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Abstract. We consider linear multistage stochastic integer programs and study
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optimality and stability of solutions. Furthermore, we study the application of the
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tential of corresponding dual problems. For discrete underlying probability distribu-

tions we discuss possible large scale mixed-integer linear programming formulations

and three dual decomposition approaches, namely, scenario, component and nodal

decomposition.
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1 Introduction

Stochastic programming deals with the optimization of decision making un-

der uncertainty over time. Typical objects of study are random optimiza-

tion problems where outcomes of random data are unveiled over time, and

the decisions to be optimized must not anticipate future outcomes (non-

anticipativity). The latter provides a tight link to real-time optimization seen

as the need for optimal \here-and-now" decision in an incomplete (or uncer-

tain) data environment. Provided that probabilistic information on the uncer-

tain data is available, operational models suitable for real-time optimization

often may be formulated as multi-stage stochastic programs. Basic references

for theory, algorithmics, and application of stochastic programming are the

textbooks [7,24,34]. The edited volume [50] provides insight into recent re-

search in the �eld.

Indispensability of integer requirements is a basic modeling experience in

practical optimization. Like in other branches of mathematical optimization

this has considerable consequences on structural properties and algorithm

design in stochastic programming, too. The models best understood so far

are (purely) linear stochastic programs. This is mainly due to the fact that

the optimal value of a linear minimization problem is a convex function of the

right-hand side and a concave function of the objective function vector. This

enables application of the machinery of convex analysis in various contexts,
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such as duality, stability, and subgradient minimization. For an impression

on these developments we refer to [12,14,36,49], with accent on theory, and

to [5,42], with accent on computation.

With integer requirements, the above convexity/concavity observation is no

longer valid, and the mentioned functions become discontinuous. Thus, com-

paratively little is known on theory and algorithms for mixed-integer linear

stochastic programs. A recent survey is provided in [26]. Impressions on de-

velopments in theory can be obtained from [2,43,46] and on algorithm design

from [9,11,19,27,30,33,47], see also the Ph.D. thesises [8,32,48].

The present paper aims at a short introduction into some essential theoretical

and algorithmic issues in multi-stage stochastic integer programming. Accent

is placed on introducing approaches. Proofs are omitted, with references to

the original sources instead. The main topics will be modeling, approxima-

tion, and algorithmics.

2 Multistage Stochastic Integer Programs

2.1 Modeling

We consider a �nite horizon sequential decision process under uncertainty, in

which a decision made at stage t is based only on information available at

t (1 � t � T ). We assume that the information is given by a discrete time

stochastic process f�tg
T
t=1 de�ned on some probability space (
;F ; P ) and

with �t taking values in IRst . The information available at stage t consists of

the random vector �t := (�1; : : : ; �t), and the stochastic decision xt at stage t

varying in IRmt is assumed to depend only on �t. The latter property is called

nonanticipativity and is equivalent to the measurability of xt with respect to

the �-algebra Ft � F which is generated by �t. Clearly, we have Ft � Ft+1

for t = 1; : : : ; T � 1 and, with no loss of generality, we may assume that

F1 = f;; 
g, i.e., �1 and x1 are deterministic, and that FT = F .

More precisely, we consider a decision model where the objective is given by

expected linear costs and the constraints consist of three groups: the measur-

ability constraints on xt, a linear constraint describing the relation between

decisions at di�erent stages, and constraints characterizing feasibility of the

t-th stage decision xt. The latter constraints consist of a linear inequality

constraint and of the general constraint xt 2 Xt where the (�xed) set Xt

has the property that its convex hull conv(Xt) is polyhedral, allowing for

mixed-integer decisions in all stages. Furthermore, the data �t at stage t may

enter all corresponding cost coeÆcients, matrices and right-hand sides. This
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leads to the following stochastic decision model:

minfE[

TX
t=1

ct (�t)xt] : xt is measurable with respect to Ft; (1)

xt 2 Xt ; Bt(�t)xt � dt(�t) ; P � a:s: ; t = 1; : : : ; T; (2)

tX
�=1

At� (�t)x� � gt(�t) ; P � a:s: ; t = 2; : : : ; Tg (3)

Throughout, the following is imposed: The sets Xt are nonempty and closed.

The matrices At� (�), Bt(�) as well as the coeÆcients ct(�) and the right-hand

sides dt(�), gt(�) all depend aÆnely linearly on the corresponding component

of �, for each � = 1; : : : ; t; t = 1; : : : ; T . In order to have the model (1){

(3) well de�ned, we need that the scalar products ct(�t)xt are integrable.

The latter property is implied by the integrability of k�tkkxtk and by the

conditions �t 2 Lqt(
;Ft; P ; IR
st) and xt 2 Lrt(
;Ft; P ; IR

mt) where qt; rt 2

[1;1] with 1
qt
+ 1

rt
= 1. Since it is desirable to impose only weak conditions on

the data process � and since we assume later on that the set Xt is bounded,

we may restrict our attention to decisions xt 2 L1(
;Ft; P ; IR
mt) and to

the �rst order moment condition �t 2 L1(
;Ft; P ; IR
st) on the data at stage

t for each t = 1; : : : ; T . Then the nonanticipativity constraint (1) may be

expressed equivalently as

xt 2 L1(
;F ; P ; IRmt) and xt = E[xtjFt] ; t = 1; : : : ; T; (4)

by using the conditional expectation E[�jFt] with respect to the �-algebra Ft.

