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ABSTRACT

This paper considers sequential adaptive estimation of sparse signals

under a constraint on the total sensing effort. A dynamic program-

ming formulation is derived for the allocation of sensing resources

to minimize a cost function related to mean squared estimation error.

Allocation policies are developed based on the method of open-loop

feedback control. These policies are optimal in the two-stage case

and improve monotonically thereafter with the number of stages.

Numerical simulations show gains up to several dB as compared to

recently proposed adaptive methods, and dramatic gains approach-

ing the oracle limit as compared to non-adaptive estimation.

Index Terms— Adaptive sensing, adaptive sampling, resource

allocation, sparse signals.

1. INTRODUCTION

This work considers the estimation of sparse signals from observa-

tions that are taken sequentially and adaptively. It is now well-known

that sparse signals can be efficiently acquired via compressive sens-

ing (see e.g. [1]) using a relatively small number of observations that

are incoherent with the basis in which the signal is sparse. However,

when noise is present and sensing resources are limited, incoherent

observations may not be the most efficient since a large fraction of

the resources are allocated to dimensions where the signal is absent.

Alternatively, by shaping future observations according to estimates

of the signal support derived from past observations, better signal-to-

noise ratios (SNR) are possible. Applications in which such adap-

tive sensing can be readily utilized include agile radars and medical

imaging [2, 3].

Existing methods for adaptive sensing of sparse signals can be

roughly grouped around two classes of models. In the first class,

which is the focus of this paper, observations are restricted to sin-

gle components in the basis that induces signal sparsity, while re-

sources can be distributed arbitrarily over components and observa-

tion stages. An optimal two-stage resource allocation policy was

developed in [2] for a cost function related to bounds on estima-

tion and detection performance. The problem in [2] was simplified

in [4] through Lagrangian constraint relaxation, while a multiscale

approach that uses linear combinations in the first stage was sug-

gested in [3] to reduce the number of measurements. Based on a

similar model, a method known as distilled sensing was proposed

in [5] for signal support identification and was shown to be asymp-

totically reliable at SNR levels significantly lower than non-adaptive

limits. In the second class of models, the observations can consist

of arbitrary linear combinations as in compressive sensing, but in

most cases the resource budget is assumed to be discrete, measured
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in units of normalized observations. Methods in this second cate-

gory include Bayesian approaches based on maximizing information

gain [6,7], a bisection algorithm [8], and a generalization of distilled

sensing [9].

In this paper, we extend the two-stage allocation policy in [2]

to an arbitrary number of stages, focusing on mean squared estima-

tion error directly as opposed to performance bounds in [2]. It is

shown that the problem can be formulated as a dynamic program,

a framework that facilitates the development of allocation policies.

An approximate dynamic programming solution is proposed based

on open-loop feedback control (OLFC). The performance of these

OLFC policies improves monotonically with the number of stages,

and in particular upon the optimal two-stage policy in [2]. Simula-

tions show MSE reductions up to 3 dB relative to the optimal two-

stage policy and dramatic reductions relative to non-adaptive poli-

cies, approaching the oracle limit at high SNR. The OLFC policies

also outperform distilled sensing [5] at all SNR and most signifi-

cantly at higher SNR.

In Section 2, we specify the signal and observation models and

formulate a problem of resource-constrained sequential estimation,

which is then recast as a dynamic program. In Section 3, optimal and

OLFC approaches to the resource allocation problem are discussed

and a family of OLFC policies is proposed. Numerical simulations

comparing our OLFC policies to other policies are presented in Sec-

tion 4. Future directions are discussed in Section 5.

2. PROBLEM FORMULATION

We consider signals that are sparse with respect to the standard basis

(without loss of generality) in a Q-dimensional space. The subset of

indices corresponding to non-zero signal components is referred to

as the region of interest (ROI). Let Ii be an indicator such that Ii = 1
if i is in the ROI and Ii = 0 otherwise. We use a probabilistic signal

model in which Ii = 1 with prior probability pi(0), independently

of the other indicators. The non-zero signal amplitudes are modelled

as independent Gaussian random variables θi with prior means µi(0)
and variances σ2

i (0). As in [2, 3], a non-informative uniform prior

is assumed with pi(0) = p0, µi(0) = µ0 and σ2
i (0) = σ2

0 for all i,
although non-uniform priors could also be accommodated.

