
23 August 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Multistage Switching Architectures for Software Routers / Bianco, Andrea; Finochietto, J; Mellia, Marco; Neri, Fabio;
Galante, G.. - In: IEEE NETWORK. - ISSN 0890-8044. - STAMPA. - 21:4(2007), pp. 15-21.
[10.1109/MNET.2007.386465]

Original

Multistage Switching Architectures for Software Routers

Publisher:

Published
DOI:10.1109/MNET.2007.386465

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1642167 since:

IEEE

Abstract
Software routers based on personal computer (PC) architectures are becoming an
important alternative to proprietary and expensive network devices. However, soft-
ware routers suffer from many limitations of the PC architecture, including, among
others, limited bus and central processing unit (CPU) bandwidth, high memory
access latency, limited scalability in terms of number of network interface cards,
and lack of resilience mechanisms. Multistage PC-based architectures can be an
interesting alternative since they permit us to i) increase the performance of single-
software routers, ii) scale router size, iii) distribute packet-manipulation and control
functionality, iv) recover from single-component failures, and v) incrementally
upgrade router performance. We propose a specific multistage architecture,
exploiting PC-based routers as switching elements, to build a high-speed, large-
size, scalable, and reliable software router. A small-scale prototype of the multi-
stage router is currently up and running in our labs, and performance evaluation is
under way.

150890-8044/07/$20.00 © 2007 IEEEIEEE Network • July/August 2007

outers are the key components of modern packet
networks and of the Internet in particular. The
request for high-performance switching and trans-
mission equipment keeps growing, due to the contin-

uous increase in the diffusion of information and
communications technologies (ICT) and new bandwidth-hun-
gry applications and services based on video and imaging.
Routers are able to support the performance growth by offer-
ing an ever-increasing transmission and switching speed, most-
ly due to the technological advances of microelectronics.

Contrary to what occurred for personal computers (PC) —
where standards were defined, allowing the development of an
open, multi-vendor market, at least for the hardware components
— the field of networking equipment in general, and of routers
in particular, has always been characterized by the development
of proprietary architectures. This means incompatible equipment
and architectures, especially in terms of configuration and man-
agement procedures, as well as the requirement to train network
administrators to handle several proprietary architectures or to
be limited to a single vendor. This situation yielded commercial
practices that are not based on free competition; often, the final
cost of equipment is high with respect to performance and equip-
ment complexity. Software routers based on off-the-shelf PC
hardware and open-source software are becoming appealing
alternatives to proprietary network devices because of the wide
availability of multi-vendor hardware, the low cost, and the con-
tinuous performance evolution driven by the PC-market econo-
my of scale. Indeed, the PC world benefits from the de-facto
standards defined for hardware components that enabled the
development of an open market with a wide availability of multi-
vendor hardware, low costs offered by the large PC market, wide
information available on their architecture, and the large avail-
ability of open-source software for networking applications, such
as Linux, the Berkeley software distribution (BSD) derivatives,
Click [1], Xorp, [2] and Zebra/Quagga [3].

Indeed, despite the limitations of bus bandwidth and central
processing unit (CPU) and memory-access speed, current PC-
based routers have a traffic-switching capability in the range of a
few gigabits per second, which is more than enough for a large
number of applications. Moreover, keeping this in perspective,
performance limitations are compensated by the natural PC
architecture evolution, driven by Moore’s law. However, high-
end performance cannot be obtained easily today with routers
based on a single PC. In addition to performance limitations,
several other objections can be raised to PC-based routers; for
example, software limitations, scalability problems, lack of
advanced functionality, inability to support a large number of
network interfaces, as well as the inability to deal with resilience
issues to match the performance of carrier-grade devices.

To overcome some of the limitations of software routers
based on a single PC, we propose to create a large router
exploiting multistage-switching architectures. In addition to pre-
senting the architecture and highlighting its advantages, we also
discuss one of the main drawbacks of this proposal, that is, the
effort required to coordinate the single-switching elements on
the data, control, and management planes so as to make the
interconnection of PC behave as a single, large router. Although
both the number of PC and internal interfaces increases signifi-
cantly with respect to the classical stand-alone solution, given
the low cost of PC and network interface cards (NIC), the over-
all architecture may be cost effective when compared with com-
mercial solutions based on the development of
application-specific integrated circuits (ASIC). Moreover, no
chip re-design efforts are required, because the building blocks
are off-the-shelf components, whose performance will increase
independently due to the PC-market evolution.

