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ABSTRACT In this paper, we propose dissimilarity regularization with a multistage fusion stream for a

synthetic aperture radar (SAR) and infrared (IR) sensor fusion using deep learning. The multistage fusion

structures are composed of multiple layers for fusing all the feature maps generated by the convolutional

neural networks. The proposed structure combines feature maps of equivalent levels, ensuring that the spatial

information of the corresponding levels can be utilized for fusion. Dissimilarity regularization is the sum of

the normalized cross-correlation between the features generated in two different single-sensor streams. The

proposed regularization is added to the conventional learning problem of a single-sensor stream, and each

single-sensor stream is promoted to learn the disparate types of features for fusion. To evaluate the proposed

algorithm, we compare the recognition rate of the proposed algorithm with that of the conventional fusion

approaches using the SAR and IR image databases. Finally, the effects of the proposed architecture and

regularization on the fusion result are analyzed.

INDEX TERMS Deep learning, target recognition, infrared, sensor fusion, synthetic aperture radar.

I. INTRODUCTION

Multimodal datasets contain information obtained from dif-

ferent sensors observing common phenomena [2]. Sensor

fusion using these multimodal datasets can increase the

recognition power compared with single-sensor datasets.

To improve the discrimination ability of conventional algo-

rithms based on single sensors, sensor fusion has been

applied in various fields such as vehicle classification [3],

object detection [4], action-recognition [5], skin detection [6],

and others [7]–[10]. Deep learning allows computational

models to be composed of multiple processing layers for

learning the representations of data with multiple levels of

abstraction [11]. Deep learning has been used in object

detection [12]–[15], emotion recognition [16], [17], seman-

tic segmentation [18], medical diagnosis [19], and many

other domains [20]–[23]. The development of deep learn-

ing methods has been steadily widening to include multi-

modal domains [2]. Sensor fusion algorithms using deep

learning can be classified into two fusion approaches: early

and late [24]. Early fusion methods used a combined input

in which the data of two modalities are integrated, and

they required that all the parameters in the architecture be

trained freshly using the combined input [24]. In contrast,

late fusion methods only use the features extracted from

pre-trained subnetworks, which have been trained for each

sensor data for fusion. Moreover, in these late fusion meth-

ods the parameters of the subnetworks are fixed, and only

the fusion layer that is responsible for the feature fusion is

trained [24]. Late fusion methods can also use state-of-the-art

pre-trained single-sensor streams. Owing to these advantages,

late fusion methods have been used in various fields [13],

[18], [21], [25]. However, the fusion layer of conventional

late fusion methods have a simple structure consisting of only

a fully connected layer. Here, the pre-trained single-sensor

stream that is trained independently is exploited, without

considering the relationship to the data that will be fused.
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When convolutional neural networks (CNNs) are combined

using the conventional late fusion methods, only vector-type

information is used and a large amount of spatial information

contained in the feature maps is lost. These characteristics

lead to the limitation that late fusion methods cannot use

all the information of the sensor data, because they only

use a fully connected layer to perform the fusion. Use of

conventional pre-trained networks in fusion only integrates

the combined features that are suitable for single-sensor data

processing. Therefore, these networks only provide a slight

improvement in the fusion result. In this paper, we propose

a dissimilarity regularization (DisReg) and multistage fusion

stream (MFS) for resolving the demerits of late fusion meth-

ods. The MFS is a hierarchical structure that consists of

multiple layers, and is able to combine single-sensor features

according their levels. Conventional late fusion approaches

only fuse the feature vector; however, the proposed fusion

architecture can integrate all the features generated from each

layer of the single-sensor streams. The features of the single-

sensor streams are fused according to their level, using the

convolutional layer or fully connected layer, depending on

the feature type, and they are propagated to the upper layer

of the MFS. In the upper layer of the MFS, the transmitted

fusion features and single-sensor features having identical

levels are used simultaneously as input to generate the next

fusion feature. Therefore, the MFS is able to utilize the

information efficiently compared with late fusion methods by

using the local image features in the fusion process. DisReg

is a measure of the similarity between the feature maps of two

single-sensor streams; it is added to the learning problem and

facilitates each single-sensor stream to learn a distinct type

of feature for the fusion. The similarity is estimated using

the normalized cross-correlation (NCC) during each epoch of

the training, and both the CNNs are trained simultaneously.

