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Abstract—The common paradigm employed for object detection is the sliding window (SW) search. This approach generates grid-

distributed patches, at all possible positions and sizes, which are evaluated by a binary classifier: the trade-off between computational

burden and detection accuracy is the real critical point of sliding windows; several methods have been proposed to speed up the search

such as adding complementary features. We propose a paradigm that differs from any previous approach, since it casts object detection

into a statistical-based search using a Monte Carlo sampling for estimating the likelihood density function with Gaussian kernels. The

estimation relies on a multi-stage strategy where the proposal distribution is progressively refined by taking into account the feedback

of the classifiers. The method can be easily plugged in a Bayesian-recursive framework to exploit the temporal coherency of the target

objects in videos. Several tests on pedestrian and face detection, both on images and videos, with different types of classifiers (cascade

of boosted classifiers, soft cascades and SVM) and features (covariance matrices, Haar-like features, integral channel features and

histogram of oriented gradients) demonstrate that the proposed method provides higher detection rates and accuracy as well as a

lower computational burden w.r.t. sliding window detection.

Index Terms—Efficient object detection, pedestrian detection, coarse-to-fine search refinement.

✦

1 INTRODUCTION

O BJECT detection and recognition are two founda-
tional problems in computer vision. Object detec-

tion can be viewed also as a classification problem in
a two-class case (object and non-object), that without
segmentation is carried out over suitable feature vectors
extracted from image patches (or windows). Many clas-
sifiers are based on bagging and boosting [1], [2], [3], [4]
with a good trade-off between accuracy and efficiency.

According to Enzweiler and Gavrila [5] the typical
components of detection-without-segmentation in im-
ages are hypothesis generation (or ROI selection) and
hypothesis validation (or classification); in the case of
videos a third component, i.e. hypothesis tracking must be
accounted. The hypothesis generation requires an effec-
tive and efficient search of the best locations and scales
to look at; then the hypothesis validation component
verifies whether the target object is present or not.

This paper addresses the problem of an effective and
efficient ROI selection for performing hypothesis gener-
ation. Regarding this matter, many perception psycholo-
gists, starting from Treismann in early ’80 [6], proposed
the dichotomy between the “parallel” and the “serial”
search. They stated that the target object, if clearly
distinguishable, can be detected in a parallel way, em-
ploying a time approximately independent on the data
dimension. Instead, in the presence of multiple targets,
many “distractors”, or complex patterns, our perceptual
behavior becomes sequential, based on a serial search,
so that the recognition time becomes proportional to the
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data dimension.
Coherently, in computer vision, whenever the shape

becomes more complex and many targets and distractors
are present, detection without segmentation normally
exploits the “sliding window” approach (SW hereinafter)
and spans the search over the whole image in a serial
fashion (e.g. [7], [8], [9]). All the possible patches are
extracted. Then, the selected features are computed on
the patch and the obtained feature vector is passed to
a binary classifier. If the object can have different sizes,
also the scale is to be included as a state variable.

Let NSW be the number of windows to be evaluated.
NSW is a function of the image size, of the sliding steps
(∆x,∆y) (also known as pixel strides) and of the scale
search, that is regulated through a scale step ∆s (also
known as scale stride). ∆x, ∆y and ∆s depend on the
classifier and on the application context: typical values
are in the order of few pixels (4-6-8) for ∆x, ∆y and
between 1.05 and 1.2 for ∆s. Given these premises, NSW

is in the order of several tens or even hundreds of
thousands. The problem of SW approach is thus twofold:
on the one hand, the computational time is proportional
to NSW , that should be kept limited because of time
constraints; on the other hand, the detection rate and
localization accuracy decrease when the pixel and scale
stride increase. As a consequence, a trade-off between
efficiency and accuracy is unavoidable.

One way to handle the huge number of windows to
be analyzed in an efficient manner is the use of a cascade
of classifiers, that is a degenerated decision tree where,
at each stage (or layer) of the cascade, a classifier is
trained to detect almost all target objects while rejecting a
certain fraction of the non-object instances [10]. The key
strength of cascades is the capability to quickly reject
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most of the true negatives in the early layers of the
cascades using simpler classifiers, while retaining more
complex classifiers in the later layers where possibly a
very minor portion of windows remain to be analyzed.
This is particularly convenient whenever the a priori
probability of occurrence of non-objects is much greater
than that of objects, that is also called rare event detection
problem, as in the case of detecting faces in an image [11].

For this reason, many proposals use a cascade of boosted
classifiers (or cascade of boosted ensembles [12]). In par-
ticular, boosting algorithms consist in the combination
of several weak hypotheses (or weak learners) to build
more accurate hypotheses called strong classifiers.

Our work proposes a new search mechanism that
overcomes the serial search of sliding windows by using
a data-driven and focused search. We will assume that
the search can start in parallel, uniformly over the image,
in accordance with the theory of attentive vision and
the saccade search [13], [14], [15] and we focus, in an
iterative manner, on the exploration of the image toward
the area where the target objects are more likely to be
found, as a model of coarse-to-fine detection [16], [17],
[18], [19]. The paradigm here proposed, called multi-
stage particle-window (MS-PW), provides an incremental
estimation of a likelihood function through Monte Carlo
sampling, exploiting the confidence (or response) of the
classifier only, i.e. without other orthogonal features like
motion, perspective, depth, etc. In practice, this response
is employed to increasingly draw samples on the areas
where the objects are potentially present and avoiding
to waste search time over other regions. We call these
samples “particle windows” (PWs) in juxtaposition to the
uniformly grid-distributed sliding windows (SWs).

This approach for window selection using particles
is complementary with other optimizations which aims
at reducing the number of hypotheses and it is basi-
cally classifier-independent, i.e. it works with any classi-
fier which can have an associated confidence measure.
Indeed, in this paper we will report the results on four
different classifiers, used for pedestrian or face detec-
tion: two are cascades of boosted classifiers (covariance-
matrix-based pedestrian detector [9], here called CovM,
and Haar-based face detector [10], called HLF), one is a
monolithic classifier (HoG-SVM pedestrian detector [8],
called HOG) and one is a sort of single layer cascade
called soft cascade (“The Fastest Pedestrian Detector of
the West” [20] based on Integral Channel Features [21]).

Typically, classifiers have a degree of robustness to
translation and scaling, meaning that the confidence
measure provides high responses not only in exact cor-
respondence of a true positive, but also in its close
neighborhood, whose size depends on the classifier,
and degrades monotonically when moving further away.
This behavior generates a “basin of attraction” around
true positives, both in location and in scale, that is
exploited by our proposed method for converging in
the area where objects are present. In this paper we
will give evidence of the basin of attraction in all the

four classifiers used. It typically happens that also false
positives create a basin of attraction for the classifier.
However, even if the underlying model of the basin
of attraction has similar shape on both cases, it differs
in the score: indeed true positives in general reach
higher response values than false positives. The multi-
stage Monte-Carlo sampling employed in our method is
designed to be incrementally lead by measurements (i.e.
classifier responses), therefore it is eventually attracted
prominently by true positives rather than false positives.

A second contribution of our work is that the above
approach can be easily plugged in a Bayesian-recursive
filter for videos. Although this technique is often ex-
ploited for object tracking [22], [23], [24], our proposal
does not aim to that achievement; rather we use a
recursive framework to exploit the temporal coherency
of the objects in order to further increase efficiency and
accuracy of object detection also in very cluttered scenes.
In addition, our proposal is capable to handle a variable
number of objects without additional computation bur-
den, thanks to a quasi-random sampling procedure and
a measurement model (i.e. the measurement obtained
through the classifier) that is exactly the same for all
target objects.

The experiments, carried on using very different se-
tups and targeting both pedestrian and face detections,
demonstrate that the MS-PW is definitely convenient
on SW, whichever classifier is used: configuring the
two approaches to have similar detection accuracy, MS-
PW is more efficient; conversely, configuring them to
have similar computational time, MS-PW shows better
detection and localization accuracy.