A sequence of T observations are made with effort levels λi(t)
that vary with index i and time t = 0, . . . , T − 1. Depending on the

application, the effort λi(t) might represent observation time, num-

ber of samples, energy, cost, or computation. It is assumed that the

precision (inverse variance) of an observation increases with effort:

given λi(t− 1), the corresponding observation yi(t) takes the form

yi(t) = Iiθi + λi(t− 1)−1/2ni(t), t = 1, . . . , T, (1)

where ni(t) represents i.i.d. zero-mean Gaussian noise with variance

σ2. We restrict attention to static signals so that the signal compo-

nent Iiθi in (1) does not change with time. For convenience, we
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write y(t) = [y1(t) . . . yQ(t)]
T

(similarly for other indexed quan-

tities) and denote by Y(t) = {y(1), . . . ,y(t)} the history of ob-

servations up to time t. In adaptive sensing, the effort allocation

λ(t) at time t can depend on the observations Y(t) collected up to

that point, thus incorporating current knowledge. The task is to de-

termine the mapping from Y(t) to λ(t), referred to as an effort or

resource allocation policy, subject to a total budget constraint:

T−1
∑

t=0

Q
∑

i=1

λi(t) = Q. (2)

For notational brevity, we suppress the dependence of λ(t) on Y(t).
To guide the selection of an effort allocation policy, we seek to

minimize the mean squared error (MSE) associated with estimates

θ̂i of the amplitudes θi, based on all observations up to time T and

summed over the ROI:

E

{

Q
∑

i=1

Ii(θ̂i − θi)
2

}

, (3)

where the expectation is taken over Ii, θi, and Y(T ). It can be

shown [10] that θ̂i should be chosen as the conditional mean E[θi |
Ii = 1,Y(T )]. Define µi(t) and σ2

i (t) to be the conditional mean

and variance of θi | Ii = 1,Y(t), and pi(t) = Pr(Ii = 1 | Y(t)).

Substituting θ̂i = µi(T ) in (3) and simplifying, we obtain

σ2
EY(T )

{

Q
∑

i=1

pi(T )

σ2/σ2
0 +
∑T−1

t=0
λi(t)

}

, (4)

where the form of the denominator can be derived from (5c) below.

In the sequel, we focus on minimizing the expected cost in (4) with

respect to the effort allocation policy λ(0), . . . ,λ(T − 1), subject

to the total effort constraint (2). We note that (4) is similar but not

identical to the cost function in [2].

2.1. Formulation as a dynamic program

The determination of an optimal effort allocation policy according to

(4) can be formulated as a dynamic program. The dynamic program-

ming viewpoint makes available a well-developed set of approaches,

some of which are considered in Section 3. Further background in

dynamic programming can be found in [11].

To formulate a sequential decision problem as a dynamic pro-

gram, the cost function must be expressible as a sum of terms in-

dexed by time t, where each term depends only on the current system

state x(t) and the current effort allocation λ(t). While at first glance

the cost function (4) does not appear to have such a time-separable

property, it can be recast in the required form by defining the state

x(t) as x(t) = (p(t),µ(t),σ2(t),Λ(t)), where Λ(t) represents the

effort budget remaining at time t. The state variables are initialized

as pi(0) = p0, µi(0) = µ0, σ2
i (0) = σ2

0 , and Λ(0) = Q, and evolve

according to the following recursions derived in [10]:

pi(t+ 1) =
pi(t)φ1

pi(t)φ1 + (1− pi(t))φ0
, (5a)

µi(t+ 1) =
σ2µi(t) + λi(t)σ

2
i (t)yi(t+ 1)

σ2 + λi(t)σ2
i (t)