Condition (4) describes a linear subspace Nna of the space �
T
t=1L1(
;F ; P ;

IRmt). This combination of functional and (P-a.s.) pointwise constraints in

our model, i.e., the functional condition x 2 Nna and the P-a.s. constraints

(2) and (3), forms the theoretical and algorithmic challenge of multistage

stochastic programs. A special role is played by the two-stage case (i.e., T=2)

where Nna takes the speci�c form Nna = IRm1 � L1(
;F ; P ; IRm2). An

additional complication of the model (1){(3) is caused by the mixed-integer

constraints hidden in the condition xt 2 Xt ; t = 1; : : : ; T .

2.2 Multistage Models, Dynamic Programming and Optimality

We adopt the setting of the previous section and assume that Xt is compact

and �t 2 L1(
;F ; P ; IR
st) for t = 1; : : : ; T . For each ! 2 
 we de�ne the

subset Y(!) of X := �T
t=1IR

mt by

Y(!) := fy 2 X : yt 2 Xt; Bt(�t(!))yt � dt(�t(!)); t = 1; : : : ; T; (5)

tX
�=1

At� (�t(!))y� � gt(�t(!)); t = 2; : : : ; Tg
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and the extended real-valued function '

'(y1; : : : ; yT ; !) :=

8<
:

TP
t=1

ct(�t(!))yt ; (y1; : : : ; yT ) 2 Y(!);

+1 ; otherwise

(6)

from X �
 to (�1;+1]. With these notations, the model (1){(3) is equiv-

alent to the optimization problem

minfE['(x1; : : : ; xT ; !)] : xt is measurable w.r.t. Ft ; t = 1; : : : ; Tg: (7)

The real-valued function (y; !) 7!
TP
t=1

ct(�t(!))yt is continuous in y for each

! 2 
 and measurable in ! for each y 2 X , and the set-valued mapping Y

from 
 to X is closed-valued and measurable (cf. Theorem 14.36 in [40]).

Hence, the function ' is B(X )
N
F-measurable (cf. Example 14.32 in [40]).

Furthermore, the following estimate is valid for each y 2 �T
t=1Xt and ! 2 
:

j'(y1; : : : ; yT ; !)j �

TX
t=1

kct(�t(!))k sup
yt2Xt

kytk (8)

Hence, E['(x1; : : : ; xT ; !)] is �nite for each decision x = (x1; : : : ; xT ) such

that x(!) 2 Y(!) for P -almost all ! 2 
. As in [16], we construct recursively

two sequences of functions by putting  T+1 := ' and

't(y1; : : : ; yt; !) := Er[ t+1(y1; : : : ; yt; �)jFt](!) ; (9)

 t(y1; : : : ; yt�1; !) := inf
y
't(y1; : : : ; yt�1; y; !) ; (10)

for t = T; : : : ; 1, and for each ! 2 
 and y� 2 X� , � = 1; : : : ; T . Here,

Er[�jFt] denotes the regular conditional expectation with respect to Ft. We

recall that the regular conditional expectation is a version of the conditional

expectation (i.e., Er[�jFt] = E[�jFt], P -a.s.) having the property that the

mapping (z; !) 7! �(z; !) := Er[	(z; �)jFt](!) from Zt � 
 to (1;+1]

is B(Zt)
N
Ft-measurable if 	 is B(Zt)

N
F-measurable. Here, Zt denotes a

closed subset of a Euclidean space. The regular conditional expectation exists

if 	 is B(Z)
N
F-measurable and uniformly integrable, i.e., there exists a

(real) random variable � with �nite �rst moment such that j	(z; !)j � �(!)

for z 2 Zt and ! 2 
 (see [15]). Due to condition (8), relation (9) is well

de�ned for t = T and leads to a B(Z)
N
FT -measurable function �T , where

Z := �T
t=1Xt. It is shown in [16] that the relations (9) and (10) are well

de�ned for all t = T; : : : ; 1. Furthermore, the following optimality criterion

and existence result for (7) or, equivalently, for (1){(3) are valid.

Theorem 1. Let the general assumptions be satis�ed and assume that there

exists a feasible solution of (1){(3). Then f�xtg
T
t=1 is a solution of (1){(3) i�

't(�x
t(!); !) =  t(�x

t�1(!); !) ; P � a.s. ; t = 1; : : : ; T: (11)
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Moreover, there exists a solution �x1 of the �rst-stage optimization problem

minf'1(x1) = E[ 2(x1; !)] : x1 2 X1 ; B1(�1)x1 � d1(�1)g; (12)

and, given F� -measurable functions �x� for � = 1; : : : ; t � 1, there exists an

Ft-measurable function �xt such that 't(�x
t(!); !) =  t(�x

t�1(!); !) ; P � a.s.

The theorem is a special case of the more general results (Theorems 1 and

2) in [16]. Theorem 1 implies the existence of a solution to (1){(3) and justi-

�es the solution approach (11) which is usually called dynamic programming

approach. Due to measurable selection arguments (cf. Chapter 14 in [40]), a

feasible solution of (1){(3) exists if the model (1){(3) has relatively complete

recourse, i.e., if Y(!) 6= ; P -a.s.