The paper is structured as follows: after the related
works, divided in Cascades of Boosted Classifiers (Sect.
2.1) and Solutions of ROI Selection (Sect. 2.2), we report
the proposed response measure applied to the classifiers
(Sect. 3.1) and describe the multi-stage particle window
approach on single images (Sect. 3.2) and on videos (Sect.
3.3). Experimental results are divided in the description
of the classifiers used (Section 4.1), the evaluation bench-
mark (Sect. 4.2), the algorithm parameters (Sect. 4.3), and
eventually of the results on images (Sect. 4.4) and videos
(Sect. 4.5).

2 RELATED WORKS

This paper proposes a new approach for hypothesis gen-
eration which has been conceived for cascades of classi-
fiers for object detection. Thus, this section overviews
both the current popular classifiers, focusing on their
use of sliding window search, and the related works on
hypothesis generation.

2.1 Cascades of Boosted Classifiers

Boosting is very popular for window classification, ini-
tially proposed by Freund and Schapire in 1996 [2].
Different types of weak and strong classifiers have been
studied; examples of weak learners are simple binary
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Ref. Object feature weak cl. strong cl. # layers # weak cl. training set avg. # windows

Face enh. HLF 10-20 520-900*

≃426K*
[25] stumps AdaBoost/ MIT+CMU1 (ps=1,ss=1.1)

(2003) or CART Gentle Ad. (PT=5000, NT=3000) ≃243K*
(ps=1,ss=1.2)

[10]
Face HLF

single
AdaBoost 32 4297

MIT+CMU1 ≃145K*
(2004) perceptron (PT=4916, NT=10000) (ps=1.5,ss=1.25)

[26]
Face mLBP

single
AdaBoost 4 ≃1000

MIT+CMU1,BioID1 ≃197K*
(2004) perceptron (PT=6000, NT=2000) (ps=1,ss=1.25)

[27]
Face HLF

single AdaBoost/
21-22 16233

MIT+CMU1 ≃197K*
(2005) perc.+FDA AsymmB. (PT=5000, NT=5000) (ps=1,ss=1.25)
[28] Hand same as [25] single

AdaBoost avg. 14 avg. 123
own dataset ≃320K*

(2006) gesture + Double L perceptron (PT=1000, NT=3476) (ps=1*,ss=1.1)

[29]
Pedes.

variable
linear SVM AdaBoost 30 ≃138

INRIA1 12800
(2006) size HOG (PT=2418) (ps=8*,ss=1.25*)

[11] Face HLF and
stumps AdaBoost 10 ≃970

MIT-CMU1, others, own ≃230K* full search
(2008) and eyes and mLBP (PT=5000, NT=3600, (ps=6-3-1,ss=1.2)

PV=flip PT, NV=1500)

[30]
Pedes.

LRF,HOG, binary AdaBoost/
20-29 1000-2000

INRIA1 , [31]
17280

(PT=2418,4800,
(2008) COV.MAT. decision SVM NT=UNK,5000) (ps=4,ss=1.25)

[9]
Pedes. Cov.Mat.

Linear
LogitBoost 30 ≃580

INRIA1 , [31]
≃28K*

logistic (PT=2418,4800,
(2008) regressor NT=10000,5000) (ps=6,ss=1.2)

[32]
Face SRF

single
AdaBoost 17 1422

MIT+CMU1,others ≃550K*
(2009) perceptron (PT=4858, PV=511) (ps=1,ss=1.25)

[33]
Car HLF+HOG

single AdaBoost/
32 4297

MIT CBCL1 ≃25K*
(2010) perceptron SVM (PT=516, NT=500) (ps=1.5,ss=1.25)

[20]
Pedes. ICF

two decision AdaB/RealB
1 ≃1000

INRIA1 , [34], TUD-Brussel1 ≃145K
(2010) tree /LogitB (PT=2418,192K,400, NT=15000) (ps=4,ss=1.07)

TABLE 1: Summary of proposals for object detection with cascades of boosted classifiers (*=deduced value, PT=positive training,
NT=negative training, PV=positive validation, NV=negative validation, ps=pixel stride, ss=scale stride; HLF=Haar-like features
[10], CART=Classification and Regression Tree [35], mLBP=modified Local Binary Patterns [36], HOG = Histogram of Oriented
Gradients [8], SRF=Scattered Rectangular Features [32], FDA=Fisher Discriminant Analysis [37], LRF=Local Receptive Fields
[38], COV.MAT.=Covariance Matrix [9], ICF=Integral Channel Features [21])

decisions [30], stumps [11], [25], single perceptrons [10],
semi-naive Bayes classifiers [39] or linear logistic re-
gressors [9]; among the different algorithms for strong
classifiers, AdaBoost is probably the most famous, being
used in the Viola-Jones face detector [10]. Lienhart et al.in
[25] compared the performances of Discrete AdaBoost,
Real or Gentle AdaBoost [2] in face detection, resulting
in a slight preference for Gentle AdaBoost. Ong and
Bowden in [40] proposed the FloatBoost algorithm [41]
which adds an additional step to AdaBoost to remove
the excessive weak classifiers that no longer contribute
to the detection. Wu et al.in [27] presented an effec-
tive closed form approximation of the optimal solution,
called Linear Asymmetric Classifier (LAC) based on
AsymmBoost [42].

The use of cascade of boosted classifiers for object
detection is very broad. Table 1 summarizes several
recent works reporting: the type of target object; the
chosen features, the weak and strong classifiers; the
number of layers in the cascade and the total number
of weak classifiers; the training sets used and, most

1. MIT+CMU: http://vasc.ri.cmu.edu/idb/html/face/frontal
images; UIUC: http://l2r.cs.uiuc.edu/∼cogcomp/Data/Car;
BioID: http://www.bioid.com/support/downloads/software/
bioid-face-database.html; INRIA: http://pascal.inrialpes.fr/data/
human; VOC2006: http://pascallin.ecs.soton.ac.uk/challenges/VOC/
voc2006; MIT CBCL: http://cbcl.mit.edu/cbcl/software-datasets/
CarData.html; TUD-Brussels: http://www.mis.tu-darmstadt.de/
tud-brussels.

important, the number of windows analyzed at detection
time: when this number is not explicitly provided, it is
estimated applying the declared pixel and scale strides,
reported in brackets, to the test dataset. The seminal
work has been proposed by Viola and Jones on face
detection [10], which introduced three novelties: integral
images for speeding up the computation in the case of
rectangular non-oriented features; an efficient learning
algorithm for AdaBoost on Haar-like features (HLF);
the cascade of AdaBoost classifiers for fast and accurate
face detection. Lienhart et al. [25] proposed an enhanced
version with Haar features rotated by 45 degrees.

HLF has been further modified in [32] where a new
feature called scattered rectangle features (SRF) is pro-
posed. SRF is a Haar-like feature which includes 2-
rectangle features only (differently from original HLF
that has 3- and 4-rectangle features) and allows them
to be misaligned, overlapped or even detached, which
produces an over-complete set of features (more than 1.5
million on a 19x19 patch, w.r.t. about 64K in the case of
HLF) capable to better represent the object/face. The au-
thors of [26] proposed a method for face detection based
on the modified Local Binary Patterns (mLBP) or census
transform, that is invariant to local illumination changes.
The work in [11] provides a comparison between HLF
and mLBP in detecting faces and eyes.

The Viola-Jones approach has been borrowed also for
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detecting other types of objects: in [43] for humanoid
robots and in [28] for 14 different hand gestures with
the addition of a “Double L” feature to the standard
HLF; Ong and Bowden in [40] exploit a similar approach
for hand shape recognition using the already-cited Float-
Boost as strong classifier. In addition, the Integral Channel
Features (ICF) [21] apply linear and non-linear filters on
the image and then efficiently compute simple features
such as local sum, histograms and HLF, using integral
images. ICF have been successfully applied to pedestrian
detection exploiting gradients and their histograms, and
LUV color channel.