The proposed fusion algorithm is evaluated based on target

recognition experiments using synthetic aperture radar (SAR)

and infrared (IR) image databases. SAR and IR sensors are

widely used in both military and civilian fields owing to their

24-h operation capability. A SAR image has a low resolution

compared with an IR image, but it has the advantages of

long-distance surveillance and the ability to operate regard-

less of the weather conditions. In contrast, IR images have

higher resolution than SAR images and can acquire the target

information during the day and night. However, IR images

are affected by atmospheric conditions. Therefore, the fusion

of SAR and IR sensors has tremendous potential for perfor-

mance improvement. In this study, we conducted two types of

experiments. First, we compared the recognition rate obtained

using the proposed algorithm with various model parameters.

Second, we compared the recognition rate calculated by the

proposed algorithm with those generated by conventional

fusion algorithms. The superiority of the proposed algorithm

was demonstrated in the above experiments by the achieve-

ment of a significant improvement in the recognition rate.

II. RELATED WORK

In speech recognition, an autoencoder has been used for the

fusion of a high-level representation of audio and video to

generate a shared representation [13]: two sparse restricted

Boltzmann machines (RBMs) are trained separately, and then

a bimodal deep belief network (DBN) model is trained in

a greedy layer-wise approach. Bimodal deep learning has

been proposed to fuse the disparate modalities [17], [26].

Image and text data used in [26] are combined to extract a

unified representation and demonstrate that the multimodal

deep belief machine (DBM) can successfully learn the gener-

ated model of the joint space of the image and text inputs.

For emotion recognition, a combination of the physiolog-

ical signals using a bimodal deep autoencoder has been

developed [17]. A shared representation that contains the cor-

relation between the EEG signals and eyemovement is gener-

ated by a bimodal deep autoencoder. The cross-weights of the

sensor modalities are proposed for the gradual learning of the

interactions between the modalities [27]. In [27], it has been

proven theoretically that a multimodal framework includ-

ing cross-weights can provide the intra-modality information

of the shared representation. For achieving object detection

using a late fusion network, representations of the color

(red-green-blue, RGB) and depth (D) of images have been

fused [12]. This method trains two CNNs, one for RGB and

one for D, and then consecutively combines them using a late

fusion network. A fusion method based on deep learning has

been developed to detect pedestrians in RGB-D images [28].

In [29], the method adds a gating network to the structure to

integrate all the decisions of a single-sensor stream. The relia-

bility of the decision output extracted from each single-sensor

stream is set based on the integrated feature vector. In [30], for

action recognition, a two-stream approach has been proposed

for combining spatial and temporal information; this method

performs spatially varying soft-gating on CNN feature maps

and amplifies the activation of the last convolutional layer

of the spatial CNN by the magnitude of the optical flow to

emphasize the motion information. In [18], the RGB, D, and

near-IR data are combined to achieve a semantic understand-

ing of scenes. CNNs were fused using both early fusion and

late fusion methods, and compared with conventional deep

learning algorithms. Several regularizations have been devel-

oped to improve fusion results via deep learning. To estimate

the joint distribution of the multimodal data, in [31] a training

method that minimizes the variation in the information was

proposed. In [32], structure regularization was applied for

training an autoencoder for the objective of selecting only a

few input nodes to discourage the learning of the weak corre-

lations between different sensory modes. A regularization for

feature/class relationships [33] uses both the regularizations

for training the fusion layers; each regularization explores

both inter-feature and inter-class relationships and yields an

improved recognition result. In this paper, we describe the

details of the proposed fusion algorithm based on a target

VOLUME 7, 2019 729



Y.-R. Cho et al.: Multistage Fusion With Dissimilarity Regularization for SAR/IR Target Recognition

recognition task; however, the proposed algorithm can be

applied in the fusion of CNNs for various purposes.

III. SINGLE-SENSOR STREAM

For ease of understanding, in this paper a single-sensor stream

is referred to as a single CNN. The CNN is a deep learning

structure specialized for image-type data processing using the

dot product of the convolutional layer. The CNN can effec-

tively process image-type data, but it uses fewer parameters

than networks composed of fully connected layers [34]. The

transition function of the l th layer of the CNN is described

in (1) as follows:

al = Wl ∗ al−1 + bl (1)

whereWl is the weight of the l
th convolutional layer, bl is its

bias, al−1 is the input of the layer, and al is its output.