In the framework of the Italian project named Bora-Bora
(building open router architectures-based on router aggrega-
tion, available at: http://www.tlc-networks.polito.it/borabora)
funded by the Italian Ministry of University and Research, we

RR

Andrea Bianco, Jorge M. Finochietto, Marco Mellia, and Fabio Neri, Politecnico di Torino
Giulio Galante, Istituto Superiore Mario Boella

Multistage Switching Architectures for
Software Routers

BIANCO LAYOUT 7/3/07 11:12 AM Page 15

IEEE Network • July/August 200716

developed in our labs a small-scale prototype with four PC
acting as switching elements, with an overall number of 16-
Gigabit Ethernet interfaces. Performance analysis obtained
using a commercial Agilent router tester is presented; the
control and management solution is only described, as its
implementation currently is in progress.

Related Work
Multistage switching architectures were previously proposed
in different research areas to overcome single-machine limita-
tions [4]. Initially studied in the context of circuit-oriented
networks to build large-size telephone switches through sim-
ple elementary switching devices, multistage architectures
were traditionally used in the design of parallel computer sys-
tems and, more recently, considered as a viable means to
build large packet-switching architectures.

Indeed, the major router producers have proposed propri-
etary multistage architectures for their largest routers [5, 6]
that follow traditional multistage, telephony-derived switching
architectures. In most cases, the routing functionality is dis-
tributed among cards installed in different interconnected
racks. Such systems target high-end routers, with performance
and costs that are not comparable with those of PC-based
router architectures. Moreover, high-end routers typically are
based on a synchronous behavior, whereas our proposed solu-
tion is fully asynchronous. Asynchronous switching relies on
sub-systems running on independent clock domains. There-
fore, our solution does not require a global clock distribution
— a complex task that requires large power consumption and
limits router scalability due to the difficulty in distributing syn-
chronization among interface cards and the scheduler — a
task even more complex when dealing with multi-rack imple-
mentations. Finally, the synchronous behavior often brings
about the internal switching of fixed-size data units, which
implies segmentation of the variable-size IP packet at inputs
and especially, re-assembly procedures at outputs, another
complex and power-consuming task.

Similarly to our approach, the IETF is interested in dis-
tributed router architecture. The Forwarding and Control Ele-
ment Separation (ForCES) Working Group [7] aims to
propose standards for the exchange of information between
the control plane and the forwarding plane, when the control
and forwarding elements are either in the range of a small
number of hops or even in the same box. A distributed imple-
mentation of the control plane on software router architec-
tures was proposed in [8], where unlike in our proposal, no
particular switching architecture is addressed, the focus being
mainly on control plane issues.

Panama [9], a scalable and extensible router architecture using
general-purpose PC with programmable network interfaces as
router nodes and a Gigabit Ethernet switch as the router back-
plane, is a project similar to the one described in this article.
However, the proposed multistage architecture is much simpler
than the one we propose, as it comprises traditional PC individu-
ally acting as independent standard routers. As such, whereas in
our architecture coordination among PC is envisioned to make
the internal multistage architecture behave externally as a single
router, nothing similar is studied in Panama.

To the best of our knowledge, no proposals are available
on the use of interconnected PC architectures that explicitly
exploit traffic load-balancing to improve performance, scala-
bility, and robustness, as successfully accomplished in Web-
server farms. Note that load-balancing at input stages has
been shown to be beneficial for scheduling in high-end input-
queued switches [10], due to the ability of transforming a non-
uniform traffic pattern at input NIC into a uniform traffic

pattern at the switching fabric ingress, a feature that we can
exploit to overcome single-PC limitations by distributing the
computational load among several back-end PC .

Our novel multi-stage architecture exploits classical PC as
elementary switching elements to build large routers. The
multistage architecture must appear to other routers and to
network administrators as a single, large router. Therefore,
efforts must be devoted to the management of the distributed
solution as discussed later in the article.