When the objects to be detected are pedestrians, HLF
has proved to be not much accurate [7] and other fea-
tures are more common. The Histograms of Oriented Gra-
dients (HOG) [8] are certainly very widespread. HOGs
are often coupled with a monolithic classifier, such as
linear SVM, or embedded in a coarse-to-fine hierarchy
of features [16], [18], but are also employed with cas-
cades of classifiers. For example, Felzenszwalb et al.in
[44] have recently proposed a very interesting approach
that speeds up detection using part-based models and
HOG features through cascade classifiers (though not
boosted); actually, this approach is suitable for detection
of several classes of objects. In [29] a cascade of 30
AdaBoost classifiers composed of linear SVMs as weak
learners is proposed for pedestrian detection. The size of
the HOG patches is varied in order to allow fast rejection
of non-objects in early layers.

Another effective feature for pedestrian detection de-
scribed by Tuzel et al. [9] is the covariance matrix (see
Section 4.1.1). To account for the high-dimensional na-
ture of this feature which lies on Riemannian manifolds,
Tuzel et al.proposed linear logistic regressors as weak
classifiers and, as a consequence, LogitBoost [45] as
strong classifier. Also the paper in [30] adopts covariance
matrix, but the authors work on Euclidean spaces thanks
to a weighted Linear Discriminant Analysis (wLDA). In
[9] authors showed that covariance matrices outperform
HOGs for pedestrian detection.

Regardless of which features, weak and strong clas-
sifiers are employed, a valuable effort has been spent
also in changing the architecture of the cascade. In
[39] the authors define a faster approach which moves
the paradigm from window-centric to feature-centric: in
practice, the first layer of the cascade re-uses feature
evaluations among overlapping windows, whereas in
window-centric approaches all the evaluations are with
respect to a single classification window. Feature-centric
evaluation resulted to be more efficient in the early
layers where the goal is to quickly remove non-object
windows, but does not change the number of windows
to be evaluated. Another very interesting architectural
variant is the so-called nested cascade [11], [12], [43], [46],
which makes use of the technique known in machine
learning with the term recycling: in other words, the
confidence of layer i is reused by layer i + 1 to obtain
higher classification accuracy.

Since the proper use of cascades of boosted classifiers
for object detection is still debated, there are also several
works surveying existing approaches and comparing the
different choices. For instance, Wojek and Schiele in [47]
give a nice overview of possible features and classi-
fiers for pedestrian detection and how they are usually
combined. They take into consideration Haar wavelets,
HLF, HOG, shapelets [48] and shape contexts as features,
and linear SVM, RBF (Radial Base Function) SVM, and
AdaBoost as classifiers. Moreover, a new feature called
dense shape contexts is proposed. The combination of
multiple features, i.e. Haar wavelets with HOG and
dense shape contexts, is shown to bring some benefits in
terms of accuracy. The survey in [31] compares different
features (PCA coefficients, LRF, HLF and Haar wavelets),
different classifiers (feed-forward neural network, poly-
nomial SVM, RBF SVM and K-nearest neighbors) and
different approaches for increasing the negative train-
ing size (bootstrapping or use of cascades). All these
combinations are tested against the Viola-Jones approach
presented in [7]. The authors concluded that global
features, such as PCA coefficients, are less performing
than local features, and that among the latter, adaptive
features (such as LRF) are the most promising. Regarding
the classifiers, SVMs and AdaBoost resulted to be the
most accurate. On the same path, the survey in [5]
compares a wide range of approaches (HLF+AdaBoost
[7], LRF+neural network [38], HOG+linear SVM [8] and
a combined shape-texture detection [49]) on several
datasets with the specific goal of pedestrian detection
for vehicle applications, thus requiring fast detections.
The HOG-based approach shows the best performance
when no constraints on time are posed (it takes about 2.5
seconds per image), while HLF-based approach outper-
forms others when real-time performances are required
(about 250 ms per image).

The approach that we are proposing is applicable to
any of the methods described so far.

2.2 Solutions for ROI Selection

One crucial consideration for our work is that all the
approaches reported above make use of a SW search,
which has the drawback of brute force methods, that
is the high computational load due to the number of
windows to check: see for instance, the high average
number of windows in Table 1, rightmost column, where
most of the approaches evaluate hundreds of thousand
of windows. Consequently, several works focus on the
reduction of the computational burden, following three
main streams: (a) pruning the set of sliding windows
by exploiting other cues (e.g. motion [50], depth [51],
geometry and perspective [52], [53], or whatever cue that
is different from the appearance cue specific of the de-
tector itself); (b) speeding up with hardware-optimized
implementations (such as GPUs [54]); (c) efficiently ex-
ploring the sub-window space through optimal solution
algorithms [11], [15], [16], [18], [19], [39], [55].
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Our proposed method belongs to the latter class, that
we examine here in slightly higher detail: in [55], the
authors propose to bypass SW through an efficient sub-
window search using a branch and bound technique.
However this method have strict requirements over the
“quality function” (i.e., classifier score) that are not met
by most of the aforementioned classifiers; additionally
it detects only one object at a time (i.e., it finds the
global maximum of the function), requiring multiple
runs to detect multiple objects; in [11] the comparison
between a SW approach (called “full search” by the
authors) and a more efficient solution (called “speed
search”) is proposed. The “speed search” employs a
multi-grid approach for selecting the windows’ positions
to be evaluated. At the first level, a pixel stride of 6
is employed: if the confidence of the classifier is above
a threshold, a second level with pixel stride 3 is ana-
lyzed. The windows resulting in a classifier’s confidence
higher than a second threshold are further refined by
fixing pixel stride equal to 1 in a 3x3 neighborhood.
This method is faster than SW detection but suffers in
detection accuracy in most of the tested datasets.

Another deterministic coarse-to-fine refinement has
been proposed in [16], with a deterministic (grid-
distributed), multi-stage (coarse-to-fine) detection: suc-
cessful detections at coarse resolutions yield to refined
searches at finer resolutions. Also in [18] a similar
approach is proposed, using a deterministic multiple-
resolution search with grid distributed scanning. This
approach adds (loose) prior spatial constraints on the
object locations based on the radius of the neighborhood.
A too small radius will result in a small speedup im-
provement, while a large radius will most likely miss
object which are close each other (only a single hit
can be found on the coarse grid in level 0 of their
approach). Our statistical approach does not employ
a rigid grid structure in the refinement of the search,
allowing the “radius” to be adapted based on the re-
sponse of the classifier. Butko and Movellan in [15]
explore the maximization of information gain through
a computational approach that simulates a digital fovea.
Although it obtains speed-ups that are comparable to
ours, two limitations are suffered: a slight degradation
of performances w.r.t. sliding window detection (instead
we obtain higher accuracy, as shown in Section 4) and
single-target detection (conversely our method is intrin-
sically multi-target). A particular case is reported in [19]
where a coarse-to-fine approach is used in the context
of face detection. The coarse-to-fine strategy is used
both in the exploration of face poses (thus reducing
the space exploration time, similarly to our proposal
as concept) and in the feature representation of faces
(thus sharing some properties of cascading of classifiers -
including Viola-Jones face detector - where conjunctions
of tests of increasing complexity are used to quickly
identify negatives - background - in the image). Most
of these mentioned approaches binarize (through the use
of thresholds) the response of the classifier at each stage,

while we propose to exploit its continuity, in order to be
able to find true detections even when at earlier stages
no successful detections are found.

3 MULTI-STAGE PARTICLE WINDOWS AP-
PROACH

When the classifiers are applied to detection through
the SW approach, they incur in the two-fold problem
of a large waste in computational time searching over
areas where objects are not present and the need of a
massive Sliding Window Set (SWS, the set of all the
windows to be analyzed by the SW detection) to find
every object in the scene. Within the SW approach, a
window w is typically defined by the 3-dimensional
vector (wx, wy, ws), being, respectively, coordinates of the
window center and window scale w.r.t. a given size;
aspect ratio and rotations are usually discarded.

The objective of the proposed paradigm, called multi-
stage particle-window (MS-PW), is to provide a non-
uniform quantization over the state space and to model
the detection as an estimation of the states given the ob-
servations; we aim at estimating the modes of the proba-
bility density function p (X|Z), where X = (wx, wy, ws)
is the state and Z corresponds to the image.