IV. DISSIMILARITY REGULARIZATION

Before describing DisReg, we first introduce the learning

problem for a single-sensor stream. The typical learning prob-

lem for target recognition, meaning the cross-entropy loss,

is defined in (2) as follows:

argminWi
−

1

N

N
∑

ni=1

[ yni log( ŷni ) + (1 − yni )log(1 − ŷni )]

+ λ1‖Wi‖
2
2 (2)

where i ∈ [1, 2] is the index of a single-sensor stream,

yni is the label of the input image, ŷni is the prediction

result of i th single-sensor stream, N is the size of the mini-

batch, and Wi is the weights of the i
th single-sensor stream.

Conventional learning problems for a single-sensor stream

did not consider fusion with other single-sensor streams. The

fusion of two single-sensor streams would be a difficult task

if the features extracted from each single-sensor stream have

a high similarity with respect to each other. For successful

fusion, we propose DisReg to extract the feature map pos-

sessing the unique characteristics of the given single-sensor

data. These features cannot be observed with other sensor

data. By inducing this mutually complementary feature learn-

ing during training, each single-sensor stream subsequently

serves complementary features to the MFS. Let the set of the

feature maps of the i th single-sensor stream be as follows:

Fi =
{

F(i,1),F(i,2), · · · ,F(i,L)
}

(3)

where L is the number of convolutional layers in a single-

sensor stream. Term F(i,l), i ∈ [1, 2], is the feature map

generated from the l th convolutional layer of the i th single-

sensor stream, with the shape of dl@(hl × wl), where

dl is the number of the feature maps generated from the

l th convolutional layer, and hl and wl are the height and

width of the feature map, respectively. The similarity between

F1 and F2 can be estimated using normalized cross-

correlation (NCC). NCC has beenwidely used in broad image

processing applications such as object recognition [35], face

recognition [36], motion analysis [37], and for patch match-

ing [38]. The NCC of two gray-scale images with the same

size f(x,y), and g(x,y) can be estimated as follows:

NCC(f(x,y), g(x,y)) =
1

p

∑

x,y (f(x,y) − f̄)(g(x,y) − ḡ)

σfσg
(4)

where p is the total number of pixels in the image, f̄, ḡ are

the intensity averages, and σf, σg are the standard devia-

tions of the intensity of f(x,y), and g(x,y), respectively. The

NCC is an index varying between +1 and −1, depending

on the degree of similarity between the two images. The

NCC has a value of +1 for identical images, and −1 for

inverted images. To measure the similarity between two

single-sensor streams, we measure the similarity between the

feature maps generated by the two single-sensor streams. The

feature maps generated from the l th layer are composed of

dl features for each sensor stream. Let F(1,l,m) and F(2,l,n)
denote the specific m th and n th feature of F(1,l), and F(2,l),

then the similarity between F(1,l,m), and F(2,l,n) is estimated

in (5) as follows:

NCC(F(1,l,m),F(2,l,n))

=
1

hl × wl

×

∑

h,w(F(1,l,m)(h,w)−F̄(1,l,m))(F(2,l,n)(h,w)−F̄(2,l,n))

σF(1,l,m)σF(2,l,n)
(5)

Dissimilarity regularization (LDisReg) is defined as the sum-

mation of the NCC values estimated for each layer of the

single-sensor stream as follows:

LDisReg(F1,F2) =

L
∑

l=1

dl
∑

m=1

dl
∑

n=1

NCC
(

F(1,l,m),F(2,l,n)
)

(6)

where L is the number of convolutional layers of a single-

sensor stream, and dl is the number of feature maps generated

from the l th layer of a single-sensor stream. We define the

new learning problems for the single-sensor stream using the

amended typical learning equation of LDisReg as follows:

argminWi
−

1

N

N
∑

ni=1

[ yni log( ŷni ) + (1 − yni )log(1 − ŷni )]

+ λ1‖Wi‖
2
2 + λ2LDisReg(F1,F2) (7)

DisReg added in equation (7) causes two single-sensor

streams to learn the patterns that are distinct from each other

before fusing them. This learning problem is designed to

assist each single-sensor stream to learn features that are dis-

criminative and suitable for complementary fusion processes.