, (5b)

σ2
i (t+ 1) =

σ2σ2
i (t)

σ2 + λi(t)σ2
i (t)

, (5c)

Λ(t+ 1) = Λ(t)−

Q
∑

i=1

λi(t), (5d)

where

φ0 = φ(yi(t+ 1); 0, σ2/λi(t)),

φ1 = φ(yi(t+ 1);µi(t), σ
2
i (t) + σ2/λi(t)),

and φ(·;µ, σ2) denotes a Gaussian probability density function with

mean µ and variance σ2. It can also be shown that the distribution

for yi(t+1) | Y(t) is given by the denominator in (5a), from which

it follows that

Ey(t+1){pi(t+ 1) | Y(t)} = pi(t), t = 0, . . . , T − 1. (6)

Using (5c) and (6), the allocation problem may be stated as

min
λ(0),...,λ(T−1)

EY(T−1)

{

Q
∑

i=1

pi(T − 1)

σ2/σ2
i (T − 1) + λi(T − 1)

}

s.t.

T−1
∑

t=0

Q
∑

i=1

λi(t) = Q, (7)

where the cost function is now of the desired form with a single non-

zero term at time T−1. The cost function depends implicitly on µ(t)
and λ(t), t = 0, . . . , T − 2 through the distribution of Y(T − 1).

3. EFFORT ALLOCATION POLICIES

3.1. Optimal policies

In principle, it is possible to employ exact dynamic programming to

obtain an optimal policy for (7). We decompose (7) into a sequence

of optimizations proceeding backward in time, starting with

J∗
T−1(x(T − 1)) = min

λ(T−1)

Q
∑

i=1

pi(T − 1)

σ2/σ2
i (T − 1) + λi(T − 1)

s.t.

Q
∑

i=1

λi(T − 1) = Λ(T − 1), (8)

and defining recursively

J∗
t (x(t)) = min

λ(t)
Ey(t+1) {J

∗
t+1(x(t+ 1)) | x(t),λ(t)}

s.t.

Q
∑

i=1

λi(t) ≤ Λ(t)
(9)

for t = T − 2, T − 3, . . . , 0. The desired optimal cost in (7) is

J∗
0 (x(0)). The notation in (9) reflects the fact that the distribution of

y(t + 1) | Y(t) is completely specified by x(t) and λ(t), and the

state x(t+ 1) is specified by x(t), λ(t), and y(t+ 1) through (5).

An optimal policy can be obtained by first solving (8) for λ(T −
1) and then using the result in (9) to solve for λ(T − 2). The re-

maining allocations are determined in the same recursive way. This

exact procedure is tractable in a few cases. For T = 1, it suffices to

solve (8), a convex optimization problem whose solution is derived

in [10]. For T = 2 and a uniform prior (pi(0) = p0, µi(0) = µ0,

σ2
i (0) = σ2

0), symmetry allows the initial allocation λ(0) to be re-

stricted to the form λ(0) = β(2)(0)1, where 1 denotes a vector with

unit entries. Thus (9) becomes a one-dimensional optimization with

respect to the multiplier β(2)(0). For fixed β(2)(0), the expectation

in (9) can be evaluated by sampling from the distribution of y(1)
and then solving (8) for the resulting values of the state x(1). In

other cases however, an exact solution to (7) is very difficult. Thus

for T > 2 we consider an approximate method as described next.



3.2. Open-loop feedback control policies

A well-known approach to approximate dynamic programming is

that of open-loop feedback control (OLFC) [11]. To determine the

allocation λ(t) at time t in an OLFC policy, we make the simpli-

fying assumption that future allocations λ(t + 1), . . . ,λ(T − 1)
can depend only on the current set of observations Y(t) and not

future observations. In light of this assumption, the expectations

Ey(t+1)|Y(t) . . .Ey(T−1)|Y(T−2) may be applied to the numerator

only in (7), yielding pi(t) using (6). Conditioning on Y(t) or equiv-

alently the state x(t), the problem becomes

min
λ(t),...,λ(T−1)

Q
∑

i=1

pi(t)

σ2/σ2
i (t) +

∑T−1

τ=t
λi(τ)

s.t.

