonly used methods of the
different food processing industries. However, these methods are only suitable for specific
types of FMs.

Though FMs are mostly found in vegetables and vegetable products, no study has
been performed to evaluate the performance of the systems mentioned earlier for fresh-
cut vegetables. Being concerned about the seriousness of foreign materials incidents in
fresh-cut vegetables, fundamental research is needed to elucidate a suitable method to
identify FMs in fresh-cut produce. A previous study found that the X-ray system is not
ideal for detecting plastic fragments in food, and it is also costly [10]. Ultrasonic imaging
is not appropriate in the air medium [11], and terahertz imaging is greatly attenuated in
the water medium [12]. To use a thermal imaging system, a thermal contrast between the
product and the background is needed [13], and no temperature interference from other
surfaces is acceptable [11].

In contrast, NIR can penetrate the air spaces between food materials [12], and it is also
cheaper, easier, and faster than the other techniques [14,15]. The main disadvantage of NIR
spectra is that they often contain overlapping peaks caused by the overtone and combination of
the fundamental vibration of the molecules, which draws on broad bands [16]. This makes the
spectra challenging to interpret, and extracting chemical information is less straightforward.
However, this problem can be avoided by using proper chemometric techniques to build a
relationship between absorption values at certain wavelengths and reference values of the
measured samples [17]. Another limitation of the NIR technique when using chemometrics
is that the technique requires reference data during calibration [17]. However, to classify
between two categorical groups, it is easy to use “0” and “1” as the reference values for
calibration purposes, which can easily overcome the limitations of NIR.

Two different types of chemometric approaches are used for the classification of NIR
spectra, namely the unsupervised and supervised methods [18]. PCA is one of the most
common unsupervised techniques in which similar materials have a tendency to create a
cluster in the multidimensional plot based on their principal component scores [19]. On
the other hand, PLS-DA is a popular supervised chemometric method for analyzing high-
dimensional data, where the variables are often correlated with one other [20]. In addition,
the algorithm is computationally inexpensive, which is preferable for industrial use [21].

Therefore, an NIR imaging system with proper chemometric methods could be a solu-
tion for identifying FMs in fresh-cut vegetables. Nevertheless, before designing the spectral
imaging system, it is essential to separately observe the spectral characteristics of potential
FMs and vegetables and select critical wavebands to differentiate them. Furthermore,
new applications appear in the food industry on a daily basis due to the introduction of
noninvasive, chemical free, and fast-moving technologies [22]. Previously, the NIR imaging
system was used to identify leaves, twigs, and stones in blueberries [23]; coins, glass balls,
and rubber in dough, cheese, doughnuts, and meats [12]; leaves and stems in blueber-
ries [24]; bone fragments in chicken breast fillets [25]; and polyethylene terephthalate (PET),
polyethylene (PE), metal, insects, and bones in pork steaks [26]. Additionally, near infrared
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spectroscopy was used to identify insects in various foods, such as chestnuts [27], rice [28],
and olives [29]. However, each study considered very few selected materials as FMs.

This paper assesses the feasibility of detecting a wide range of FMs in fresh-cut
vegetables based on NIR spectroscopy with multivariate analysis. The primary objective
of this research is to establish the crucial wavebands that can separate the potential FMs
from different types of fresh-cut vegetables and explore the limitations of NIR application
in detecting FMs.

2. Materials and Methods
2.1. Samples

Seven types of vegetables, namely cabbage, carrot, radish, green onion, onion, potato,
and zucchini, were used in this study. All of the vegetables were purchased fresh from
the local market of Daejeon in the Republic of Korea, and then cut into small pieces, with
the spectra measured on the same day. For each type of vegetable, 40 sample spectra were
collected, i.e., a total of 280 sample spectra. Different types of plastics, wood, stone, bugs,
paper, tissue, nails, rubber, etc., were considered as FMs. Figure 1 shows the representative
FMs, and a list of potential FMs is provided in Table 1. A total of 320 spectra were collected
from all types of FMs.

Figure 1. Photograph of representative FMs.