V. MULTISTAGE FUSION STREAM

Recently, deep learning structures such as DenseNet [39],

ResNet [40], and single shot multibox detector (SSD) [41]

have been proposed to utilize the features from several dif-

ferent layers and achieve improved results. These methods
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FIGURE 1. The structure of the multistage fusion stream architecture used in this paper. Pre-trained single-sensor streams transimit their feature
map to multistage fusion stream according to level of features. Each layer of multistage fusion stream exploits integrated feature, F(U,l ) that contain
only features of equivalent levels to generate the new fusion feature map. The feature map, F(M,l ) is used as an input to the next layer of multistage
fusion stream with single-sensor feature. FC(U,5) is feature vector that represents the information of all stage of not only fusion stream, but also
single-sensor streams, and so has good discrimination power. Bold arrow: transition function, Narrow arrow: transmission, Red box: integrated
feature F(U,i ), Blue color: features of 1 st single-sensor stream, Green color: features of 2 nd single-sensor stream, Pink color: features of fusion
stream.

combine the features of different levels at a certain layer to

utilize the various scales and resolution information of the

features. However, conventional fusion algorithms based on

deep learning focus on exploiting the late fusion structure

rather than using various local image features. Motivated by

these results, we proposed an MFS that can use the features

generated at all the stages of the single-sensor streams to take

advantage of all the different levels of the features. To exploit

the spatial information in the feature map effectively, MFS

uses a convolutional layer to fuse the feature maps of the

single-sensor streams. MFS generates the fusion feature map

at each level and propagates it to the upper layer via a

hierarchical structure. We evaluated the recognition rate of

the proposed fusion method and compared it with that of

conventional fusion methods. First, we describe the details

of MFS.

A. MULTISTAGE FUSION STREAM ARCHITECTURE

MFS is a fusion structure that allows the equivalent levels

of the feature maps extracted from a single-sensor stream

to be fused to generate the fusion feature (Fig. 1). The pro-

posed fusion architecture generates the fusion feature in each

layer of the MFS using the single-sensor features transmitted

from each single-sensor stream and the fusion feature gener-

ated from the previous layer. The generated fusion features

are exploited with the equivalent levels of the single-sensor

features as the input to the upper layer. The features of

the various levels that are extracted from the single-sensor

streams are combined to yield the fusion feature through

the convolutional layer or a fully connected layer depending

on their feature type. Each fusion information is propagated

to a higher-level layer by utilizing the above hierarchical

structure. The top fusion feature containing the new local

image feature (which cannot be acquired by using only a

single-sensor stream), is concatenated with the feature vector

of each single-sensor stream and used for the recognition

task. To generate the fusion feature in each layer of the MFS,

we integrated the features of the equivalent level into one

feature. Let F(U ,l) be the integrated feature map that is used

as the input to the l th layer of the fusion stream. It can be

defined as follows:

F(U ,l) =

{

[F(1,l),F(2,l)] where l = 1

[F(1,l),F(2,l),F(M ,l−1)] where L ≥ l ≥ 2
(8)

Feature maps F(1,l), and F(2,l) have a shape of dl@(hl × wl),

where dl is the number of features of F(i,l). An integrated

feature is formed by accumulating the equivalent levels of

the feature in the dimension of the number of features, dl .

The integrated feature has identical feature size (hl × wl),

with an increased number of features 3 × dl . To propa-

gate the previous fusion information and exploit the single-

sensor feature, the l th layer of the fusion stream uses all

these features by integrating them into feature map F(U ,l).
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FIGURE 2. SAR/IR target chip sample, First row: SAR images, Second row: IR images.

Because no fusion feature map has the same level as the

features of single-sensor streams F(1,l), and F(2,l), only the

features of the single-sensor streams are used to form F(U ,1).

To match the level of the fusion feature with a feature of

the single-sensor stream, the l th layer of the proposed archi-

tecture has the same layer configuration as the (l + 1) th

layer of the single-sensor stream. The proposed scheme is

designed to exploit a large amount of information compared

to conventional methods, by using the features of various

levels (including the image local information), which has not

been used in late fusion methods.