2.3 Structure and Stability

We adopt the setting of the previous sections, denote by P(�) the set of

all Borel probability measures on some closed subset � of IRs with s =PT

t=1 st, which is chosen such that it contains the support of �. By � 2

P(�) we denote the probability distribution of �. We consider the probability

space (�;B(�); �) as the underlying probability space (
;F ; P ) in Section

1, and de�ne a function f from X1 � � to the extended real numbers IR by

f(x1; �) :=  2(x1; �), where  2 is de�ned by (9) and (10). Then the �rst-stage

optimization problem (12) can be rewritten in the following form:

minf

Z

�

f(x1; �)�(d�) : x1 2 X1 ; B1(�1)x1 � d1(�1)g (13)

The techniques exploited in [16] and used in the previous section imply that

the integrand f is B(X1)
N
B(�)-measurable. The recursions (9) and (10) to-

gether with the Fatou Lemma for (conditional) expectations as well as lower

semicontinuity properties of in�ma in parametric minimization (e.g. Theorem

1.17 of [40]) imply lower semicontinuity of f with respect to x1 and of the

objective function x1 7!
R
�
f(x1; �)�(d�). If the multistage model (1){(3) has

relatively complete recourse, it holds that jf(x1; �)j � K(1+maxt=1;::: ;T k�tk)

for each feasible x1, each � 2 � and some constant K > 0. Hence, the inte-

grand has a uniform and integrable upper bound, and the objective function is

�nite at all feasible �x1. By Lebesgue's theorem, the objective function is con-

tinuous at some feasible �x1 if �(f� 2 � : f(�; �) is not continuous at �x1g) =

0. Such discontinuity sets of the integrand f have been studied in [43] for the

two-stage situation with �xed recourse matrix A22 and recourse costs c2.

When developing approximation schemes and algorithmic approaches for

solving the model (1){(3), the behaviour of its optimal value val(�) and of

the set Sol(�) of �rst-stage solutions to (1){(3) is important when perturb-

ing or approximating the underlying distribution �. We say that the model

(1){(3) is stable if val(�) and Sol(�) satisfy certain continuity properties with
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respect to some suitable convergence of probability measures. Here, we follow

the presentation in [35] and consider the following distance

df (�; �) := supfj

Z

�

f(x1; �)(�� �)(d�)j : x1 is feasibleg (14)

of probability measures � and � belonging to the set P1(�) := f� 2 P(�) :R
�
k�k�(d�) < 1g. Then it holds for any perturbation � of the original

underlying probability distribution � that

jval(�)� val(�)j � df (�; �) (15)

; 6= Sol(�) � Sol(�) + 	(df (�; �))Bm1
(16)

where Bm1
denotes the closed unit ball in IRm1 and 	 is some monotonically

increasing function on IR+ with 	(0) = 0, which is related to the growth

behaviour of the objective function near the set Sol(�) (see [35]). While (15)

represents a Lipschitz type estimate for the optimal value at �, the relation

(16) says that the sets of �rst-stage solutions behave upper semicontinuously

at � with respect to df . In general, the distance df is rather involved and

diÆcult to handle. Hence, it is of considerable interest to derive estimates

of df in terms of simpler probability metrics and to expose relations to the

classical concept of weak convergence of probability measures. For two-stage

models with �xed recourse matrix and costs, such results are obtained in [44]

and [35]. We also refer to relevant stability studies in [2,18,49]. Altogether,

such stability results justify the approximation of the underlying distribution

� by simpler measures and provide techniques for designing approximation

schemes. Next, we show that approximations by discrete measures having

�nitely many atoms or scenarios play a prominent role since they lead to

specially structured large-scale mixed-integer linear programs.

2.4 Scenario Based Models

We assume throughout this section that 
 is �nite, i.e., 
 = f!sg
S
s=1, F is the

power set of 
 and P (f!sg) = ps ; s = 1; : : : ; S. We denote by �st := �t(!s)

the value of the data scenario s at stage t and by xst the value of the decision

scenario s at t for s = 1; : : : ; S; t = 1; : : : ; T . Since 
 is �nite, there exists a

�nite subset Et of the �-algebra Ft, for each t = 1; : : : ; T , such that Et is a

partition of 
 and that the smallest �-algebra containing Et is just Ft. Then

the conditional expectation w.r.t. Ft in the nonanticipativity condition (4)

takes the form

E[xtjFt] =
X
C2Et

1

P (C)

Z

C

xt(!)P (d!)�C

=
X
C2Et

(

SX
s=1

!s2C

ps)
�1(

SX
s=1

!s2C

psx
s
t )�C (17)
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where �C denotes the characteristic function of the set C 2 Et. Hence, the

nonanticipativity condition (4) is equivalent to the following equality con-

straints

x�t =
X
C2Et
!�2C

(

SX
s=1

!s2C

ps)
�1

SX
s=1

!s2C

psx
s
t ; � = 1; : : : ; S; t = 1; : : : ; T: (18)

Clearly, for t = 1 we have E1 = f
g and, hence, condition (18) is equivalent

to the equations x�1 =
PS

s=1 psx
s
1 ; � = 1; : : : ; S, i.e, to x11 = : : : = xS1 .

Hence, the multistage stochastic program (1){(3) takes the following form

which will be called its scenario formulation:

min f

SX
s=1

TX
t=1

psct(�
s
t )x

s
t : x satis�es the constraints (18); (19)

xst 2 Xt ; Bt(�
s
t )x

s
t � dt(�

s
t ) ; s = 1; : : : ; S; t = 1; : : : ; T;

tX
�=1

At� (�
s
t )x

s
� � gt(�

s
t ) ; s = 1; : : : ; S; t = 2; : : : ; Tg

Since Ft � Ft+1, every element of Et+1 can be represented as the union of

certain elements of Et. Furthermore, formula (17) shows that the number of

elements in Et coincides with the number of realizations of � and x at period

t, respectively. Hence, representing the relations between the elements of Et
and Et+1 for t = 1; : : : ; T � 1, leads to a tree having the same structure as

the sets of scenarios of � and x, respectively. Therefore, such a tree is called

scenario tree. It is based on a �nite set N � IN of nodes. Fig. 1 shows an

example of a scenario tree where the tk denote the branching points of the

tree. The root node n = 1 stands for period t = 1. Every other node n has

a unique predecessor node n� and a transition probability �n=n� > 0, which

is the probability of n being the successor of n�. The probability �n of each

node n is given recursively by �1 = 1 ; �n = �n=n��n� ; n > 1. We denote

by N+(n) the set of successors to node n, by path(n) the path from the

root to node n and by t(n) its length, i.e., t(n) := card(path(n)). Nt denotes

the set fn 2 N : t(n) = tg, and it holds
P

n2Nt
�n = 1 for each period t.