3.1 Detection Response of the Classifiers

In the case of cascade classifiers, every window w ∈
SWS is passed to the cascade classifier C, where each
layer Ci responds with either object or non-object (i.e.,
class (w,Ci) = {object,non-object}). The final classifica-
tion result class (w,C) is obtained as:

class (w,C) =

{
object if class (w,Ci) = object, ∀i = 1, . . . , L
non-object if ∃j ≤ L|class (w,Cj) = non-object

(1)

where L indicates the number of layers in the cascade.
In this case we introduce the “detection response” R (w)
as

R (w) =
jw

L
(2)

where jw is the index j of the last cascade which pro-
vides a positive classification for w and R ∈ [0, 1]. Given
the structure of rejection cascades, the higher the degree
of response R (w) is, the further w reached the end of
the cascade, the more similar it is to the object model,
up to the extreme of R (w) = 1, that means successful
classification with jw = L.

Eq. 2 holds also in case of soft cascades (as in [21]),
where the classification {object,non-object} is evaluated
at each weak learner: applying the same notation as
above to this type of classifiers, Ci is a weak learner, with
i = 1, . . . , L, with L being the number of weak learners.

Non-cascade classifiers like SVM (described together
with HOG features in section 4.1.4), typically provide
a “margin” M (i.e., the distance to the class-dividing
boundary), which extends over ℜ or ℜ+: in such cases,
we obtain a detection response R consistent to the one
proposed for cascade classifiers applying an appropriate
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function that translates M to the range [0, 1]. To this
aim, hard clipping or soft clipping functions can be
used [8]; we propose the use of the latter, through the
implementation of a sigmoid function that provides a
smooth transition across the margins:

R (w) =
1

1 + exp (a (M (w) + c))
with M ∈ (−∞,+∞) (3)

The two function parameters a and c can be learned
using the Platt algorithm [8] from a training set; the only
constraint is a ∈ (−∞, 0), to make the sigmoid function
monotonically increasing, i.e. measuring similarity.

Let’s recall that the cardinality of the SWS depends
also on the degree of coarseness for the scattering of the
windows, i.e. pixel and scale strides. For a successful
detection, the SWS must be rich enough (i.e. the strides
must be small enough) so that at least one window hits
each target object in the image. Actually, every classifier
has a degree of non-sensitivity to small translations and
scale variations: in other words, the evaluation of the
classifier in the close neighborhood (both in position and
scale) of the window encompassing a target, remains
positive (“region of support” of a positive detection).
Having a sufficiently wide region of support allows to
uniformly prune the SWS, up to the point of having
at least one window targeting the region of support of
each target in the frame. Vice versa, a too wide region
of support could generate de-localized detections [55].
The detection response R(w) proposed in eq. 2 and 3
effectively models the regions of support and the basins
of attraction of the classifiers (evidence of this over
four different types of classifiers is provided in section
4.1) and can be used for supporting a more efficient
hypothesis generation.

3.2 Multi-Stage Kernel-based Density Estimation on
a Single Image

Let us not consider any a prior information in the image
in order to provide a general solution. Consequently, the
state pdf can be assumed proportional to the measure-
ment likelihood function, i.e. p (X|Z) ∝ p (Z|X). The
extension to the case where p (X|Z) ∝ p (Z|X) ·p (X) is
straightforward by plugging into the procedure specific
strategies for window selection that represent the priori,
for instance based on motion, geometry, depth, etc..

The likelihood function is estimated by an iterative
refinement through m stages based on the observations.
Algorithm 1 shows the complete procedure. Without any
prior information, the initial proposal distribution q0 (X)
is set to a uniform distribution on the state space and it
is sampled for extracting the first set S1, containing N1

samples or “particle windows” (pw) (see lines 1 through
6 of Algorithm 1). Each particle represents a window
w = (wx, wy, ws). Scattering particles according to a
uniform distribution is somehow similar to the sliding
window strategy. However, in our case the particles are
equally distributed only from a statistical point of view
and are not deterministically defined; nonetheless, the

Algorithm 1 Measurement Step

1: Set q0 (X) = U (X)
2: Set S = ∅
3: for i = 1 to m do
4: begin
5: Draw Ni particle windows from qi−1 (X):

6: Si =
{
pw

(j)
i |pw

(j)
i ∼ qi−1 (X) , j = 1, . . . , Ni

}

7: Assign a Gaussian kernel to each particle window:

8: µ
(j)
i = pw

(j)
i ; Σ

(j)
i = Σi

9: Compute the measurement on each particle window pw
(j)
i

:

10: l
(j)
i = Rλi

(
µ
(j)
i

)
with Rλi ∈ [0, 1]

11: Obtain the measurement density function at step i:

12: pi (Z|X) =
∑

π
(j)
i

�=0

π
(j)
i · N

(
µ
(j)
i ,Σ

(j)
i

)

13: where: π
(j)
i =

l
(j)
i

Ni∑

k=1
l
(k)
i

14: Compute the new proposal distribution:

15: qi (X) = (1− αi) qi−1 (X) + αi
pi(Z|X)∫
pi(Z|X)dX

16: Retain only the particle windows with measurement value 1:

17: S̃i =
{
pw

(j)
i ∈ Si|R

(
µ
(j)
i

)
= 1, j = 1, . . . , Ni

}

18: S = S
⋃

S̃i

19: end
20: Assign Gaussian Kernel Σ to each pw ∈ S
21: Run the Sequential Kernel Density Approximation [56], and obtain

a Mixture of Gaussians M
22: M is the final likelihood function p (Z|X)
23: Each mode of M represents an object detection

N1 particles could also be grid-distributed as in SW and
this would not affect the bottom line of the proposed
method. The key point here is N1 being one order of
magnitude lower than the cardinality of a typical SWS.
The rationale is that part of these uniformly distributed
particles will fall in the basins of attraction of the target
objects in the image and will be used to provide an
initial rough estimation of the measurement function.
Being driven by the measurements, at any stage i, the
distribution qi is progressively refined and then sampled;
this procedure produces a growing confidence over the
proposal and makes it possible to decrease, from stage to
stage, the number of Ni to sample (as visually depicted
in Fig. 1). The final aim is that the total number of

particle windows NPW =
m
∑

i=1

Ni be definitely lower than

the fixed number of windows NSW of the SWS.
The N1 samples drawn from q0 (X) (line 6) provide a

first approximation of the measurement density function
p1, through a Kernel Density Estimation (KDE) approach
with Gaussian kernel, generating a mixture of N1 Gaus-
sians: for each j-th component, mean, covariance and

weight are defined. The mean µ
(j)
i is set to the j-th par-

ticle window value pw
(j)
i =

(

w
(j)
x,i , w

(j)
y,i , w

(j)
s,i

)

; the covari-

ance matrix Σ
(j)
i is set to a covariance Σi (line 8), which,

at any given stage i, is constant for all particle windows.
The choice of Σi is worth a more in-depth discussion. For
instance, the authors in [23] that use a similar method
for object tracking, proposed to determine the Σ of each
sample as a function of its k-nearest neighbors; this strat-
egy yielded fairly unstable covariance estimations when
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(a) Stage 1 (b) Stage 2 (c) Stage 3 (d) Stage 4 (e) Stage 5 (f) Detections

Fig. 1: Distribution of particle windows across stages in MS-PW applied to pedestrian detection. The number of stages in this
example is m = 5 and the samples are (2000, 1288, 829, 534, 349) = 5000. Circles in (f) represent the particle windows that are
retained in S (line 18 of Alg. 1), i.e. the set of particles that triggered a successful classification.

applied to our context: indeed, given the low number of
samples used in our method, k should be kept fairly low
to maintain a significance over the covariance estimation:
this makes the estimation quite dependent on the specific
randomized sample extraction. We preferred to assign an
initial Σ1 proportional to the size of the region of support
of the classifier, and to decrease the Σi of the following
stages: this has the effect of incrementally narrowing the
samples scattering, obtaining a more and more focused
search over the state space.