B. TRAINING OF MULTISTAGE FUSION STREAM

After all the single-sensor streams are trained, the MFS is

trained using the feature maps generated from the single-

sensor streams. The mature feature maps extracted from each

single-sensor stream are integrated by (8) and used as inputs

for each stage of the MFS according to its level. The MFS is

trained using the standard cross-entropy loss,

argminWF
−

1

N

N
∑

nF=1

[ ynF log( ŷnF ) + (1 − ynF )log(1 − ŷnF )]

+ λ1‖WF‖22 (9)

whereWF is the weight of the fusion stream, ynF is the image

label, and ŷnF is the prediction of the MFS fusion stream.

During the training of theMFS, all the trainable parameters in

all the single-sensor streams are fixed; only the parameters of

the MFS are trained. In summary, the learning process of the

proposed fusion algorithm is divided into two stages: single

sensor stream training and fusion stream training. Single-

sensor streams are trained to learn complementary features

using a learning problem, as expressed in (7). Once the train-

ing of the single-sensor streams is completed, they provide

the features for training the MFS according to the level of the

feature. The features of equivalent levels are integrated using

equation (8), and the parameters of theMFS are updated using

the cross-entropy loss.

TABLE 1. SAR/IR image database.

VI. EXPERIMENTS

A. DATABASE

In this study, we evaluated the target-recognition accuracy

of the proposed algorithm using an SAR/IR image database

(Fig. 2). The SAR/IR database used in the experiment con-

sists of images of 16 different target classes. This database

contains a total 4,608 images per sensor, and the size of

each image is 64×64 (Table 1). The SAR image database

is collected at 10◦, 15◦, 20◦, and 25◦ depression angles.

To cover the full aspect angle, the target image is rotated

in 5◦ intervals of the aspect angle from 0◦ to 355◦, resulting

in 72 images per depression angle. The IR database is col-

lected at 65◦, 70◦, 75◦, and 80◦ depression angles, and the

other conditions are the same as for the SAR image database.

The SAR/IR images are generated by using the SE-RAY-SAR

and SE-RAY-IR simulators, which can generate very realistic

images via the ray-tracing technique [42]–[46]. For training

and evaluation, we separated the SAR/IR database depend-

ing on the depression angle (Table 2). The SAR image at

25◦ depression angle and IR image at 80◦ depression angle
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FIGURE 3. The structure of single-sensor CNN, and early fusion architecture used in this paper. First to fourth stage of single-sensor streams
generate the feature map F(i,l ), where i is index of single-sensor stream, and l is the level of the stage. The feature vector FC(i,l ) is generated
using fully connected layer. The softmax classifier is used for prediction. Bold arrow: transition function.

FIGURE 4. The structure of the late fusion used in this paper. Each single-sensor stream generates the feature vector FC1, FC2, and then
concatenated to form one feature vector. Late fusion method exploits last concatenated feature vector for prediction. Bold arrow:
transition function, Narrow arrow: transmission.

TABLE 2. Database setup for experiment.

are used for the test, and the remaining images are used for

training each single-sensor stream. We augment the training

data by vertical and horizontal flipping to increase the size of

the training database, and thus, 10,368 images per sensor are

used for training.

B. EXPERIMENTAL SETTING

To analyze the effect of DisReg on a single-sensor stream,

we trained two single-sensor streams with and without Dis-

Reg for each sensor, and then evaluated the recognition rates

of these streams. In addition, we trained the MFS with and

without DisReg and examined the target-recognition accu-

racy. For the MFS with DisReg, we trained the single-sensor

streams with DisReg using (7) and used them to train MFS.

The MFS without DisReg used the single-sensor streams that

were trained using (2). For comparison with conventional

algorithms, the following approaches were implemented, and

a target recognition experiment was conducted.

• Early fusion

The early fusion architecture combines the information

of two image-type data at the pixel-level and uses a com-

bined image as the input. The architecture is identical

to that of the single-sensor stream used in this study

(Fig. 3). The early fusion architecture is trained using

the conventional learning method in (2) to update all the

parameters in the architecture.

• Late fusion

Here, the fusion layer fuses the feature vectors generated

by each single-sensor stream (Fig. 4). Each single-sensor

stream is trained independently using (2). The learning

method used for training the fusion layers is composed

of a cross-entropy error term and the typical L2 regu-

larization term. Weights and biases of the single-sensor

streams are maintained during the training of the fusion

layers.