The key advantages of our proposed architecture are the
ability to:
• Overcome performance limitations of a single-PC-based

router by offering multiple, parallel data paths to packets.
• Upgrade router performance by incrementally adding more

switching elements or incrementally upgrading each switch-
ing element.

• Scale the total number of interfaces the node can host, and
as a consequence, the router capacity.

• Automatically recover from faults, that is, reconfiguration
can occur in case of any PC/element failure.

• Support a fully asynchronous behavior.
• Provide functional distribution, to overcome single-PC CPU

limitations, for example, allowing the offloading of CPU-inten-
sive tasks such as filtering/cryptography to dedicated PC .

Architectural Considerations
Packet-Router Architecture
Referring to Fig. 1, a high-level description of a packet router
includes a number of interfaces (mostly bi-directional) toward
digital links, called line cards (LC); a control processor (CP),
that manages the device and enables its configuration; an
internal switching fabric (SF), that enables the information
transfer among LC; a data base containing routing informa-
tion, called routing tables (RT) that can either be centralized
in the CP or distributed on the LC. Finally, according to the
store-and-forward paradigm followed by routers, packets arriv-
ing at LC are stored in buffers, either locally in each LC or in
a central shared memory.

The router architecture is organized in three separate
planes, called the data, control, and management planes. The
data plane is responsible for all operations involved during
packet forwarding; including packet filtering, security check,
compression, and so on. The control plane handles all opera-
tions required for optimal route calculation, and the manage-
ment plane enables the network administrator to manage the
router and the network. The functionality of the control and
management planes, for example, supervision, management,
user-access control and security, and so on, are usually imple-
mented by the CP. In particular, the CP interacts (via LC) with
other routers using standard protocols to exchange routing
information suitable to efficiently build and update the RT.

According to the switching operation defined in the data
plane, arriving packets are received at input LC and stored in
buffers; then, the routing procedure selects the output LC
that enables the packet to reach its final destination. This
operation requires the inspection of the information stored in
the RT by using the packet IP destination address. The RT
inspection can be complex, as a longest-prefix matching
(LPM) is required, and it can be delegated to individual LC,
which store a local (and possibly partial) copy of the RT. The
SF enables the physical transfer of packets between LC. Sev-
eral different architectures can be adopted in the SF design:
bus, shared memory, crossbar, or sophisticated multistage
structures. Today, medium- and low-end routers mostly adopt
shared buses; whereas simple non-blocking crossbars are gen-
erally preferred for high-performance routers. Finally, to solve

BIANCO LAYOUT 7/3/07 11:12 AM Page 16

IEEE Network • July/August 2007 17

contention, packets can be stored in
buffers before being transmitted.

PC Hardware Architecture
A PC comprises three main building
blocks: the CPU, random access
memory (RAM), and peripherals,
glued together by the chipset, which
provides advanced interconnection
and control functions.

As sketched in Fig. 1, the CPU
communicates with the chipset
through the front-side bus (FSB).
The RAM provides temporary data
storage for the CPU and can be
accessed by the memory controller
integrated on the chipset through the memory bus (MB).
Interfaces are connected to the chipset by the peripheral com-
puter interconnect (PCI) shared bus or by a PCI-express
(PCIe) dedicated link.

Today’s state-of-the-art CPU run at frequencies up to 3.8
GHz. The front-side bus is 64-bit wide, allowing for a peak
transfer rate ranging from 3.2 Gbyte/s to 42.66 Gbyte/s. The
memory bus is usually 64-bit wide and provides a peak trans-
fer rate of up to 5.33 Gbyte/s. In high-end PCs, the memory
bandwidth can be doubled or quadrupled, bringing the bus
width to 128 or 256 bits, by installing memory banks in pairs.