2.2. NIR Spectroscopy

The spectra of all the vegetables and FMs were acquired using an FT-NIR spectrometer
(Antaris II FT-NIR analyzer, Thermo Scientific CO., Waltham, MA, USA), which was set
with an InGaAs detector. The sampling window consisted of chemically resistant sapphire.
Each piece of vegetable or FM was put in the middle of a custom-made sample holder with
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a scanning glass (low OH quartz) window designated for solid samples, which helped to
ensure the reproducibility of the diffuse reflectance spectra. The holder had a black lid to
restrict the outside light effect. The absorbance spectra of each piece were collected using a
total of 32 successive scans in the wave range of 1000–2500 nm (4000–10,000 cm−1) at an
interval of 4 cm−1 spectral resolution. Large pieces of FMs and vegetables were cut into
small pieces to fit the sampling area properly. Then, the spectra of each piece of vegetables
and FMs were obtained separately.

Table 1. List of potential foreign materials used in this study.

Name of FMs Type Source

Paper Different color
Printing paper, books, dairy,
packaging paper, packaging

boxes, sticky notes, etc.

Plastics

ABS

Various processed food
packages, bottles, industrial

waste plastics, laboratory
waste plastics, etc.

LDPE
HDPE
PET
PS
PC
PP

Nylon

Rubber Different color
Nondestructive biosensing
lab, Chungnam National

University

Tissue Different source
Nondestructive biosensing
lab, Chungnam National

University

Threads Different color
Nondestructive biosensing
lab, Chungnam National

University

Stone Different size and place Daejeon, South Korea

Wood
Processed Toothpick, earbuds

Raw Plant stem

Cigarettes Different brand Different person

Insects

Mosquito

Environment

Bee
Fly
Ant

Spider
Grasshopper

Butterfly
Others

Human nail Various size Different person

Metal Nuts, bolts, wires, springs,
foils, etc.

Nondestructive biosensing
lab, Chungnam National

University

2.3. NIR Imaging System

A laboratory-based line scan NIR imaging system was used in this study to acquire
the imaging data in the wave range of 900–2500 nm. The system consisted of an imaging
spectrograph (SWIR, Headwall Photonics, Fitchburg, MA, USA), an MCT (mercury cad-
mium telluride) detector (Xeva-2.5-320, Xenics, Belgium) with a camera of 320 × 256 pixel
resolution, a 25 mm f/1.4 (OB-SWIR25/1.4—P/N C0808.010) lens, and six 100 W tungsten-
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halogen light sources. The sample was moved at 4.73 mm/scan on the way to the camera
field of view by a translation stage controlled by a DC motor.

2.4. Spectral Data Preprocessing and Multivariate Analysis

Because of the scattering of the light, changes in particle size, and instrumental drift,
the FT-NIR spectra may have had noise. Therefore, the raw data were required to undergo
preprocessing methods to attain precise chemical information from the spectral peaks and
valleys [30]. In this study, all spectral data were treated with seven preprocessing methods:
three data normalization methods (maximum, minimum, and range), two derivatives
(Savitzky–Golay first and second), multiplicative scatter correction (MSC), and standard
normal variate (SNV).

To understand the characteristics of the spectral data and the extent of data diffusion,
principal component analysis (PCA) could be easily applied. The PC1 (first principal
component) explains the most significant variation in the data. Then, a PC2 (second
principal component), which is orthogonal to the first PC, defines the reamining variation,
which PC1 does not describe, and so on. The most significant characteristics of the spectral
data can be observed on a graphical plot using this tool [31].

Afterward, a multivariate analytical model of PLS-DA was developed to discriminate the
vegetables from the different types of FMs. PLS-DA, typically applied for model classification,
is the modified form of partial least square regression (PLS-R). It is expressed as:

Y = X × β+ e (1)

where X is an m× n matrix that contains the predictor variables of each class, β is the vector
of the regression coefficient, ė is the error term, and Y is the response vector comprised of a
synthetic value expressing class, as provided below:

Y =

{
0 = sample aligned to vegetable class

1 = sample aligned to foreign materials class

In order to precisely distinguish the vegetables and FMs, a baseline was chosen as ± 0.5
with respect to each class. Then, the X and Y values were decomposed into latent variables
(LVs) to establish a linear connection between the response and predictor variables.