• Autoencoder-based fusion (AE-based fusion)

The fully connected layer for fusion in the late fusion

is trained by the encoder-decoder scheme [47] to gen-

erate a shared representation from the feature vector of

each single-sensor stream. Each single-sensor stream is

trained using (2), identical to the late fusion case, and

the parameters of the single-sensor streams are fixed

during the training of the fusion layer. After the training
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of the fusion layer is completed, a fine-tuning process is

applied to the fusion network for the recognition task.

• Convolutional autoencdoer-based fusion (CAE-

based fusion)

The encoder-decoder scheme of a convolutional autoen-

coder (CAE) exploits the convolutional layer instead

of the fully connected layer. We applied CAE-based

fusion [48] to the MFS to impose the inner relationship

between two feature maps on the corresponding fusion

feature map. We used a greedy layer-wise approach to

train each fusion layer; this is the same training method

as used for AE. After the fusion layer was trained,

we removed the decoder scheme and fine-tuned the

fusion stream for the given task.

• Fusion using regularizations for feature/class

relationship [33]

In [33], regularization of the feature relationships and

class relationships was proposed to train the fusion layer

in the late fusion structure and improve the categoriza-

tion result. In this study, we used both regularizations

and applied them to the late fusion layer. As in [33],

we only updated the parameters of the fusion layer

using the cost function to which the features and class

relationship regularization were added.

In this experiment, we used an architecture with a low

degree of freedom to prevent overfitting. The single-sensor

streams consist of four stages of convolutional layers and

one fully connected layer for feature vector generation. The

softmax classifiers are applied for the final prediction. The

filter size of the convolutional layers from the first to the third

stages is 5×5, and only the last convolutional layer uses a

filter size of 3×3. The last convolutional stage generates a

128@(8×8) feature map, and the fully connected layer con-

verts the last feature map to a feature vector size of 256. For

maximum pooling, we set both the window sizes and stride

value as 2×2. ReLU [49] and batch normalization layers [50]

were installed for nonlinearity and fast convergence of the

training. The weights and biases were initialized using the

Xavier initialization [51] and random uniform, respectively.

We used the Adam optimizer [52] for backpropagation, and

β1 = 0.9, β2 = 0.999. For batch normalization [50],

we set the decay for the moving average as 0.9. The mini-

batch size of all the tested streams was 32. In addition to the

previous research [1], all the structures were trained with the

scale parameters of the batch normalization, and the learning

parameter was set to decrease in intervals of 500 epochs by

0.9 times for learning stability. In the experiments, we set

the weight of L2 regularization to λ1 = 10−4. For fusion

using regularization for the feature/class relationship, we set

the weights of both the class relationship regularization and

feature regularization [33] as 10−6. Terms λ1 and λ2 are

factors that determine the proportion of L2 regularization,

and DisReg in the cost function. For the proposed algorithm,

we set λ1 = 10−4 and λ2 = 10−8. We selected a small value

of λ2 owing to the large scale of DisReg. All the hyperpa-

rameters were determined experimentally, which showed fast

FIGURE 5. Recognition rates of late fusion methods and multistage
fusion streams depending on the number of parameters.

convergence and stability of the training of all the streams we

tested.

C. RECOGNITION RATE FOR VARIOUS MODEL

PARAMETERS

The proposed fusion structure may require numerous addi-

tional parameters; this can increase the total number of

parameters. In this part of the study, we measured the recog-

nition rate of the proposed fusion structure and late fusion

method as a function of the total number of parameters to

analyze the necessity and efficiency of the additional param-

eters in theMFS. TheMFS structures were reduced by substi-

tuting the fully connected layer into the convolutional layer

for feature extraction, whereas the late fusion structure was

expanded with an additional fully connected layer (Table 3).

Late fusion only exploits the feature vector. Therefore, it is

inevitable that this method suffers from information loss.