Nodes n with N+(n) = ; are called leaves; they constitute the terminal set

NT . A scenario corresponds to a path from the root node to a leaf. Clearly,

it holds that card(NT ) = S and f�ngn2NT
= fpsg

S
s=1. Conversely, given

these scenario probabilities, the remaining node and transition probabilities

are generated recursively by �n :=
P

n+2N+(n)
�n+ , �n+=n := �n+=�n for

n+ 2 N+(n). We use the following notation for the sequence of predecessors

of any node n 2 N : n0 := n, n�1 := n� if n > 1, n�(�+1) := (n��)� if

t(�) > 1. Note that t(n��) = t(n) � � for � = 1; : : : ; t(n)� 1. Furthermore,

we denote by f�ngn2Nt
the realizations of �t and by fx

ngn2Nt
the realizations

of xt. After these preparations the scenario tree formulation of the multistage
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1 t1 t2 tK T

Fig. 1. Example of a (binary) scenario tree

stochastic program reads:

min f
X
n2N

�nct(n)(�
n)xn : xn 2 Xt(n) ; Bt(n)(�

n)xn � dt(n)(�
n); (20)

t(n)�1X
�=0

At(n);t(n)��(�
n)xn�� � gt(n)(�

n) ; n 2 Ng

Both formulations of the multistage stochastic program will be used for the

description of decomposition approaches. We recall that the nonanticipativity

condition appears explicitly in the scenario formulation (19), but disappears

in the scenario tree formulation (20) because it is incorporated into the tree

construction. Since it holds that jN j := card(N ) << TS, the dimensions

of both model formulations are quite di�erent. More precisely, the model

(19) contains (
PT

t=1mt)S decision variables and
PT

t=1(mt + kt + rt)S lin-

ear constraints, whereas the model (20) contains
P

n2N mt(n) decisions andP
n2N (kt(n)+rt(n)) linear constraints. Here, kt and rt denote the dimensions

of dt(�) and gt(�), respectively, for t = 1; : : : ; T .

2.5 Dualization and the Convex Case

We assume � 2 �T
t=1L1(
;F ; P ; IRst) and consider the multistage stochastic

integer program of Section 1 as an abstract (in�nite) optimization problem
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in the Banach space �T
t=1L1(
;F ; P ; IRmt), i.e., in the form

minfE [

TX
t=1

ct(�t)xt] : x 2 �
T
t=1L1(
;F ; P ; IRmt) ; x 2 Nna ; (21)

xt 2 Xt ; Bt(�t)xt � dt(�t) ; P � a:s: ; t = 1; : : : ; T; (22)

tX
�=1

At� (�t)x� � gt(�t) ; P � a:s: ; t = 2; : : : ; Tg : (23)

Let F (�) denote the objective function, i.e., F (x) := E[
PT

t=1 ct(�t)xt].

Our aim is to introduce a Lagrangian associated with the essential groups

of constraints of problem (21){(23), namely, the (functional) nonanticipativ-

ity constraint x 2 Nna, the kt coupling constraints Bt(�t)xt � dt(�t) and

rt dynamic constraints (23). We make use of the concepts and results of

[38] and introduce the following sets �1 := f�1 2 �T
t=1L1(
;F ; P ; IR

mt) :

E[�1tjFt] = 0 ; P � a.s. ; t = 1; : : : ; Tg, �2 := f�2 2 �
T
t=1L1(
;F ; P ; IR

kt) :

�2 � 0 ; P � a.s.g and �3 := f�3 2 �
T
t=1L1(
;F ; P ; IR

rt) : �3 � 0 ; P � a.s.g

of Lagrange multipliers. The sets �2 and �3 are convex cones and �1 is

a linear space which is complementary to the nonanticipativity subspace

Nna with respect to the dual pairing h�; �i of L1 and L1, i.e., it holds

h�1; xi := E[
PT

t=1 �1txt] = 0 for all �1 2 �1 and x 2 Nna.

The Lagrangian is de�ned to be the function

L(x; �) := E[

TX
t=1

f ct(�t)xt � �1txt + �2t(dt(�t)�Bt(�t)xt)g (24)

+

TX
t=2

�3t(gt(�t)�

tX
�=1

At� (�t)x� )]

from�T
t=1L1(
;F ; P ; IRmt)�� to IR, where � := �3

i=1�i. The dual function

D from � to IR is de�ned by

D(�) := inffL(x; �) : x 2 �T
t=1L1(
;F ; P ;Rmt) ; (25)

xt 2 Xt ; P � a.s.; t = 1; : : : ; Tg;

and the dual problem associated with (21){(23) is

maxfD(�) : � 2 �g: (26)

We assume again that the sets Xt ; t = 1; : : : ; T; are compact. Then the

Lagrangian L and the dual function D are well-de�ned, D is concave and the

weak duality estimate

D(�) � F (x) for all � 2 � and all x satisfying (21){(23): (27)
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is valid. In the following, we say that the model (21){(23) is strictly feasible

if there exist ~x 2 Nna and " > 0 such that

~xt + "Bmt
� conv(Xt) ; Bt(�t)~xt � dt(�t) + " ; P � a:s: ; t = 1; : : : ; T;

tX
�=1

At� (�t)~x� � gt(�t) + " ; P � a:s: ; t = 2; : : : ; T;

where Bm denotes the closed unit ball in IRm. Then we conclude from The-

orem 1 and from Theorem 3 of [39] that the following holds.