Finally, the response R (pw) of the specific classifier
(see section 3.1) to the particle window pw is exploited

to determine the weight π
(j)
i of the j-th Gaussian compo-

nent. The intention is that those particle windows falling
on a basin of attraction, i.e., close to the mode/peak of
the distribution to estimate, shall receive higher weights
with respect to the others, so that the proposal distribu-
tion qi, that is partly determined by pi, will drive the
sampling of the next stage more toward portions of the
state space where the classifier yielded high responses.
Conversely, sampling must not be wasted over areas
with low response of the classifier. In other words,
these weights must act as attractors which guide the
particle windows toward the peaks. This is accomplished

by connecting the weights π
(j)
i to the response R of

the classifier in the sample location µ
(j)
i (line 10). The

exponent λi is positive and increases at every stage: at
early stages, λi ∈ (0; 1), therefore the response of the
samples is quite flattened, in order to treat fairly equally
the whole range of not null responses, granting similar
trust to medium and highly responsive particles; at later
stages λi grows beyond 1, so that only the best responses
will be held in account, while the others will be inhibited.
In section 4.3 we will also propose a simplified setup of
these parameters.

The behavior of the algorithm is clearly shown in Fig.
1, where the samples at subsequent stages decrease in
number but concentrate more and more on the peaks of
the distribution, i.e. where the response of the classifier
is higher.

The measurement density function pi (Z|X) (line 12)
represents a partial estimation of the likelihood func-
tion through a Gaussian kernel density estimation. This
function is linearly combined with the previous pro-
posal distribution qi−1 (X) to obtain the new proposal
distribution (line 15), where αi is an adaptation rate.

The process is iterated for m stages and at the end
of each stage only the particle windows pw of Si that
triggered a successful object detection are retained (line
17) and added to the final set of particle windows S

(line 18). The number m of iterations can be fixed [23]
or adjusted according to a suitable convergence metric,
like the entropy, intended as a measure of uncertainty of
a continuous density [57]. Eventually, recalling that the
number of particles to sample decreases from stage to
stage, the whole process could be interrupted when the
number of particles to sample is lower than a defined
bound.

The above procedure allows multiple detections for
each target object, possibly at different scales and po-
sitions, and a non-maximal suppression step is necessary
for determining the right scales and positions of the
final detections. This problem is common to object de-
tection and many heuristics have been adopted: Viola
and Jones in [10] proposed a very simple fusion strategy
which includes in the same subset all the detections
with overlapped bounding regions. In [11] the detection
volume is defined as the sum of all the confidence values
corresponding to overlapped windows: if the detection
volume is greater than a threshold and the number of
overlapped windows is sufficient, then the detections are
fused. Other works, like [9], [58], employ the mean-shift
algorithm.

Since we have followed a statistical approach, we
propose to envision the non-maximal suppression as
mode seeking over the likelihood density function. In
particular, we run the sequential kernel density approx-
imation as proposed in [56] over S, that is the set of
samples that yielded successful detections. This method
approximates an underlying pdf represented by a set of
samples (S in our case), with a mixture of Gaussians in a
time that is linear with the cardinality of the sample set.
Through this fast procedure we obtain a two-fold result
(lines 21-23): first, we get the non-maximal suppression
for object detection, since the detected objects correspond
to the means of each single Gaussian components of the
resulting mixture; second, we get a very compact repre-
sentation of the likelihood density function p (Z|X), that
can be easily plugged inside a Bayesian recursive filter,
as shown in the next Section.
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3.3 Kernel-based Bayesian Filtering on Videos

We extend here the previous method to the context of
videos, by propagating the likelihood in a Bayesian-
recursive filter. Differently from tracking approaches, the
conditional density among frames (observations in time)
is not used here to solve data association. Instead, the
recursive nature of Bayesian filtering exploits temporal
coherence of objects only to obtain a further improve-
ment over detection. In the sequential Bayesian filtering
framework, the conditional density of the state variable
given the measurements is propagated through predic-
tion and update as:

p (Xt|Z1:t−1) =

∫
p (Xt|Xt−1) p (Xt−1|Z1:t−1) dXt−1 (4)

p (Xt|Z1:t) =
p (Zt|Xt) p (Xt|Z1:t−1)∫

p (Zt|Xt) p (Xt|Z1:t−1) dXt

(5)

Fig. 2 depicts the steps of this procedure. The posterior
at time (i.e. frame) t − 1, p (Xt−1|Z1:t−1) (Fig. 2(a)) is
propagated to the priori at time t (Fig. 2(b)). At the very
first frame no prior assumptions are made and p (X0|Z0)
is set to a uniform distribution. The predicted pdf is ob-
tained applying the motion model on the priori and then
marginalizing on Xt−1 (eq. 4). Since in complex scenes
correct motion model is unknown [59], we apply a zero-
order function with Gaussian noise of fixed covariance,
i.e. the priori is convolved with white noise which has
the only effect of increasing its covariance (Fig. 2(c)).
The predicted pdf is then exploited for driving the MS-
PW: differently from the case of single images, where
the proposal of the first stage q0 is uniform, in the case
of videos q0 (Xt) is obtained by applying a quasi-random
sampling [60] to the predicted distribution:

q0 (Xt) = β · p (Xt|Z1:t−1) + (1− β) · U (Xt) (6)

where β adjusts the amount of random sampling.
Adding a uniform distribution on top of the predicted is
useful for enabling the algorithm to detect new objects
entering the scene or appearing from occluding objects
(the effect is depicted by the yellow particles on Fig.
2(d)). Starting from such proposal, the MS-PW method
described in Section 3.2 obtains a set of successful classi-
fications (Fig. 2(e)) and estimates the likelihood p (Zt|Xt)
(Fig. 2(f)): differently from the case of single images, the
final object detection is not obtained from the modes of
the likelihood, but from the modes of the posterior pdf
(Fig. 2(g),2(h) and eq. 5). The whole prediction-update
process is very fast since it is computed on compact mix-
tures of Gaussians: indeed, the number of components
is fairly limited, since it approximately corresponds to
the number of target objects in the image.

4 EXPERIMENTAL RESULTS

4.1 Brief description of exemplar classifiers

In section 4.4 we will compare the MS-PW and the SW
detection using four different classifiers and features

which are here briefly introduced: covariance-matrix-
based pedestrian detector [9] (CovM), Haar-like-features
based face detector [10] (HLF), Integral-channel-features
based pedestrian detector [20] (FPDW), Histogram-of-
oriented-gradients based pedestrian detector [8] (HOG).
Further details can be found on the original papers. In
any of the four cases, MS-PW and SW share exactly
the same classifier, feature, parameters configuration and
trained model.

4.1.1 CovM

The authors propose to adopt a rejection cascade of
LogitBoost classifiers [45], exploiting linear logistic re-
gressors as weak learners: each weak learner operates
on a rectangular and axis-oriented sub-window of the
window to classify. The employed cue is given by the
covariance matrix of a 8-dimensional set of features F
(defined over each pixel of an image I) which account for
pixel coordinates and first- and second-order derivatives
of the image.

The covariance matrix of the set of features F can be
computed on any sub region of I and can be used as
covariance descriptor in the classifier. In particular, since
the sub-windows associated with each weak learner are
rectangular and axis-oriented, the covariance descriptors
can be efficiently computed using integral images [10],
[61]. With this artifice the computation of the descrip-
tor of any weak learner is obtained in constant time,
regardless of the size of the sub-window. However, the
8x8 covariance matrix obtained belongs to the Sym+

d

space (symmetric and positive semi-definite matrices),
that is a Riemannian manifold and in order to apply any
traditional classifier the matrix has to be mapped over an
Euclidean space through the inverse of the exponential
mapping [9].

An important advantage of the covariance descriptors
is its relatively low degree of sensitivity to small trans-
lations and scale variations. The cascade of LogitBoost
classifiers of [9] trained on the INRIA pedestrian dataset
shows a radius of the region of support of approximately
10-15% of the window size in position and 20% in scale.
To confirm this hypothesis we provide some tests (Fig.
3): we cropped 100 images from the INRIA test set, with
the characteristic of having one pedestrian of 50x150
pixels centered in the cropped image and an average of
2.5 other pedestrians per image (acting as distractors),
at random positions and scales. For each image, we
computed the value of R (w) with a pixel stride of 1
and a scale stride of 1.01 and then averaged the R over
all images.