The PCI protocol is designed to efficiently transfer the con-
tents of large blocks of contiguous memory locations between
the peripherals and the RAM, using direct memory access
(DMA), without requiring any CPU intervention. Depending
on the PCI protocol version implemented on the chipset and
the number of electrical paths connecting the components, the
bandwidth available on the bus ranges from about 125 Mbyte/s
for PCI 1.0, which operates at 33 MHz with 32-bit parallelism,
to 4 Gbyte/s for PCI-X 266, when transferring 64 bits on a
double-pumped 133-MHz clock. Similarly, when a PCIe chan-
nel is used, a dedicated serial link between the peripheral and
the chipset is used, called a lane. PCIe transfers data at 250
Mbyte/s per lane. With a maximum of 32 lanes, PCIe allows
for a total combined transfer rate of 8 Gbyte/s.

When connected by means of either a PCI or PCIe bus,
NIC enable a PC to receive and transmit packets, acting as
router LC. Therefore, by comparing the router and the PC
architecture, it can be seen that common PC hardware enables
easy implementation of a shared-bus and shared-memory
router. NIC receive and transfer packets directly to the RAM
using DMA. The CPU performs packet forwarding by imple-
menting in software the LPM algorithm and then routes pack-
ets to the correct buffer in RAM, from which NIC fetch
packets for transmission over the wire.

To complete the router design, all data, control, and man-
agement plane functionalities must be implemented. Due to
the effort devoted to the open software movement by several
researchers and software developers, several software distribu-
tions, for example, Linux, the BSD derivatives, and Click [1]
already offer all the capabilities required to implement data
plane forwarding procedures. Similarly, software implementa-
tions of the control and management plane exist, for example,
Xorp [2] and Zebra/Quagga [3].

Single-PC Performance
We considered a PC equipped with PCI-X Intel PRO/1000
Gigabit Ethernet line-cards, a single Intel Xeon CPU running
at 2.6 GHz, equipped with 1 Gigabyte 128-bit wide, 200-MHz
double data rate (DDR) RAM, and PCI-X bus running at 133

MHz, that is, with 8-Gb/s bandwidth as the baseline system.
Linux kernel version 2.6.12 was the reference software archi-
tecture. State-of-the-art implementation, including optimized
drivers (based on the new NAPI NIC/CPU interaction scheme)
and optimized memory management (based on buffer recy-
cling), were enabled in our experiments to reach maximum
performance [11]. An Agilent N2X router tester 900, equipped
with eight Gigabit Ethernet ports that can transmit and receive
Ethernet frames of any size at full rate, was used to generate,
as well as receive, traffic in routing tests.

Figure 2 reports the throughput in kilopackets per second
(kp/s) when a single flow loads the router, that is, packets
enter the router from a single Gigabit Ethernet NIC and have
to be routed toward a different Gigabit Ethernet NIC. Both
the theoretical throughput (dashed curve) and the measured
throughput (solid line) are reported. The plot clearly depicts
the impact of packet size on performance, showing that a sin-
gle PC can only reach about 640 kp/s, considering 64-byte-
long minimum-size Ethernet frames. This performance figure
was verified when considering other NIC, mainboards, and
CPU architectures. As pointed out in [11], the limit stems
from the high latency faced by the output NIC when request-
ing (via a DMA operation) a packet from the main memory.
Moreover, when more complex operations must be performed
by the CPU, for example, imposing access control list (ACL)
rules, network address translation (NAT) operations, and so
on, the per-packet processing time increases, and the maxi-
mum throughput a single PC can sustain is further reduced.

To evaluate the maximum router performance when multi-

n Figure 1. Schematic description of a packet router (left) and a PC architecture (right).

Switching fabric

Control
processor

LC 1
(buffer)

Memory
(buffers/RT)

LC 2
(buffer)

LC 3
(buffer)

NIC 2NIC 1 NIC N

NIC 2NIC 1 NIC N

CHIPSET

MBFSB

PCIe BUS

BUSPCI

CPU MEMORY

n Figure 2. Single-PC software-router throughput vs. Ethernet
frame size.