Theorem 2. Assume that the general assumptions are satis�ed, that the sets

Xt ; t = 1; : : : ; T; are convex compact and that the model (21){(23) has rel-

atively complete recourse and is strictly feasible. Then there exist optimal

solutions �� to (26) and �x to (21){(23), and it holds D(��) = F (�x).

Since the sets Xt ; t = 1; : : : ; T; fail to be convex, such a duality result is not

available in our setting and, due to (27), we are faced with a duality gap

DG := F (�x)� sup
�2�

D(�) � 0 : (28)

This inequality is strict, in general. On the other hand, in case of a discrete

underlying probability distribution, the theory of Lagrangian relaxation in

mixed-integer linear programming (cf. e.g. Chapter II.3.6 of [31]) implies

that the optimal value of (26) is greater than or equal to the optimal value of

the linear programming relaxation to (19) or (20). In other words, the lower

bound obtained by dualizing constraints is never worse the bound obtained

by relaxing the integer requirements.

So far we have associated Lagrange multipliers with nonanticipativity, cou-

pling as well as dynamic constraints. Of course, it is also of interest to consider

restricted Lagrangians and restricted duals by associating multipliers with

one or with two of these three groups of constraints, only. For such restricted

dualization schemes, duality results for the convex case that are similar to

Theorem 2 may be derived as well (see [37] for dualizing the nonanticipativity

constraints and [38] for other inequality constraints). It is worth recalling that

the duality gap increases when dualizing additional constraints (see Section

3.1 in [29]). Since small duality gaps are of algorithmic interest, we take a

closer look at dualization schemes where either nonanticipativity or coupling

or dynamic constraints are associated with Lagrange multipliers. We denote

the corresponding dual functions from �i to IR by Di for i = 1; 2; 3 and start
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with dualizing nonanticipativity constraints, i.e.,

D1(�1) := inffE[

TX
t=1

(ct(�t)xt � �1txt)] : x 2 �
T
t=1L1(
;F ; P ;Rmt) ;

xt 2 Xt ; Bt(�t)xt � dt(�t) ; P � a.s.; t = 1; : : : ; T ;

tX
�=1

At� (�t)x� � gt(�t) ; P � a.s. ; t = 2; : : : ; Tg

= E[inff

TX
t=1

(ct(�t)xt � �1txt) : xt 2 Xt ; Bt(�t)xt � dt(�t) ;

t = 1; : : : ; T ;

tX
�=1

At� (�t)x� � gt(�t) ; t = 2; : : : ; Tg];

where the in�mum and expectation may be interchanged since the mini-

mization problem only contains P -a.s. pointwise constraints (see e.g. The-

orem 14.60 of [40]). Hence, the multistage stochastic program de�ning D1

decomposes into pathwise minimization problems. This e�ect becomes more

transparent if the underlying probability distribution of � is discrete, i.e., if


 = f!1; : : : ; !Sg. Adopting the notation of Section 2.4, the dual function

takes the form

D1(�1) :=

SX
s=1

ps inff

TX
t=1

[ct(�
s
t )x

s
t � �s1tx

s
t ] : x

s
t 2 Xt ; (29)

Bt(�
s
t )x

s
t � dt(�

s
t ) ; t = 1; : : : ; T;

tX
�=1

At� (�
s
t )x

s
� � gt(�

s
t ) ; t = 2; : : : ; Tg;

where �1 2 �1 has the scenarios f�s1tg
T
t=1 with probabilities ps for s =

1; : : : ; S and �1 is given by the linear subspace

�1 = f�1 : E[�1tjFt] =
X
C2Et

(

SX
s=1

!s2C

ps)
�1

SX
s=1

!s2C

ps�
s
1t�C = 0 ; t = 1; : : : ; Tg

= f�1 :

SX
s=1

!s2C

ps�
s
1t = 0 ; C 2 Et ; t = 1; : : : ; Tg (30)

of the Euclidean space of dimension (
PT

t=1 kt +
PT

t=2 rt)S. Since E1 = f
g

and ET = ff!1g; : : : ; f!Sgg, the conditions for t = 1 and t = T in (30) are

equivalent to
PS

s=1 ps�
s
11 = 0 and �s1T = 0 ; s = 1; : : : ; S, respectively. We

note that the constraint �1 2 �1 means that each �1 6= 0 is anticipative,

i.e., �1t is not Ft-measurable for some t (see also the example in [22]). Some-

times, one might �nd it more convenient that the dual function is de�ned
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and maximized on the whole space, i.e, without regard to the subspace con-

straint �1 2 �1. This can be done be replacing �1t in the right-hand side of

(29) by �1t � E[�1tjFt] for t = 1; : : : ; T . Then the subspace constraint for

the multiplier is automatically satis�ed and the dual maximization problem

is unconstrained.

Next we consider dualizations of certain inequality constraints by some mul-

tiplier, but leave the nonanticipativity constraint untouched. In contrast to

the anticipativity of multipliers in the previous case, the multipliers may now

be chosen nonanticipative, i.e., as elements of �T
t=1L1(
;Ft; P ). This is due

to the linear separability properties of (21){(23) (Theorem 7 of [38]). In par-

ticular, when dualizing the coupling constraints, the restricted dual function

D2(�2) := inffE[

TX
t=1

(ct(�t)xt + �2t(dt(�t)�Bt(�t)xt))] : x 2 Nna ; (31)

xt 2 Xt ;

tX
�=1

At� (�t)x� � gt(�t) ; P � a:s: ; t = 2; : : : ; Tg;

has to be maximized on the convex cone �2 := f�2 2 �
T
t=1L1(
;Ft; P ; IR

kt) :

�2t � 0 ; P � a.s.; t = 1; : : : ; Tg. Dualizing the dynamic constraints leads to

maximizing the restricted dual

D3(�3) := inffE[

TX
t=1

ct(�t)xt +

TX
t=2

�3t(gt(�t)�

tX
�=1

At� (�t)x� )] : (32)

x 2 Nna ; xt 2 Xt ; Bt(�t)xt � dt(�t) ; P � a:s: ; t = 1; : : : ; Tg:

subject to the convex cone �3 := f�3 2 �T
t=1L1(
;Ft; P ; IR

rt) : �3t �

0 ; P � a.s.; t = 1; : : : ; Tg. Clearly, both optimization problems on the right-

hand sides of (31) and (32), respectively, are stochastic integer programs.