X = TPT + Ex (2)

Y = UQT + Ey (3)

where T and U are score matrices, and whereas P and Q are loading matrices. Ex and Ey
are the error matrices of X and Y, respectively.

2.5. Overview of Multispectral Waveband Selection Methods

The main objective of an important variable selection is to extract the most valuable
wavebands from all of the spectral data, which can discriminate the FMs from vegetables,
while removing the redundant bands. This will make the model more suitable for industrial
applications by significantly reducing the computational time. In this study, five optimal
variable selection methods were used, namely weighted regression coefficient (WRC), vari-
able importance in projection (VIP), sequential feature selection (SFS), successive projection
algorithm (SPA), and interval PLS (iPLS).

2.5.1. Waveband Selection Based on WRC

The weighted regression coefficient (weighted β-coefficient) shows the connections
between the predictors and the corresponding response variables by measuring their
weight. The WRC was obtained from the PLS-DA model by dividing each spectrum by its
standard deviation to adjust the data on the same scale. The higher positive or negative
values of the β-coefficient represent the essential variables that contribute the most to build
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the model. It is a widespread method for selecting wavelengths and used successfully by
many researchers [32–34]. However, the absorbance value from the original sample spectra
needs to consider the corresponding WRC value to select the variables. Variables with a
higher β-coefficient but lower (or no) peak in the sample spectra may not contribute to the
model prediction [35].

2.5.2. Waveband Selection Based on VIP

Variable importance in projection, as described in [36], was also applied as an optimal
variable selection method to build a classification model to differentiate between vegetables
and FMs. The general equation to calculate the VIP score of variable j is given below:

VIPj =

√
∑I

i=1 W2
ji SSYi J

SSYtotal I
(4)

where Wji is the weight value for the element i and the variable j, SSYi is the sum of the
squares of the measured variable for the ith element, J is the total number of variables,
SSYtotal is the overall sum of squares measured for the response variable, and I is the total
quantity of the elements.

2.5.3. Waveband Selection Based on SFS

Sequential feature selection is a method that selects features one-by-one in an iterative
way by checking the best model fit. It mainly has two components: the criterion function
and a sequential search algorithm. The algorithm starts with an empty set and then
sequentially adds features, one-by-one, that significantly describe the model based on
the criterion function [37]. The criterion function can be defined in two ways: for the
classification model, the criterion function is a misclassification rate, and for the regression
model, it is the mean squared error. The searching algorithm continues the same process
until the required number of variables is selected.

2.5.4. Waveband Selection Based on SPA

The successive projection algorithm was used to select the optimum number of vari-
ables by minimizing the redundancy information produced by the spectroscopy to improve
the collinearity problems among the variables [38]. The algorithm starts with a single
wavelength or variable, then adds a new variable with the maximum projection, and
repeats the process until the desired number of variables is selected. Thus, the algorithm
produces a subset of variables with the least linear relationship between them from all the
variables of the training set and applies this set to the cross-validation data set to evaluate
the performance. This algorithm is extensively used to select the optimum number of
variables in the multivariate quantitative and qualitative analysis [34].

2.5.5. Waveband Selection Based on iPLS-DA

iPLS-DA is a modified version of the iPLS algorithm described in [39], which identifies
the critical variables from the entire spectrum region by dividing them into equal subinter-
vals and then finding the minimum misclassification rate. The model can be developed in
two selection modes: forward and backward. In the forward selection mode, the intervals
are added in an iterative way until the user-defined conditions are fulfilled. On the other
hand, the intervals are removed iteratively in the backward selection mode. However,
the backward selection mode typically selects more variables than the forward one [40];
therefore, the forward selection model was used in this study.

All preprocessing methods, variable selection algorithms, and PLS-DA model present
in this study were executed using MATLAB R2020b (MathWorks, Natick, MA, USA)
computer software.
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2.6. Model Performance Assessment

Sensitivity, specificity, and accuracy were calculated to assess the performance of the
model developed with the selected variables by using the following equations adapted
from Faqeerzada et al., 2020 [41].