Ethernet frame size (bytes)

12864
0

200

Th
ro

ug
hp

ut
 (

kp
/s

)

400

600

800

1000

1200

1400

1600

256 512 1024 1500

Theoretical
Single-PC router

BIANCO LAYOUT 7/3/07 11:12 AM Page 17

IEEE Network • July/August 200718

ple flows simultaneously cross the router, eight 1-Gb/s traffic
flows composed by maximum-size Ethernet frames were sent
through the router. The resulting maximum throughput was
limited to about 4 Gb/s, which corresponds to the bottleneck
capacity imposed by the PCI bus that must be crossed twice
by each packet to be stored into RAM, processed, and then
transmitted.

In summary, the actual capacity of a single-PC software
router is limited either by the CPU/memory latency or by the
PCI bus capacity that correspond to the operating area high-
lighted by the shadowed pattern in Fig. 3.

Multistage Architecture
The previously exposed limitations of a single PC drove the
design of a multistage architecture. We wished to exploit the
optimal cost/performance features of standard PC to design
packet-switching devices beyond the limits of a single PC.
Given the low cost-per switched bit, we used a non-minimal
number of ports and switching elements in the multistage setup,
while still being competitive on the overall cost. Several propos-
als were studied in the literature to implement multistage
switching architectures. However, most exploit uni-directional
transmission, that is, allowing trans-
fer of information from input to out-
put ports and synchronous behavior,
assuming fixed-packet size. Both
assumptions fail in our case, as LC
have physically bi-directional links,
and packets are of variable size.
Moreover, according to the PC-
based software router concept out-
lined in the introduction, we wish to
use only off-the-shelf networking
and relatively cheap PC hardware.

Figure 4 sketches the proposed
architecture, where the front NIC
of load balancers, on the leftmost
part of the figure, act as router I/O
cards. The architecture encompass-
es a first stage of load-balancing
switches (L2-balancers) and a back-
end stage of IP routers (L3-
routers), interconnected by means
of standard Ethernet switches. Both
L2-balancers and L3-routers are
standard PC equipped with several
NIC. Packets arriving at the router
input ports are:

1. Received by an L2-balancer front-NIC, processed by the
balancer CPU to perform simple and fast load balancing
among back-end routers, and then transmitted by the L2-
balancer back-NIC toward the interconnection network.

2. Switched by the interconnection network to the appropriate
L3-router NIC.

3. Received by the L3-router and processed by its CPU to per-
form the required packet operations, then transmitted
toward the interconnection network.

4. Switched by the interconnection network to the proper L2-
balancer back-NIC.

5. Received by the L2-balancer back-NIC, processed by the
balancer CPU to switch the packet toward the appropriate
front-NIC, then transmitted toward the next-hop node.

L2-Balancer Operation
The load balancing function at step 1 requires the balancer to
forward packets from the front-NIC to the back-NIC, possibly
adapting the layer-2 framing formats. Several algorithms can
be implemented, from a simple round-robin scheme to more
complex algorithms that, for example, guarantee in sequence,
routing of packets [12] or balance packets to a particular L3-
router based on quality of service (QoS) parameters. Load
balancing is obtained simply by setting the destination MAC
address of the Ethernet frame, so that the correct L3-router
Ethernet NIC is addressed.1

In this article, for the sake of simplicity, we consider a sim-
ple round-robin scheme and detail a possible implementation
in the Linux kernel that we named DTX — Direct Transmis-
sion. Packets received by the front-NIC are processed directly
by the front-NIC driver code, which after changing the desti-
nation MAC address according to the load-balancing algo-
rithm, directly calls the back-NIC driver transmission function.
All these operations were implemented using Linux kernel
primitives, so that packets bypass the TCP/IP Linux protocol
stack and are queued directly on back-NIC for transmission.
By handling packets at the Ethernet layer, there is no require-
ment to set up IP-routing tables, and packet processing is
minimized. However, advanced packet-manipulation function-
ality is difficult to obtain by this approach.

To overcome the performance bottleneck that a single NIC

n Figure 3. Single-PC software-router saturation forwarding rate
vs. Ethernet frame size.

Ethernet frame size (bytes)

15064
0

1Sa
tu

ra
ti

on
 f

or
w

ar
di

ng
 r

at
e

(G
b/

s)

2

3

4

5

6

7

8

300 450 600 750 900 1050 1200 1350 1500

PCI bandwidth bottleneck
Forwarding rate bottleneck

Linux forwarding rate

n Figure 4. Scheme of the proposed multistage switching architecture.