While the program in (31) exhibits the typical multistage structure, the spe-

ci�c feature of the program in (32) is the lack of a dynamic constraint. In

Sections 3.2 and 3.3 we gain further information on these programs in case of

a discrete underlying probability distribution, i.e., when the data, decisions

and multipliers form scenario trees.

3 Decomposition Methods

Due to the enormous size of scenario based models in multi-stage stochas-

tic programming, decomposition is the method of choice when it comes to

numerical solution. This is further enhanced by special structures met, both

in the scenario formulation (19) and in the scenario tree formulation (20) of

multi-stage stochastic programs. If integer requirements are missing in (21)

- (23), powerful convexity and duality results (cf. Theorem 2) are the basis

of eÆcient decomposition methods. These methods can be subdivided into
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primal and dual ones.

Primal decomposition methods employ the scenario tree formulation (20).

Starting from the root node, primal proposals are passed down the tree where

they are used to compute so called feasibility and optimality cuts that are

passed upward to be included into convex optimization problems whose solu-

tions lead to updated primal proposals that are again passed down the tree,

and so on. This procedure (nested decomposition) is enhanced by regulariza-

tion and cut deletion. Its mathematical backbone is convexity, in particular

ideas from the area of bundle-trust and proximal point methods.

Dual decomposition circles around duality results such as Theorem 2. The

approaches discussed in Section 2.5 then all bene�t from a zero duality gap.

Particular attention has been paid to dualizing nonanticipativity in the frame-

work of augmented Lagrangians and related proximal point algorithms (pro-

gressive hedging, cf. [39]). The survey papers [5,42] provide further insights

into both primal and dual decomposition of multi-stage stochastic linear pro-

grams.

With integer requirements in (21) - (23) the mentioned powerful convexity

and duality results are lost. Approaches to decomposition, that have proven

eÆcient for purely linear models, have to be rethought from their very be-

ginnings.

The impact of integrality on primal decomposition is twofold: Feasibility and

optimality cuts can no longer be obtained as linear functionals but as merely

subadditive functionals instead. Primal proposals can no longer be obtained

via convex programs but via merely lower semicontinuous (discontinuous)

nonconvex programs instead. For algorithmic realization this leads to obsta-

cles impossible to overcome with existing methods, [8,11]. Two-stage mod-

els have been tackled with limited success by solving the mentioned lower

semicontinuous programs via enumeration [45] or branch-and-bound [1] and

exploiting problem similarities in the second stage.

The impact of integrality on dual decomposition has already been mentioned

in Section 2.5: Theorem 2 is no longer valid, and we face a non-zero duality

gap (28). Although progressive hedging then is no longer formally justi�ed,

quite satisfactory results have been observed empirically for speci�c applica-

tions, [30,47].

In what follows, we will return to the dualization schemes introduced in Sec-

tion 2.5 in case that the underlying probability distribution is discrete. We

will discuss the solution of the corresponding dual maximization problems

maxfDi(�i) : �i 2 �ig (i = 1; 2; 3)

by subgradient type methods and examine the decoupling potential of the

di�erent dualizations. Under the conditions imposed in Section 2.5 the dual

functions Di are �nite, concave and polyhedral. They have the form

Di(�i) = inf
x
fF (x) + h�i; Gi(x)ig ; (33)
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where F is the objective function, Gi is some aÆne linear function from L1
to L1, and h�; �i denotes the dual pairing of L1 and L1. Hence, Gi(xi(�i)) is

a subgradient of Di if xi(�i) is a solution to the minimization problem (33)

de�ningDi. Furthermore, the solution sets of the dual problems are nonempty

since their objectives are polyhedral and their suprema �nite. Therefore, sub-

gradient bundle methods may be used for solving the duals, [23,28,25]. Let us

consider the proximal bundle method [17,23,25] in some more detail. Starting

from an arbitrary point �1i = ��1i 2 �i, this method generates a sequence

f�ki gk2IN in �i converging to some solution of the dual problem, and trial

points ��ki for evaluating the solutions xki = xi(��
k
i ) of (33), the subgradients

Gi(x
k
i ) of Di and its linearizations

Dk
i (�) := Di(�

k
i ) + h� � ��ki ; Gi(x

k
i )i � Di(�) :

Iteration k uses the polyhedral model Dik(�) := minl2Nk Dl
i(�) with k 2

Nk � f1; : : : ; kg for �nding the next trial point ��k+1i as a solution of the

quadratic subproblem

maxfDik(�)�
1

2
ukj�� �ki j

2 : � 2 �ig ; (34)

where the proximity weight uk > 0 and the penalty term j � j2 := h�; �i should

keep ��k+1i close to the prox-center �ki . An ascent step to �k+1i = ��k+1i occurs

if Di(��
k+1
i ) � Di(�

k
i )+�Æk, where � 2 (0; 1) is a �xed Armijo-like parameter

and Æk := Dik(��
k+1
i )�Di(�

k
i ) � 0 is the predicted ascent (if Æk = 0 then �ki

is a solution and the method may stop). Otherwise, a null step �k+1i = �ki
improves the next model Di;k+1 with the new linearizationDk+1

i . The choices

of the weights uk and of the index set Nk+1 are dicussed in [17,25] (see also

Section 3.4 of [19]). The quadratic subproblem (34) is essentially in
uenced

by the dual pairing h�; �i. The latter reads h�i; yi =
PS

s=1 ps
PT

t=1 �
s
ity

s
t and

h�i; yi =
P

n2N �n�
n
i y

n for the scenario and the node formulations, respec-

tively.