Q
∑

i=1

T−1
∑

τ=t

λi(τ) = Λ(t),

(10)

which is an optimization in the variables λi(t) =
∑T−1

τ=t
λi(τ) and

is of the same form as the last-stage optimization (8). To state the

optimal solution to (10), we define π to be an index permutation that

sorts the quantities pi(t)σ
4
i (t) in non-increasing order:

pπ(1)(t)σ
4
π(1)(t) ≥ pπ(2)(t)σ

4
π(2)(t) ≥ · · · ≥ pπ(Q)(t)σ

4
π(Q)(t).

(11)

Next define g(k) to be the monotonically non-decreasing function of

k = 0, 1, . . . , Q with g(0) = 0, g(Q) = ∞, and

g(k) =
σ2

√

pπ(k+1)(t)σ2
π(k+1)

(t)

k
∑

i=1

√

pπ(i)(t)−

k
∑

i=1

σ2

σ2
π(i)

(t)

(12)

for k = 1, . . . , Q− 1. Then the solution λ
∗
(t) to (10) is given by

λ
∗
π(i)(t) =

(

Λ(t) +

k
∑

j=1

σ2

σ2
π(j)

(t)

)

√

pπ(i)(t)
∑k

j=1

√

pπ(j)(t)
−

σ2

σ2
π(i)

(t)

(13)

for i = 1, . . . , k and λ
∗
π(i)(t) = 0 otherwise, where the number of

non-zero components k is determined by the interval (g(k−1), g(k)]
to which the budget parameter Λ(t) belongs. The monotonicity of

g(k) ensures that the mapping from Λ(t) to k is well-defined.

Equations (11)–(13) specify the optimal values of λi(t) =
∑T−1

τ=t
λi(τ), but they do not specify how much effort should be put

into the present allocation λ(t). In the remainder of the section, we

restrict attention to λ(t) of the form λ(t) = β(T )(t)λ
∗
(t), where

β(T )(t) ∈ [0, 1] is the fraction of the remaining budget used at time

t and the superscript T denotes the number of stages.

The multipliers β(T )(t) are chosen based on a generalization of

the optimal policies for T = 1, 2 discussed in Section 3.1. It can

be seen that both of these optimal policies belong to the OLFC class

with β(1)(0) = β(2)(1) = 1 and β(2)(0) determined according to

the exact procedure in (9). Note that the second stage in the T = 2
policy is identical to the T = 1 policy. For T > 2, we follow the

same strategy of nesting the (T − 1)-stage policy within the T -stage

policy, setting β(T )(t) = β(T−1)(t − 1) for t = 1, 2, . . . , T −

1. We then optimize over the first-stage multiplier β(T )(0). Define

J
(T )
t (x(t)) to be the cost-to-go of a T -stage policy in this family

starting from time t and state x(t). Then β(T )(0) is given by

β(T )(0) = arg min
0≤β(0)≤1

Ey(1)

{

J
(T−1)
0 (x(1)) | x(0), β(0)λ

∗
(0)
}

,

(14)

where λ
∗
(0) = 1 under a uniform prior. Policies with an increasing

number of stages are determined recursively using (14) starting from

β(1)(0) = 1 for T = 1. The expectation in (14) can be computed

by sampling from the distribution of y(1) and then simulating the

(T − 1)-stage policy starting from state x(1). These computations

can be done offline since they depend only on the initial state x(0)
and the previously determined policy of T − 1 stages.

The cost of the nested OLFC policies defined above improves

with the number of stages. The cost of the T -stage policy is

J
(T )
0 (x(0)) = min

0≤β(0)≤1
Ey(1)

{

J
(T−1)
0 (x(1)) | x(0), β(0)λ

∗
(0)
}

,

(15)

using the fact that J
(T )
1 (x(1)) = J

(T−1)
0 (x(1)) by construction.