Sensitivity(%) =
Tp

Tp + Fn
× 100 (5)

Specificity(%) =
Tn

Tn + Fp
× 100 (6)

Accuracy(%) =
Tp + Tn

Tp + Tn + Fp + Fn
× 100 (7)

where Tp = True positive (sum of accurately detected vegetable samples), Fn = False negative
(sum of the vegetable samples detected as FMs), Tn = True negative (sum of the accurately
categorized FMs), and Fp = False positive (sum of the FMs grouped as vegetables).

3. Results and Discussion
3.1. Spectral Data Interpretation

The averages of the raw spectral data of the fresh-cut vegetables and all FMs were
plotted for the full NIR wavelength (1000–2500 nm) region. In order to make these spectral
features easy to comprehend, spectra were plotted in three sections: biological FMs spectra
are displayed in Figure 2a, non-biological FMs spectra are shown in Figure 2b, and fresh-
cut vegetable spectra are shown in Figure 2c. The spectra in the wavelength regions of
1400–1450 nm and 1900–1950 nm show higher intensity for vegetables than the FMs due
to the presence of excessive water content, which can differentiate the fresh-cut produce
from foreign bodies. The absorption bands of vegetables found at 1190 nm, 1450 nm, and
1940 nm were assigned to the combinations of the O–H first overtone and O–H bending
band, the first overtone of O–H stretching band, and the combination of O–H stretching
band and O–H bending band, individually [42].

However, it was observed that almost all of the FMs and vegetables had a peak near
1700–1800 nm, with different intensities. Several studies have found that the absorption
band detected close to 1700–1800 nm due to the first overtone of C–H stretch proves the
presence of cellulose content in vegetables, bugs, papers, and woods [43–45]. In addition to
this, plastics (LDPE, HDPE, PP, ABS, and PET) also have peaks over 1720–1770 nm due to
the first overtone of the asymmetric stretching of a methyl group [46]. As the main purpose
of this study was to classify the FMs in fresh-cut vegetables, the bands with no similarity or
conflict with vegetable spectra were not discussed.

3.2. Principal Component Analysis (PCA)

Spectral datasets typically contain many more variables than the number of samples,
which can make a model overly confident when multiple linear regression techniques
are used [47]. As an unsupervised approach, the principal components in a PCA model
can serve as an indicator for model reliability by pointing out the direction of maximum
variance [48]. The score plot of the PCA model is a subspace projection of data that is used
to analyze the relationships between the observations.

The obtained scatter plot of the PC scores after applying the mean normalization
preprocessing method, displayed in Figure 3a,b, shows significant variation between the
vegetables and FMs. The first three PCs demonstrated a cumulative total variation of 96.51%
in the classification of FMs and vegetables. As demonstrated in the two-dimensional projec-
tion (Figure 3b), PC1 and PC2 were the most important components for FM identification,
contributing a total variation of 92.9%.
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Figure 2. Raw FT-NIR spectral plots of (a) biological FMs, (b) non-biological FMs, and
(c) fresh-cut vegetables.

The PC loading plot was developed to define the corresponding weights of the vari-
ables for the first three PCs (PC1, PC2, and PC3), as shown in Figure 3c. These loading
plots showed some critical information about wavelengths and had similarities with the
peaks described in the previous section. Three peaks positioned at 1450 nm, 1730 nm,
and 1920 nm may have a maximum contribution to discriminate the FMs from vegetables.
The disparity between vegetables and FMs using PCA and the existence of spectral peaks
at the specified wavelength established the base for the following study to construct the
classification model using PLS-DA.

3.3. PLS-DA Model

Partial least square discriminant analysis (PLS-DA) was accomplished as a supervised
learning model where two known classes were defined. The total data set was randomly
shuffled and divided into two data sets where 70% of the data was used in the calibration
model and the remaining 30% of data was used in model validation. The classification
parameters to identify FMs in fresh-cut vegetables were acquired from the PLS-DA model
after employing the preprocessing methods. A baseline shift and non-linear effects can
be effectively avoided by using appropriate preprocessing to enhance the classification
models [49]. Hence, the effect of different preprocessing methods on the accuracy of
classification models was investigated and is summarized in Table 2.
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Figure 3. (a) First three PC score plot, (b) first two PC score plot, and (c) PCA loadings plot of mean
normalized spectra.