Fig. 3(f) clearly shows the plateau in the center of
the window, that represents the region of support of
the classifier, surrounded by its basin of attraction. The
two local maxima on the side are due to the regions of
support of the other pedestrians that, as expectable, tend
to cluster closeby. The region of support of Fig. 3, scaled
accordingly to the reference pedestrian size of 32x96
of the INRIA pedestrian dataset, shows a diameter of
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(a) Posterior at t-1 (b) Priori at t (c) Predicted at t (d) Resampling at t

(e) Measurements at t (f) Likelihood at t (g) Posterior at t (h) Detections at t

Fig. 2: MS-PW in the context of Bayesian recursive filtering. The blue ellipses in (a,b,c,f,g) represent the Gaussian components
of the mixture of a pdf: each ellipse discards the scale dimension (ws) and depicts the covariance only on the location (wx,wy).
Alternatively, the white rectangles in (h) represent the object detections at the proper scale and position obtained from the modes
of the posterior. In (d) the coloring order of the particles across the MS-PW stages is yellow, black, magenta, green and blue.
The man on the upper-right corner, that enters the scene at time t, is completely outside the influence of the predicted pdf;
nevertheless, the uniform component of quasi random sampling enables his detection. In (e), the cyan dots depict the particles
that yielded successful detections (set S, line 18, Alg. 1).

Fig. 3: Region of support and basin of attraction for the cascade of LogitBoost classifiers [9] trained on INRIA pedestrian dataset.
(a) a sample taken from the set of 100 cropped images: there is a centered pedestrian of 50x150 pixels and an average of 2.5
other pedestrians at other positions and scales; (b-e) response (computed with eq. 2) of the classifier averaged on the 100 images:
(b) fixed scale ws (equal to 50x150), sliding wx, wy ; (c) fixed wx (equal to x of window center), sliding ws and wy ; (d) fixed wy

(equal to y of image center), sliding wx and ws; the central region of (b) is enlarged in (e) and plotted in 3D in (f).

approximately 9 pixels, confirming that the pixel stride
of 6 proposed by [9] is reasonable.

4.1.2 HLF

The well-known Viola-Jones face detector adopts a set
of nonadaptive Haar-like features, which are reminiscent
of Haar basis functions proposed in [62]. Using a base
resolution on the detector of 24x24 (extensive analysis
of the influence of this value on the performance has
been proposed in [25]) this leads to 45,396 features,
which is over-complete and a rich dictionary of simple
features. The features are computed very rapidly with
integral images. For each layer of the cascade, AdaBoost
iteratively constructs a weighted linear combination of
weak classifiers, where each weak classifier is simply
made by thresholding one feature value (called “single
perceptron” in [10]). Viola and Jones proposed to use a
cascade made of 32 layers, with a total of 4,297 features
(among the original 45,396).

The region of support of the Viola-Jones face detector
with Haar-like feature is depicted in Fig. 4 and appears
to be much more compact w.r.t. that reported in Fig. 3:
this can be ascribed to the different employed feature
and to the different modeled object: indeed, a frontal
face has a more descriptive shape w.r.t. the pedestrian
observed from a generic point of view. For this reason,
the related papers often suggest a pixel stride as low as
1 [26], [27], [32].

4.1.3 FPDW

The idea behind pedestrian detection with integral chan-
nel features [21] is to put together the descriptiveness of
multiple registered image channels (gradient histograms,
gradient magnitude and LUV color channels), and the
computational efficiency provided by integral images.
The authors in [21] propose the use of a soft cascade,
where a threshold is used after evaluation of every weak
classifier. Depending on the dataset used for testing, this
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Fig. 4: Region of support and basin of attraction for the cascade of AdaBoost classifiers [7]. (a) a sample taken from the set
of 100 cropped images from the MIT+CMU dataset: there is a centered face of 38x38 pixels and an average of 1.8 other faces
at other positions and scales; (b-e) response (computed with eq. 2) of the classifier averaged on the 100 images: (b) fixed scale
ws (equal to 38x38), sliding wx, wy; (c) fixed wx (equal to x of window center), sliding ws and wy ; (d) fixed wy (equal to y of
window center), sliding wx and ws; the central region of (b) is enlarged in (e) and plotted in 3D in (f).

algorithm represents the state-of-the art or the second
best algorithm (second to [44]) in pedestrian detection.
In [20], the authors propose an approach to speed up
the algorithm by approximately a factor 10, reducing the
computation on the construction of the feature pyramid,
suffering only a very minor loss in detection accuracy.
Such optimization is totally complementary to our MS-
PW method, that optimizes the search in the state space,
and both can be combined together yielding a multi-
plication of the speed up factors w.r.t. the [21] detector,
as it will be demonstrated in section 4.4. Fig. 5 shows
the region of support for such algorithm, computed
according to the R for soft cascades described in section
3.1.

4.1.4 HOG

In order to demonstrate that the multi-stage method,
if fed through appropriate confidence measures, is not
limited to ensemble classifiers but can be applied to on
any real-valued confidence classifier, we also tested the
popular pedestrian classifier proposed in [8] that apply
a SVM classifier to Histogram of Oriented Gradients
(HOG): this feature counts occurrences of gradient orien-
tation in localized portions of an image and happens to
be particularly suited for the task of pedestrian detection.
The computation of the histograms is performed on a
dense grid of uniformly spaced cells and overlapping
local contrast normalization is used for improved ac-
curacy; the SVM classifier can either be linear or use
other kernels (e.g., Radial Basis Function). Since several
works still recently take inspiration and move forward
from the detection architecture proposed by [8] ( [44]
is among the most successful examples), we believe that
demonstrating the feasibility of the Multi-Stage detection
onto HOG-SVM classifiers is of particular significance.
Fig. 6 shows the region of support and corresponding
basin of attraction for this classifier computed according
to eq. 3.

4.2 Benchmark and evaluation metrics

The experiments we propose have a twofold bottom line,
that we consider as success indicators: demonstrating
that when MS-PW is configured to operate at the same

detection accuracy of SW, it exhibits lower detection
time; conversely, when it is configured to operate with
the same detection time of SW, it yields a higher de-
tection accuracy. These different operating points are
achieved configuring SW to work at its best (using the
parameters provided in the original works) and then
tuning the number of particle windows of MS-PW to
reach the desired operating point (either same accuracy
or same speed of SW). Within this evaluation process,
the classifiers are left totally untouched between the two
detection approaches. To reach both advantages together
(faster AND better accuracy) a different operating point
should be selected just employing a number of particle
windows in between the two extreme cases: such work-
ing point is a trade-off between the two and provide
faster computation and better accuracy but both of them
at a lower degree with respect to the extremes.

The experimental results are obtained on the bench-
mark reported in Table 2: the whole list of datasets is
public and comprises ground truth bounding-box anno-
tations. In the case of single images, we have selected
four different datasets, three for pedestrians and one for
faces. Fig. 7 shows a few samples (and the detection
produced with CovM and HLF methods for pedestrian
and face, respectively) from each of the four datasets.

Regarding pedestrian detection, one of the most
widely used dataset is INRIA [8], since it contains very
different pedestrian sizes, even within the same frame,
has some low quality images, and has very different
frame sizes. On this dataset we have performed com-
parative tests between SW and MS-PW on all the three
classifiers (CovM, FPDW, HOG) working on the two
above-mentioned operating points. CovM has been also
tested on two other image datasets, namely Graz02 [63]
and our CWSi (Construction Working Sites image)3. In
Graz02 the SW-based detection works rather well even
with a very coarse striding in location and scale, i.e.
a very low number of windows: this can be ascribed
to the visual properties of the dataset, that seem to
be favorable to pedestrian detection (e.g. good image

2. http://www.emt.tugraz.at/∼pinz/data/GRAZ 02/person.zip
3. CWSi and CWSv datasets and annotation can be publicly down-

loaded at http://imagelab.ing.unimore.it/visor
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Fig. 5: Region of support and basin of attraction for the FPDW approach [20]. Same training set, data and description of Fig. 3.