When β(0) = 0, the observations y(1) are not taken, x(1) = x(0),

and J
(T )
0 (x(0)) = J

(T−1)
0 (x(0)). It follows from (15) that

J
(T )
0 (x(0)) ≤ J

(T−1)
0 (x(0)), T = 2, 3, . . . , (16)

implying in particular that the nested policies for T > 2 improve

upon the optimal policy for T = 2.

4. NUMERICAL SIMULATIONS

We use numerical simulations to quantify the performance gains pre-

dicted by (16) for OLFC policies. We set Q = 1000 and generate

signals and observations according to the model in Section 2. The

signal mean µ0 is normalized to 1 and the signal standard deviation

σ0 is set to 1/4. The OLFC policies are compared to the optimal

non-adaptive policy, which under a uniform prior allocates one unit

of sensing effort to all components, and to distilled sensing (DS) [5].

For both OLFC and DS, the number of stages T is varied from 2 to

10 and the final estimate is µ(T ). For DS, we use the allocation of

effort over stages suggested in [5] with equal first and last stages and

a geometric decrease by a factor of 3/4 for the intervening stages.

In Fig. 1, we plot estimation gains (i.e. reductions in MSE) rel-

ative to the non-adaptive policy as a function of SNR, defined as

10 log10(µ
2
0/σ

2) in dB. Each point represents the average of 4000
simulations. For context, we also plot the gain of the oracle policy,

which has perfect knowledge of the ROI and distributes resources

uniformly over the ROI. Higher gains are achieved in general for

p0 = 0.01 since resources can be concentrated on fewer components

once the ROI is identified. The 10-stage OLFC policy improves

upon the 2-stage OLFC policy as expected with the largest gains

at intermediate SNR, although the gains are proportionally larger at

low SNR. Recall that the 2-stage OLFC policy is optimal for T = 2.

At high SNR, the OLFC policies approach the oracle gain, which in

turn approaches the sparsity factor 1/p0. In contrast, the DS policies

saturate at significantly lower gains since they are not designed with

estimation performance in mind. While the 10-stage DS policy out-

performs the optimal two-stage policy at lower SNR, the 10-stage

OLFC policy has the best performance at all SNR.

Fig. 2 shows increases in estimation gains with the number of

stages T . The incremental gains predicted by (16) diminish as T in-

creases. Allowing more stages is more beneficial at lower SNR and

higher sparsity, whereas at higher SNR most of the signal compo-

nents can be located in a single step and a two-stage policy performs

almost as well as a policy with many more stages. In all cases shown,

a 5-stage OLFC policy performs better than a 10-stage DS policy.

5. CONCLUSIONS AND FUTURE WORK

We have presented multistage resource allocation policies that im-

prove upon the optimal two-stage policy in [2] for sequential esti-
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Fig. 1. Estimation gain relative to non-adaptive allocation as a function of SNR for (a) p0 = 0.1 and (b) p0 = 0.01. The 10-stage open-loop

feedback control (OLFC) policy improves upon the 2-stage OLFC policy with maximum gains around 1 dB for p0 = 0.1 and SNR = 10–20
dB, and 2.5–3 dB for p0 = 0.01 and SNR = 10–15 dB. Note that the 2-stage OLFC policy is optimal for T = 2. As the SNR increases, the

proposed OLFC policies approach the oracle gain of 1/p0 and outperform distilled sensing (DS) by several dB.
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Fig. 2. Estimation gain as a function of the number of stages T .

Gains diminish as T increases but less quickly at lower SNR and

higher sparsity. In all cases shown, our proposed open-loop feedback

control (OLFC) policy with 5 stages performs better than a 10-stage

distilled sensing (DS) policy.

mation of sparse signals. Demonstrating gains in a more realistic

example is part of ongoing work. The dynamic programming frame-

work introduced in this paper can potentially be leveraged to de-

velop tractable policies for other inference tasks such as detection or

a combination of detection and estimation. More general observation

models involving linear combinations may also be incorporated.
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