Table 2. Summary of PLS-DA model on the identification of FMs in vegetables using different
preprocessing methods.

Total
Number of

Samples

Calibration (420 Samples) Validation (180 Samples)

LVs
Correctly
Classified
Fresh-Cuts

Correctly
Classified

FMs

Accuracy
(%)

Correctly
Classified
Fresh-Cuts

Correctly
Classified

FMs

Accuracy
(%)

Normalization

Mean 1 600 196 224 100 84 96 100 4
Max 2 600 196 224 100 84 96 100 5

Range 3 600 196 224 100 84 96 100 6
MSC 4 600 196 224 100 84 96 100 9
SNV 5 600 196 224 100 84 96 100 6

Derivatives
SG1 6 600 196 224 100 84 96 100 4
SG2 7 600 196 224 100 84 95 99.4 6

Raw 600 196 224 100 84 96 100 5
1 Mean normalization; 2 maximum normalization; 3 range normalization; 4 multiplicative scatter correction;
5 standard normal variance; 6 Savitzky–Golay first derivative; 7 Savitzky–Golay second derivative.

The yielded PLS-DA models demonstrated maximum accuracy (100%) in calibra-
tion data sets, including all the preprocessing methods; in validation data sets, only the
Savitzky–Golay second derivative (99.4%) had slightly lower classification accuracy. The
raw data, i.e., data without any preprocessing, clearly classified the vegetables and FMs
with a reference baseline of 0.5, both in the calibration and validation data, respectively
(Figure 4). Sugiyama [24] was able to detect the leaves and stems from blueberries with
100% accuracy using NIR spectra with discriminant analysis. Diaz [26] clearly distinguished
the PET, PE, metal, insects, and bone from pork steaks in the 1100–2500 nm wavelength
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region. The high classification accuracy indicated that there are apparent differences in
chemical composition between the two groups, and FT-NIR spectroscopy could correctly
and reliably identify the FMs in fresh-cut vegetables.

Figure 4. PLS-DA classification plots of raw data: (a) calibration plot and (b) validation plot.

3.4. Selection of Important Wavebands

For the real-time application of a model, it is crucial to reduce the number of variables to
run the model faster with better performance and reduce the associated cost. In addition, it is
also helpful to develop a multispectral, low-cost imaging system that can ease the data collection
and processing in a short time. Therefore, five extensively used variable selection algorithms,
namely WRC, VIP, SFS, SPA, and iPLS, were used to select the most important variables.

Firstly, the weighted regression coefficient obtained from the PLS-DA model (Figure 5)
was used to explore the connection strength between predictor and criterion variables. The
peaks and valleys of the WRC represented the most valuable bands that contributed to
classifying the FMs and vegetables. From Figure 5, five peaks and valleys with large weight
values corresponding to specific wavelengths were selected, and the bands were 1150 nm,
1400 nm, 1731 m, 1880 nm, and 1920 nm.

Figure 5. The beta coefficient curve obtained from the PLS-DA model.

The peaks around 1156 nm reflect the second overtone of the CH3 asymmetrical stretch
associated with different plastics [46,50]. The wavelength at 1731 nm corresponding to the
first overtone of CH stretching of cellulose is the main component of woods, papers, and
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bugs [43,44]. The absorption bands of foods containing 70–90% water are almost identical
to those of pure water. Therefore, for the quantitative measurement of water content in
foods, substantial FT-NIR absorption band ranges of approximately 1400–1450 nm and
1900–1950 nm were commonly used [51]. In this study, three strong peaks were found
in the regression plot; among them, 1400 nm and 1920 nm corresponded to the moisture
content of vegetables.

Secondly, the VIP, one of the well-known methods in multivariate analysis, was used to
select the optimum wavebands. The number of predictors and the accuracy of the PLS-VIP
model is usually determined by the cut-off value. The most excellent combination of model
accuracy and number of variables was found at 1.4, which was chosen by exploring a range
of values ranging from 0.8 to 1.5. After applying VIP analysis, the number of predictors
drastically reduced from 1557 to 10, which was only 0.64% of the original FT-NIR spectral
data. The selected wavelengths were in the 1881–1901 nm region, corresponding to the
O-H structure.