Fig. 6: Region of support and basin of attraction for the HOG+SVM approach [8]. Same training set, data and description of
Fig. 3. In this case, the graphs report the margin of SVM.

# images Image size # objects Object size Avg object/im.

Tests on Images for

Pedestrian Detection

INRIA [8] 311 333x531-1280x960 582 32x80-320x800 1.87
Graz022 [63] 311 640x480 777 17x42-255x639 2.50

CWSi3 300 800x600 781 22x55-181x386 2.60

Tests on Images for

Face Detection
MIT+CMU [10] 130 60x75-1280x1024 511 14x14-486x486 3.93

Tests on CWSv Videos

Video 1 300

800x600 @ 1 fps

413

22x55-181x386

1.38
Video 2 300 583 1.94
Video 3 300 966 3.22
Video 4 300 975 3.25
Video 5 300 1180 3.93
Video 6 300 641 2.14
Video 7 300 969 3.23

TABLE 2: Benchmark.

quality, constant frame size, fairly detached pedestrians,
etc.). For this reason the advantage of our MS-PW will
not be as evident as in the two other datasets, that
are definitely more challenging. CWSi contains similar
challenging conditions than INRIA but also includes
challenging backgrounds, distractors and people squat-
ted or occluded by pillars or scaffoldings (see Fig. 7(b)).
For the evaluation of face detection, we have employed
the same dataset used by HLF [10] and many other
successive works (see Tab. 1 in Section 2). In total, we
evaluated more than a thousand of images with more
than 2500 objects at different size.

Regarding the videos, we performed experiments
on CWSv (Construction Working Sites video) dataset3,
made of 7 videos for a total of 2100 frames, recorded in
very different conditions of construction sites scenarios;
similarly to CWSi, even this video dataset is seriously
challenging, with the addition of compression artifacts
and an average of 13.1 entrances/exits of pedestrians
per video and some people grouping (up to 8 close-
by people within a frame). All the tests on videos have

been carried out using CovM classifier as a base and,
considering only the cue of appearance exploited by
the classifiers, with no use of additional cues, such as
motion, geometry, depth or other priors.

The accuracy of object detection is measured at object
level in terms of the PASCAL threshold defined in the
PASCAL VOC challenge [64] which evaluates the ratio
between the intersection and the merge of the bounding
box found by the detector with the bounding box in the
ground truth. This value is thresholded at T , that is set
to 0.5 in most of our tests as well as in typical object
detection evaluations; we also perform detection tests
at varying values of T , in order to better evaluate the
localization accuracy of the detection of MS-PW w.r.t.
SW. Throughout all tests, multiple detections of the same
ground-truthed person, as well as a single detection
matching multiple ground-truthed people, are affecting
the performance in terms of false positives and false
negatives respectively.

In this analysis we employ Detection Error Trade-off
(DET) curves [65], that are typically preferred to the ROC
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(a) Results of MS-PW with CovM on INRIA (1st, 2nd, 3rd image) and Graz02 (4th, 5th image) dataset.

(b) Results of MS-PW with CovM on CWSi dataset (1st, 2nd, 3rd image) and with HLF on CMU dataset (4th, 5th

image).

Fig. 7: Some examples of the different image datasets and MS-PW detection results.

curves for evaluating object detection results [8], [16]. A
DET curve reveals how Miss Rate (MR, i.e. the reciprocal
of the detection rate) changes with the rate of false
positives, varying a system parameter, e.g. the detection
confidence. It is possible to measure either False Positives
Per Window (FPPW) or Per Image (FPPI); as stated in
[34], the former is more appropriate for evaluating the
object classifiers, while the latter better evaluates the
detection as a whole, which is more appropriate in our
case. Accuracy can also be roughly evaluated through
single-valued scalar quantities, representing cumulative
measurements: typical choices are the Area Under the
ROC Curve (ROC-AUC) and the Average Precision (AP)
[64], that better emphasizes the detection accuracy w.r.t.
the detection confidence. We employed the AP, since the
PASCAL VOC challenge has preferred it to the ROC-
AUC, starting from the 2007 edition [66]. Additionally,
we also report the miss rate at the reference value
FPPI=1.

4.3 Parameters’ analysis

We have tested MS-PW under two different config-
urations: a comprehensive and flexible configuration,
employing all the parameters described in Alg. 1, and a
simplified configuration, reducing the number of param-
eters just to a minimal and simplified set. The compre-
hensive configuration was thoroughly tested on CovM
and HLF classifiers; the reduced configuration on FPDW
and HOG. The number of windows for the SW-approach
depends on pixel stride, scale stride, and frame size, for
the datasets that do not have constant frame size (as
in the case of INRIA and MIT+CMU). Conversely, the
number of particle windows in MS-PW does not depend
on any of those parameters, but only on m, the number
of stages employed for detection, and on the law that
regulates the decrease of the number of pw from stage to
stage, as described in Section 3.2. The decrease follows an

exponential law: the comprehensive configuration uses
Ni = NP ·eγ·(i−1), with i = 1 . . .m, where NP represents
the initial number of particle windows (i.e., N1) which
remains fixed independently on the image size (we con-
figured m = 5 and γ = 0.44). The minimal configuration
instead follows Ni =

NP
2i and m is bounded by the stage

that reaches zero particle windows.
For the comprehensive configuration, a similar ex-

ponential trend is also applied respectively to λi, the
exponent of the classifier response R, and to Σi, the
covariance of the Gaussian kernels. The values at the
first stage are λ1 = 0.1 and Σ1 = diag(8, 16, 0.26) for
CovM and λ1 = 0.1 and Σ1 = diag(5, 5, 0.26) for HLF;
the γ value are respectively 1 and −0.66. In any case,
the initial value of Σ depends on the size of the region
of support of the classifier. Instead, the reduced config-
uration simplifies the parameters by setting λi = 1, ∀i,
and Σi constant for all i and equal to the size of the
region of support. In both configurations, the adaptation
rate α is set to 1, so that the update of the proposal at
stage i depends completely on the measurement function
pi−1(Z|X).

4.4 Evaluation of Accuracy and Speed on Images

For each tested classifier, on the SW detection we employ
pixel and scale stride values suggested in the original
papers, that are usually aimed at obtaining the best
trade-off between speed and accuracy. In addition, for
the HOG classifier, the only non-cascaded classifier, we
compute the SW at an additional operating point (with
higher scale stride, see rows 11-13 of Table 3) that is often
used in video surveillance scenarios when necessary to
reduce computation as much as possible.

The results are reported in Fig. 8 and Table 3. The PAS-
CAL threshold is set to T = 0.50. For each SW detection
measurement, MS-PW is tuned to work at two different
operating points, i.e. to obtain approximately the same
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DET Curves for GRAZ02 pedestrian detection image dataset
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DET Curves for CWS pedestrian detection image dataset
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DET Curves for MIT+CMU face detection image dataset

SW@128740w (reference  row 11 of Table III)

MS PW@30000pw (similar speed  row 12 of Table III)
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(d)

Fig. 8: DET curves comparing SW and MS-PW approaches on different image datasets. The labels also report the averaged
number of windows (w) or particle windows (pw) employed by the detectors. For MS-PW curves, the lighter one is configured
to yield similar Average Precision as the SW curve, while the darker runs at approximately same speed of SW.

speed or the same accuracy (in terms of AP) of SW. Fig.
8 shows that MS-PW with similar speed is generally
more accurate (i.e., the DET curve is lower) than SW,
for every classifier. This advantage is emphasized on the
complex datasets. Indeed, as reported in Table 3 - sixth
column, the AP gain obtained by using MS-PW with
CovM classifier goes from 8.8% in the case of GRAZ02,
to 21.9% in the case of INRIA. Still on INRIA dataset,
MS-PW gains 4.73% in AP w.r.t SW with the FPDW
algorithm, and respectively 2.33% and 10.01% with the
HOG algorithm. In this latter case, the tests highglight

as the MS-PW accuracy has better scalability to lower
number of particles rather than SW. When considering
MS-PW at similar AP, the speedup in time (last column
of Table 3) reaches 3.81 for INRIA with CovM approach,
which means almost a fourth of the time required. In
the case of FPDW algorithm the speedup is reduced to
2.02%, while in the two operating points of HOG we
reached 2.01 and 1.86, respectively. We prefer to report
time speedup instead of time absolute values since these
latter measurments would be strongly implementation-
dependent, i.e. they would be determined by the em-
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ployed PC, the software toolchain and the quality of the
implemented code.