3.1 Scenario Decomposition

Scenario decomposition rests on the dualization of nonanticipativity con-

straints if the probability distribution of � is discrete. This leads to the dual

maximization problem

maxfD1(�1) : �1 2 �1g (35)

where D1 and �1 are de�ned as in (29), (30) of Section 2.5. Since the compu-

tation of D1 decomposes into solving pathwise minimization problems, func-

tion values and subgradients of D1 are obtained by solving the single-scenario
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problems

minf

TX
t=1

fct(�
s
t )x

s
t � �s1tx

s
tg : xst 2 Xt ;

Bt(�
s
t )x

s
t � dt(�

s
t ); t = 1; : : : ; T;

tX
�=1

At� (�
s
t )x

s
� � gt(�

s
t ); t = 2; : : : ; Tg

for all s = 1; : : : ; S.

Indeed, if �xs; s = 1; : : : ; S, denote optimal solutions to these problems, then

D1(�1) =

SX
s=1

ps(

TX
t=1

fct(�
s
t )�x

s
t � �s1t�x

s
tg) ;

and G1(�x) = �x is a subgradient of D1 at �1, where �x has the scenarios �xs,

s = 1; : : : ; S. Compared with the scenario formulation (19) of the multi-

stage stochastic program (1)-(3), which is a mixed-integer linear program

in dimension S �
PT

t=1mt, the above single-scenario problems are S mixed-

integer linear programs each of dimension
PT

t=1mt, only.

In view of (28), solving (35) provides a lower bound to the optimal value

of the multi-stage stochastic integer program (19). If the single-scenario so-

lutions �xs1; : : : ; �x
s
T for the optimal �1 in (35) ful�lled the nonanticipativity

constraints then �x would be optimal to (19). In general, however, one faces a

non-zero duality gap (28). Therefore the lower bounding has to be accompa-

nied by upper bounding procedures resting on the generation of \promising"

feasible solutions. This can be accomplished by primal heuristics starting

from the results of the dual optimization, i.e., from single-scenario solutions

�xs1; : : : ; �x
s
T corresponding to optimal or nearly optimal �1.

An algorithmic realization of scenario decomposition for the case T = 2, i.e.,

for two-stage stochastic integer programs, has been proposed in [8{10]. The

nonanticipativity constraints then read x�1 =
PS

s=1 psx
s
1 ; � = 1; : : : ; S. In

[8{10], the equivalent representation x11 = : : : = xS1 is employed, and the

scenario formulation (19) is set up with (18) replaced by x11 = : : : = xS1 .

Then, the usual Lagrangian relaxation of mixed-integer linear programming

is performed with respect to the constraints x11 = : : : = xS1 . In particular,

this leads to a non-probabilistic Lagrangian, in contrast to the probabilistic

Lagrangian (24) introduced in Section 2.5. As a consequence, the Lagrangian

dual of [8{10] is unconstrained and lives in dimension (S�1) �m1. In the set-

ting of Section 2.5, cf. (30), we obtain a dual in dimension S �m1 constrained

by
PS

s=1 ps�
s
11 = 0, i.e., essentially an unconstrained program in dimension

(S � 1) �m1 as well.

In [8{10], the scheme of lower and upper bounding outlined above is further

enhanced by embedding into a branch-and-bound algorithm in the spirit of
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global optimization. As stated in (13), the stochastic program can be rewrit-

ten as a nonconvex global optimization problem. In the branching part of the

algorithm, the feasible region of (13) is subdivided. On each member of the

subdivision, the bounding part employs dualization of nonanticipativity for

the lower and a primal heuristic for the upper bounds. For further details on

scenario decomposition for two-stage stochastic integer programs we refer to

[21].

Only little is known about algorithmic realizations of scenario decomposition

for multi-stage stochastic integer programs with T > 2. First experiences on

extending the approach of [8{10] will be reported in [4].

3.2 Component Decomposition

Dualization of component coupling constraints results in the dual maximiza-

tion problem

maxfD2(�2) : �2 2 �2g;

where D2 and �2 are de�ned in Section 2.5. We assume that the underlying

probability distribution of the data process � is discrete and, hence, given in

form of a scenario tree f�ngn2N , where N denotes the �nite set of nodes. The

notation of Section 2.4 is used, and we denote by x = fxngn2N the decision

scenario tree and by �2 = f�n2gn2N the multiplier scenario tree. Then the

dual function (31) may be rewritten in the following form (see also (20)):

D2(�2) := inff
X
n2N

�nfct(n)(�
n)xn + �n2 (dt(n)(�

n)�Bt(n)(�
n)xn)g : (36)

xn 2 Xt(n);

t(n)�1X
�=0

At(n);t(n)��(�
n)xn�� � gt(n)(�

n); n 2 Ng

where �2 2 �2 = ff�n2gn2N : �n2 � 0 ; n 2 Ng. In order to demonstrate

the component decoupling potential hidden in D2, we assume that Xt has

the speci�c structure Xt = �mt

i=1Xti, where the Xti are closed subsets of

IR, that mt = m, kt = k and rt = mr for t = 1; : : : ; T and some r 2 IN,

and that the matrices At� (�) are block-diagonal with m blocks ait� (�) 2 IRr

for i = 1; : : : ;m. In particular, this condition means that the constraints in

(36) are expressible as componentwise constraints. We denote by cit(�) the

i-th component of ct(�), by git(�) 2 IRr the i-th component vector of gt(�),

and by bit(�) the i-th column of the matrix Bt(�). With xni denoting the i-th
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component of xn, we obtain by exchanging summation w.r.t. n and i