Thirdly, the sequential feature selection, a wrapper method, was used to evaluate the
selected features each time by calculating the error rate. This study calculated the error rate
using a randomly selected 20-fold cross-validation method. The first selected wavelength
was 1920 nm, and the error rate was 0.02%. After adding the second feature (1135 nm) to
the dataset, the error rate became 0.004%, and finally, the misclassification rate became 0%
when the third feature (1450 nm) was added to the dataset.

Fourthly, to select the important variables by SPA, the minimum and the maximum
number of variables was selected (2 and 10, respectively), as the target was to select as
minimal a wavelength as possible. Finally, the algorithm selected only four wavelengths
(1300, 1402, 1925, and 2114 nm) without misclassification. The wavelength 1300 nm and
2114 nm are related to the CH bond in the lipid and carbohydrate, respectively [52,53].

Lastly, the forward selection interval PLS (iPLS) algorithm selected three wavelengths
(1094, 1343, 1958 nm) using three intervals, with an interval width size of 1. The maximum
number of the latent variable was five, and the model used cross-validation to evaluate the
selected variables. The absorption band near 1094, 1343, and 1958 nm in the near-infrared
region corresponds to the combination of CH, the first overtone, and the combination of
the OH bond, respectively [34,52,54].

However, each variable selection algorithm works based on different principles. Hence,
the different variable selection approaches have shown considerable variation among the
selected variables. Figure 6 and Table 3 show the wavelengths selected by each variable
selection method. It can be seen that all the variable selection methods selected at least one
variable in the range of 1900–1925 nm, except iPLS. In addition to that, WRC, SFS, and SPA
selected a single wavelength in the 1400–1450 nm region. Several studies have proved that
these two wavelength regions resemble the combination of the O-H bands associated with
the water [35,51] present in the vegetables. However, both vegetables and FMs had some
common peaks near the rest of the selected wavebands, but they had a clear difference in
intensity. Therefore, it can be concluded that the models developed using these selected
wavelengths are more robust and effective for the identification of FMs.

3.5. Model Performance Predictions Using Selected Wavebands

In order to prove the application of the selected wavebands, a new PLS-DA model
was developed for each optimal variable selection method using raw spectra (without any
preprocessing). Table 4 shows the performance of the new PLS-DA models developed using
the selected variables. The results indicate that the new models (except VIP-PLS-DA) were
able to differentiate the vegetables from the FMs with 100% accuracy (as with the original
PLS-DA model (using all variables)). However, the VIP-PLS-DA model detected 93% of
the FMs, while having the maximum number of variables (10) among the five variable
selection methods. This could be because all the variables selected by the VIP method were
in the range of 1888–1901 nm, which was mainly responsible for the moisture content of
vegetables. Hence, it is necessary to select the bands from the spectral range that could
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represent almost all of the FMs, as well as the vegetables. However, the models developed
based on FT-NIR spectroscopy are only suitable for selecting the wavebands, and are not
for real-time application. Hence, NIR imaging was used to verify the selected wavebands
for identifying the FMs from fresh-cut vegetables in the following analysis.

Figure 6. Graphical representation of the selected wavebands using the five variable selection methods.

Table 3. The selected wavelengths for identifying the FMs in fresh-cut vegetables using different
variable selection methods.

Variable Selection Method Selected Variable Number Selected Wavelengths (nm)

WRC 5 1150, 1401, 1731, 1880, and
1920

VIP 10 1888–1901
SFS 3 1136, 1450, and 1921
SPA 4 1300, 1402, 1925, and 2114
iPLS 3 1094, 1343, and 1958

Table 4. The results of the test data set for identifying the FMs in fresh-cut vegetables using the new
PLS-DA models with selected wavebands.