One key contribution of our multi-stage approach is to
progressively refine the sampling of particle windows to
obtain accurate localization of the detections. To demon-
strate this we have further analyzed the behavior of MS-
PW with respect to SW when the PASCAL threshold T

gets changed. Fig. 9(a) shows the comparison of MS-PW
with SW at T = 0.30, 0.55, 0.65 with CovM approach.
Increasing the T implies a request for higher degree of
overlap between detection and ground truth bounding
boxes: as expectable, together with the increase of T , the
DET curves raise and the APs decrease. The remarkable
point here is that the decreasing rate of AP is definitely
more prominent for the SW approach rather than for
MS-PW, as shown by the increasing AP gain of Fig. 9(b);
in other words, the detection localization of MS-PW is
higher, since it suffers in a lower degree the request for
higher overlaps determined by higher Ts; this is to be
ascribed to the information gain obtained through the
multi-stage sampling strategy (see Fig. 10).

4.5 Evaluation of Accuracy and Speed on Videos

The experiments on videos are aimed at validating the
usefulness of plugging the multi-stage particle window
paradigm inside the Bayesian-recursive approach, in
order to exploit the temporal coherency of the target
objects. We focused on pedestrian detection with CovM
approach only and made use of the CWSv test set
(details in Table 2). We compared SW detection, MS-
PW detection configured to yield similar accuracy and
eventually MS-PW detection configured exactly in the
same manner, with the further addition of being plugged
into a Bayesian-recursive framework (Section 3.3). At the
cost of a minor decrease in speed-up (4.7% slower on
average), this latter configuration shows a strong boost
in accuracy (details in Table 4 and Figure 11 that shows
an exemplar DET curve measured on a video). The slight
decrease of speed-up is due to the fact that, thanks to
the non uniform proposal distribution (see Equation 6),
a portion of the particle windows are sampled around
true positives already at the very first stage: together
with improving detection rates, it determines also a
slight increase of the average R, and therefore of the
computational burden.

5 CONCLUSIONS

The work introduces a novel method for hypothesis
search in problems of object detection, avoiding the
drawbacks of sliding window paradigm. Through the
definition of the response R of a given classifier, the
proposed method exploits the presence of a basin of
attraction around true positives to drive an efficient ex-
ploration of the state space, using a multi-stage sampling
based strategy. The derived measurement function can
be plugged in a kernel-based Bayesian filtering to exploit
temporal coherence of pedestrians in videos. The use

SW MS-PW non rec. MS-PW rec.
AP AP Speedup AP (gain) Speedup

V1
#w=28556 #pw=5000 #pw=5000

0,373 0,372 1,83 0,389 (4,18%) 1,96

V2
#w=28556 #pw=5000 #pw=5000

0,400 0,399 1,53 0,404 (0,97%) 1,58

V3
#w=28556 #pw=5000 #pw=5000

0,511 0,517 1,78 0,549 (7,60%) 1,57

V4
#w=28556 #pw=4000 #pw=4000

0,607 0,607 1,50 0,683 (12,49%) 1,19

V5
#w=28556 #pw=5400 #pw=5400

0,662 0,662 1,62 0,678 (2,36%) 1,46

V6
#w=28556 #pw=4000 #pw=4000

0,569 0,574 2,46 0,597 (4,85%) 2,42

V7
#w=28556 #pw=4000 #pw=4000

0,408 0,406 2,61 0,568 (39,39%) 2,51

Avg 0,504 0,505 1,90 0,553 (9,58%) 1,81

TABLE 4: Results on video datasets.
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Fig. 11: DET curves for Video 7.

of a measurement model that is the same for all target
objects, together with a quasi-random sampling allows
the method to deal with objects entrances and exits.
Experimental evaluation is performed on pedestrian and
face detection and using very diverse types of cascaded
and non-cascaded classifiers; results show that the pro-
posed method obtains similar accuracy at lower compu-
tational load w.r.t. sliding window; conversely, working
at the same computational load, the detection rate and
localization are higher. The advantage of the proposed
method is emphasized in complex datasets, where the
sliding window approach obtains good detection results
at the cost of a very large number of windows; our
method can take the place of SW improving performance
either in speed or in accuracy or in both of them. The
proposed method yields also an increased accuracy in
the localization of detections. In future works we plan
to adapt MS-PW even for the training phase, specifi-
cally for efficient bootstrapping. Additionally we plan
to investigate the possibility to use MS-PW on a specific
feature with a specific classifier just for efficient state
space exploration, independently on the eventual object
detection classifier. Finally, we want to test MS-PW on
part-based approaches such as [44], since every part
classifier is characterized by its own basin of attraction.
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Dataset Classifier Approach # windows AP (gain) MR@FPPI = 1 Speedup
2

INRIA

CovM [9]
SW 28682 (avg)/94445 (max) 0.562 (n/a) 0.340 n/a

3 MS-PW s.s. 8000 (4152/2062/1024/508/252) 0.685 (21.9%) 0.280 n/a
4 MS-PW s.a. 1750 (908/451/224/111/55) 0.562 (n/a) 0.380 3.81
5

FPDW [20]
SW 144800 (avg)/ 488500 (max) 0.825 (n/a) 0.153 n/a

6 MS-PW s.s. 94100 (47051/23530/11767/5884/. . .) 0.864 (4.73%) 0.112 n/a
7 MS-PW s.a. 21700 (10858/5430/2715/1358/. . .) 0.826 0.147 2.02
8

HOG [8]
SW 44249 (avg)/146841 (max) 0.771 (n/a) 0.203 n/a

9 MS-PW s.s. 39800 (19898/9950/4976/2488/1244/. . .) 0.789 (2.33%) 0.201 n/a
10 MS-PW s.a. 13150 (6574/3288/1644/822/411/. . .) 0.771 (n/a) 0.203 2.91
11

HOG [8]
SW 14415 (avg)/47473 (max) 0.699 (n/a) 0.283 n/a

12 MS-PW s.s. 11559 (5779/2890/1445/723/361/. . .) 0.769 (10.01%) 0.221 n/a
13 MS-PW s.a. 5689 (2844/1422/711/356/178/. . .) 0.699 (n/a) 0.294 1.86

14
Graz02 CovM [9]

SW 5150 (fixed value) 0.533 (n/a) 0.362 n/a
15 MS-PW s.s. 2250 (1696/418/103/25/6) 0.580 (8.8%) 0.343 n/a
16 MS-PW s.a. 1850 (1395/344/84/20/5) 0.533 (n/a) 0.345 1.16

17
CWSi CovM [9]

SW 33260 (fixed value) 0.335 (n/a) 0.528 n/a
18 MS-PW s.s. 17000 (8824/4382/2176/1080/536) 0.371 (10.9%) 0.508 n/a
19 MS-PW s.a. 6000 (3114/1546/768/381/189) 0.335 (n/a) 0.538 2.55

20
MIT+CMU HLF [10]

SW 128740 (avg)/819491 (max) 0.506 (n/a) 0.413 n/a
21 MS-PW s.s. 30000 (15572/7733/3840/1906/946) 0.606 (19.7%) 0.364 n/a
22 MS-PW s.a. 20000 (10381/5155/2560/1271/631) 0.506 (n/a) 0.419 1.34

TABLE 3: Results on image datasets for pedestrian and face detection. s.s.=similar speed, s.a.=similar accuracy. n/a = not appl.
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Fig. 9: Results on INRIA dataset at different values of PASCAL threshold T .
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