However, even if the structure is expanded, there is little

effect on the recognition rate as a function of the number

of parameters (Fig. 5). In the MFS, the number of variables

used is significantly reduced by replacing the fully connected

layer with the convolutional layers, but the recognition rates

are maintained above 92%. Among the tested structures,

MFS-3 exhibits the highest recognition rate of 93.75% using

675,328 parameters. In this experiment, the recognition rates

of the MFS methods are higher than those of the late fusion

methods. The latter are approximately 86%, but even the

lowest recognition rate among the four different proposed

fusion structures achieves 92%. All the MFS series result in

an improved recognition rate compared with the late fusion

series, but this improvement is not simply caused by the

increase in the number of parameters. It can be seen that

the use of various levels of features for fusion rather than

the number of parameters helps in improving the recogni-

tion rate when comparing MFS-3 and LFS-3. The proposed

fusion algorithm acquires the local features of the images and

prevents information loss by fusing the features generated

by the various levels of the single-sensor stream. Because

it is impossible for late fusion to exploit the local feature

information, there is no noticeable improvement, even if the

structures are enlarged.
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TABLE 3. The total number of parameters for fusion structures. LF: Late Fusion, MFS: Multistage Fusion Streams.

FIGURE 6. Recognition rate of SAR single-sensor stream (a) trained using
basic learning method, and (b) trained using the DisReg-based method.

D. TARGET RECOGNITION

First, the recognition results of the single-sensor streams

were compared (Table 4). The single-sensor stream without

DisReg shows a recognition rate of 79.5% for the SAR

sensor (Fig. 6a) and 68.8% for the IR sensor (Fig. 7a).

In contrast, the single-sensor streams trained using DisReg

achieve a recognition rate of 78.0% for the SAR sensor

FIGURE 7. Recognition rate of IR single sensor stream (a) trained using
basic learning method, and (b) trained using the DisReg-based method.

(Fig. 6b) and 68.4% for the IR sensor (Fig. 7b). The results

indicate that the single-sensor stream using DisReg under-

goes some degradation in accuracy. The MFS with DisReg

exhibits a higher recognition rate than the MFS without

DisReg (Table 5). Contrary to the result of single-sensor

streams, the use of DisReg increases the recognition rate of
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TABLE 4. Recognition rate[%] of single-sensor streams.

TABLE 5. Recognition rate[%] of fusion streams.

FIGURE 8. Recognition results of the proposed fusion method: 93.75%.

the fusion streams. We also compared the recognition rate

of the proposed fusion algorithm with conventional fusion

algorithms (Table 5, Figs. 8 and 9). The early fusion method

shows the lowest recognition rate (73.0%) among the fusion

algorithms (Fig. 9a) The result of early fusion is lower

than that of the IR single stream, implying that early fusion

fails to achieve an improvement in the accuracy. During the

learning of all the parameters, it fails to learn the discrim-

inative features from the combined input image. The late

fusion results achieve 86.8% recognition rate (Fig.9b). The

late fusion methods use pre-trained single-sensor streams.

Therefore, it reaches a higher recognition rate than the early

fusion methods by exploiting the mature features extracted

from each single-sensor stream for fusion. AE-based fusion

achieves an 87.4% recognition rate (Fig. 9c). By learning the

correlation between the features generated from each single-

sensor stream, AE-based fusion yields a higher recognition

rate than late fusion, which simply combines the features.

CAE-based fusion attains recognition rate of 87.5%, which is

slightly higher than that of AE-based fusion (Fig.9d). Further,

it learns the correlation between the feature maps by using

a convolutional layer. These feature maps containing spatial

information improve the recognition rate by performing the

fusion using more information than used in AE-based fusion.

Among the conventional fusion methods, the method that

uses feature/class relationship regularization [33] achieves

the highest recognition rate of 89.0% (Fig.9e). The encoder-

decoder scheme uses a construction process to learn the

shared representation that represents the correlation indi-

rectly. However, the fusion method that uses relationship reg-

ularization directly learns the correlation between the features

and classes, and thus [33], shows an improved discrimination

result. The proposed algorithm (MFSwithDisReg) achieves a

higher recognition result than conventional fusion algorithms

(Fig. 8). From the learning process of a single-sensor stream,

DisReg assigns complementary attributes to the features of

each single-sensor stream, and the MFS fuses all the features

generated from the single-sensor streams at each stage. The

proposed scheme can use all the information of single-sensor

streams for fusion, and thereby achieve the highest recogni-

tion rate.
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FIGURE 9. Recognition rate of the fusion approaches. (a) Recognition result of early fusion: 73.09%. (b) Recognition result of late fusion: 86.80%.
(c) Recognition result of AE-based fusion: 87.41%. (d) Recognition result of CAE-based fusion: 87.50%. (e) Recognition result of [33] fusion: 89.06%.
(f) Recognition result of MFS without DisReg: 89.49%.
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FIGURE 10. Recognition rate of SAR single-sensor stream for Sa19inch
camo target with and without DisReg.