Model Samples Used
No. of Correctly

Detected
Vegetables

Sensitivity (%) No. of Correctly
Detected FMs Specificity (%) Accuracy (%)

WRC-PLS-DA 300 200 100 100 100 100
VIP-PLS-DA 300 200 100 100 93 97.67
SFS-PLS-DA 300 200 100 100 100 100
SPA-PLS-DA 300 200 100 100 100 100

iPLS-DA 300 200 100 100 100 100

3.6. Testing the Selected Wavebands Using NIR Imaging

Though the selected wavebands performed well in the NIR spectral data, the main
challenge was to find out how the bands performed in multispectral imaging techniques.
Therefore, the selected bands were tested using the NIR images of the vegetables and
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FMs (Figure 7). However, the wavebands selected using individual techniques were not
enough to detect the FMs accurately by using the image. Hence, different combinations
of the selected bands were explored to find out the best combination. Table 5 represents
the number of correctly detected FMs in seven fresh-cut vegetables using three different
combinations of bands from the selected wavelengths. The best accuracy was found using
the combination of six bands (1150, 1400, 1450, 1731, 1880, and 1920), as shown in Table 5.
These six wavebands represented almost all of the variables selected by the different
wavelength selection techniques. Overall, 99 FMs were detected accurately among the
107 FMs in all of the vegetables. Table 5 also shows that the classification accuracy using
five bands (1150, 1400, 1731, 1880, and 1920) was only 74.8%, whereas the accuracy became
92.5% after using six bands, and it did not improve after adding one more, i.e., seven bands
(1150, 1400, 1450, 1731, 1880, 1920, and 2114).

Figure 7. FMs detection images of fresh-cut vegetables using six wavebands.

Table 5. FMs detection accuracy in fresh-cut vegetables using the selected variables in NIR imaging.

Vegetables Total No.
of FMs

5 Bands 6 Bands 7 Bands
False

Positive
(6 Bands)

No. of
Correctly
Identified

FMs

Total
Accuracy

(%)

No. of
Correctly
Identified

FMs

Total
Accuracy

(%)

No. of
Correctly
Identified

FMs

Total
Accuracy

(%)

Cabbage 13 12

74.77

13

92.5

13

92.5 3

Carrot 18 15 17 17
Green
onion 13 9 13 13

Onion 16 10 14 14
Potato 12 7 11 11
Radish 16 12 13 13

Zucchini 19 15 18 18

However, the classification accuracy (92.5%) using the NIR imaging of selected bands
was lower than the FT-NIR spectroscopy because the spectra were measured separately for
the vegetables and FMs using FT-NIR spectroscopy, while for NIR imaging, the data were
collected simultaneously by mixing the FMs with the vegetables. In addition, the spectral
resolution of FT-NIR spectroscopy (0.6 nm at 1250 nm) was much higher than in the NIR
imaging system (5.876 nm), and the instrumental set-up of FT-NIR spectroscopy was very
compacted, which reduced the environmental effect and instrumental noise. In contrast,
the noise produced from the instrument and the environment might affect the NIR images.
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Besides, the FMs, which had similar intensity with the background, were removed during
the background removal process.

4. Conclusions

The results obtained from the PLS-DA models confirm that NIR spectroscopy has good
potential for distinguishing FMs from fresh-cut vegetables with almost 100% accuracy. In
this work, seven types of vegetables and various FMs were used to explore the waveband
regions that would successfully separate all types of FMs from different varieties of vegetables.
The effective wavebands were selected using WRC, VIP, SFS, SPA, and iPLS algorithms to
identify the FMs accurately. The models developed using the selected wavebands, which
were around 99% less than the total variables, on average, were almost similar to the original
models. Therefore, the selected wavebands were used to test their effectiveness for real-time
application using NIR imaging, and finally, six bands were selected after trying different
combinations of bands. The test results showed an FMs detection accuracy of 92.5% for all
seven fresh-cut vegetables. However, in the future, more research should be conducted to
increase accuracy by increasing the spectral resolution of the NIR camera and by selecting a
suitable background that can easily differentiate all kinds of FMs from vegetables. Overall,
the results demonstrated good potential for designing an NIR multispectral imaging system
to distinguish FMs from different types of fresh-cut vegetables.
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