D2(�2) = inff
X
n2N

�nf

mX
i=1

[cit(n)(�
n)� �n2 b

i
t(n)(�

n)]xni + �n2 dt(n)(�
n)g :

xni 2 X
i
t(n) ;

t(n)�1X
�=0

ait(n);t(n)��(�
n)x

n��
i � git(n)(�

n) ;

i = 1; : : : ;m ; n 2 Ng

=

mX
i=1

D2i(�2) +
X
n2N

�n�
n
2dt(n)(�

n)

where the functions D2i, i = 1; : : : ;m, from �2 to IR are de�ned by

D2i(�2) = inff
X
n2N

�n[c
i
t(n)(�

n)� �n2 b
i
t(n)(�

n)]xni : xni 2 X
i
t(n) ; (37)

t(n)�1X
�=0

ait(n);t(n)��(�
n)x

n��
i � git(n)(�

n) ; n 2 Ng:

By specifying (33) we obtain that G2(�x) = fdt(n)(�
n)�
Pm

i=1 b
i
t(n)(�

n)�xni gn2N

is a subgradient of D2 at �2, where �xi = f�xni gn2N is a solution of (37).

The dual function (36), which is de�ned by a multistage stochastic integer

program of dimension mjN j, decomposes into m functions each given by a

multistage stochastic integer program of dimension jN j. Since the dimension

of the dual problem is kjN j, the computational potential of this dualization

approach takes e�ect in situations, where the number k of coupling con-

straints to be dualized is much smaller than the decision dimension m (i.e.,

k << m) and where the m subproblems (37) of dimension jN j can be solved

much faster than the original multistage model of dimension mjN j. The lat-

ter could appear, for example, if complex mixed-integer models decompose

into pure integer and pure linear programs.

Component decomposition has been applied successfully under the label La-

grangian relaxation of coupling constraints to solving hydro-thermal power

management models under data uncertainty. Lagrangian relaxation has a

long tradition for solving (deterministic) unit commitment problems of power

systems operation. Recently, this technique has been extended to stochastic

power management models, where the stochasticity enters the model, for ex-

ample, via the electric load, stream
ows to hydro units, and electricity prices.

When letting the production decisions of individual power units play the role

of components, the above dualization scheme leads to a decomposition into

single (thermal or hydro) power unit models. Such approaches for determin-

ing lower bounds have been proposed and implemented in [3,13,19,33,41].

In [19,20,32] encouraging numerical results and computing times have been

reported for both solving the dual and determining a nearly optimal primal

solution by a Lagrangian based heuristic.
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3.3 Nodal Decomposition

Finally, we return to the dualization of the dynamic constraints of (21) - (23)

in case of a discrete underlying probability distribution and show that the

dual function exhibits a nodewise decoupling structure. We let D3 and �3 be

de�ned as in Section 2.5 and consider the corresponding dual problem

maxfD3(�3) : �3 2 �3g:

Let f�ngn2N be the scenario tree representing the data process �, N the �nite

set of nodes, f�ngn2N the node probabilities, and fxngn2N and f�n3gn2N
the corresponding scenario trees of the decision and of the multiplier process,

respectively. Using the notation of Section 2.4, the dual function D3 takes

the following scenario tree representation

D3(�3) = inffc1(�
1)x1 +

X
n2Nnf1g

�n[ct(n)(�
n)xn + �n3 (gt(n)(�

n) (38)

�

t(n)�1X
�=0

At(n);t(n)��(�
n)xn�� )] :

xn 2 Xt(n) ; Bt(n)(�
n)xn � dt(n)(�

n) ; n 2 Ng ;

where �3 2 �3 = ff�n3gn2N : �n3 � 0 ; n 2 Ng. Since the minimization prob-

lem in (38) contains only node constraints for the decision tree, we rearrange

its objective function with respect to the decision nodes and obtain

D3(�3) = inff
X
n2N

�n(ct(n)(�
n)�

X
`2Tr(n)

�`�
`
3At(`);t(n)(�

`))xn

+
X

n2Nnf1g

�n�
n
3 gt(n)(�

n) :

xn 2 Xt(n) ; Bt(n)(�
n)xn � dt(n)(�

n) ; n 2 Ng ;

where Tr(1) := N n f1g, and Tr(n) for n > 1 denotes the set of all nodes

belonging to the subtree with root node n, i.e., Tr(n) := [nT2NT
fpath(nT ) :

n 2 path(nT )g n path(n�). Now, we may interchange summation and mini-

mization and arrive at the node decomposed formulation

D3(�3) =
X
n2N

D3n(�3) +
X

n2Nnf1g

�n�
n
3gt(n)(�

n) (39)

of D3, where the functions D3n, n 2 N , are de�ned on �3 and given by

D3n(�3) := inff(�nct(n)(�
n)�

X
`2Tr(n)

�`�
`
3At(`);t(n)(�

`))xn : (40)

xn 2 Xt(n) ; Bt(n)(�
n)xn � dt(n)(�

n)g :
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Hence, the representation (39) of D3 provides a decomposition of the original

mixed-integer program of dimension
P

n2N mt(n) into jN j subproblems (40)

of dimension mt(n) for n 2 N . Formulas for computing subgradients of D3

may be derived similarly to the previous section. Computational experience

of such nodal decomposition schemes for determining lower bounds of multi-

stage stochastic integer programs is not available yet.
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