VII. DISCUSSION

The conventional single-sensor streams are trained to extract

the features that are appropriate for processing the given

single-sensor information for a specific purpose. These fea-

tures, trained using conventional learning problems, are only

suitable for single-sensor information processing, and not

fusion. DisReg promotes all the single-sensor streams to train

the features that generate mutually complementary effects

in the fusion by allowing them to learn different types of

features from each other. Therefore, in single-sensor streams

these features may result in a degraded outcome compared

to conventional features. This can be confirmed based on

the recognition test result that a single-sensor stream with

DisReg yields a slightly degraded recognition result than

conventional single-sensor streams (Table 4). However, only

the fusion algorithm that exploits the single-sensor streams

trained using the proposed regularization achieves a higher

recognition rate than others, demonstrating that the features

trained with DisReg are more effective in fusion. Neverthe-

less, the proposed method does not achieve an improvement

in the recognition rate of the Sa19inch camo class. In general,

for achieving high recognition rates the features to be used

should be able to represent the consistent patterns of the data

of a certain target. However, in the case of the Sa19inch

camo class, each basic single-sensor stream shows a very low

recognition rate of approximately 30%,which implies that the

basic single-sensor streams fail to learn the consistent pattern

of the Sa19inch camo class data (Figs. 10 and 11). When

the single-sensor streams have difficulty in learning a pattern

to represent a particular target, the learning method using

DisReg does not assist them in improving the recognition

rate. This is because backpropagation in DisReg (that aids

FIGURE 11. Recognition rate of IR single-sensor stream for Sa19inch
camo target with and without DisReg.

each single-sensor stream to learn distinct types of features)

is not identical to the training feature for learning the pattern,

as in case of cross-entropy. Therefore, if basic single-sensor

streams fail to learn the representative pattern of the data, then

they may degrade the recognition result even though the com-

plementary properties are imposed on the features by DisReg.

Except this class, the recognition rate of most targets is

improved because the advantages of fusion exceed the degra-

dation of the single-sensor stream. Conventional algorithms

have been developing the structure and regularization that

are suitable for the fusion process for improving the fusion

result. For fusion, the architecture should be able to exploit

the various features effectively, and regularization should be

designed to cause each single-sensor stream to learn mutually

complementary features. The proposed algorithm utilizes the

different levels of features using multistage structures and

induce each single-sensor stream to learn the features that

are suitable for the fusion process by DisReg. Therefore,

the proposed fusion algorithm achieves a higher recognition

rate compare with the conventional fusion methods (Table 8).

VIII. CONCLUSION

We developed fusion architecture and regularization for

fusion using deep learning. The local image features gener-

ated from each single-sensor stream were fused on each layer

of the proposed fusion architecture. The proposed regulariza-

tion is based on the normalized cross-correlation between the

featuremaps of two single-sensor streams, and it induces each

single-sensor stream to learn the complementary features.

To evaluate the proposed algorithm, the target-recognition

accuracy of the proposed algorithm was compared with

that of the conventional fusion approaches using an
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SAR/IR image database. In addition, we measured recog-

nition rates for the proposed algorithm with several model

parameter settings, to clarify the effect of the local image

fusion scheme used in the proposed fusion stream. The effects

of DisReg on the single-sensor streams and fusion stream are

comprehensively discussed based on the experiment results.

The proposed fusion approach achieves the highest recog-

nition rate and is insensitive to parameter reduction. The

proposed fusion architecture and learning method for a

single-sensor stream are not limited by the sensor-types and

their combinations. Therefore, it is expected that the proposed

fusion architecture can be applied to various fields besides

the target recognition field. We believe that the proposed

algorithm can be exploited for both surveillance operations

using SAR/IR sensor fusion, and for various civil research

fields.
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