Back-end

Fr
on

t
N

IC
s

Ba
ck

 N
IC

s

L3
-r

ou
te

r
N

IC
s

Switch

Interconnection
network

L2 balancer

Virtual CP

First stage

L3 router

L3 router

L2 balancer

L2 balancer

BIANCO LAYOUT 7/3/07 11:12 AM Page 18

IEEE Network • July/August 2007 19

solution faces, n back-NIC can be used, in a DTX-n— Direct
Transmission scheme with n back-NIC. In this case, the front-
NIC driver performs two round-robin schedules to balance
packets on the:
• n back-NIC
• L3-router MAC addresses

Finally, considering operations involved at step 5, packets
received by L2-balancer back-NIC must be switched according
to the destination MAC address to the corresponding front-
NIC. The back-NIC driver has a static forwarding table, storing
next-hop MAC addresses of network devices connected to the
front-NIC. When a packet is received by the back-NIC driver,
a look-up in the forwarding table is performed to call the cor-
rect front-NIC transmission function, therefore causing a
direct transmission of the (unmodified) frame toward the next
hop. An additional entry is used to deal with broadcast/multi-
cast messages, to correctly copy them to all front-NIC.

Interconnection-Network Operations
Operations involved in steps 2 and 4 are implemented by
commercial Ethernet switches, according to the backward
learning algorithm and the standard switching behavior.
Indeed, the load-balancing among L3-routers is achieved by
addressing the corresponding L3-router input-NIC MAC
address. Therefore, there is no need to change the normal
operation of Ethernet switches. The advantage of using stan-
dard Ethernet switches is the reduced costs of these devices,
roughly less than $10 per gigabit port.

L3-Router Operations
Operations involved in step 3 are implemented by L3-routers.
As standard IP-routing and packet-manipulation operations
are used, no changes are required (compared to the standard
feature set a single-box router implements). All L3-routers
must be correctly configured: IP-routing tables, firewalling,
ACL rules, and so on, must be correctly set up.

In summary, both the interconnection architecture and the
L3-router stages require only standard functionality; L2-bal-
ancers require some minor modifications. Although we propose
software implementations using the Linux kernel, we point out
that both the load balancing and the switching capabilities that
an L2-balancer requires can be implemented in hardware —
thus providing better performance — by following an approach
similar to the one described in [13]. Indeed, the availability of

powerful programmable logic devices permits the extension of
the open-software paradigm into the hardware domain. The
logic circuitry developed for the field-programmable gate arrays
(FPGA) could be made public, reused, and improved by the
research community. This open-hardware approach would
enable the low-cost implementation of performance-critical
functional blocks in hardware. In our labs, we currently are
developing an FPGA-based version of the L2-balancer.

Performance Results
We implemented the DTX and DTX-n L2-balancers in a Linux
kernel version 2.6.12.We then set up a test bed involving PC with
the same hardware configuration as the one used as a baseline
reference. An unmanaged 3Com OfficeConnect gigabit switch
equipped with eight ports was used to build the interconnection
network. In the following section we present performance mea-
surements obtained in the resulting test bed, considering both
minimum- and maximum-size Ethernet frame scenarios.

L2-balancer Performance
We first tested the performance of a single L2-balancer by
loading a front-NIC using the commercial router tester and
then directly connecting the back-NIC(s) to the router tester
sink(s). Minimum-size Ethernet frames were considered first.
Figure 5 reports performance results by comparing the DTX-n
solutions versus the number n of back-NIC. The theoretical
maximum of 1488 kp/s (solid line) and the single-router for-
warding limit of 640 kp/s when IP routing is adopted (dotted
line) are reported. The DTX-1 solution shows little improve-
ment compared to the single-router IP forwarding limit, con-
firming that the memory latency is the major system bottleneck.
Increasing the number of back-NIC to three guarantees to
reach 100 percent throughput in terms of packet rate. These
results show that it is possible to achieve line-rate balancing
when considering minimum-size frames with a software imple-
mentation, but at least three back-NIC are required.

Contrasting the maximum throughput a single L2-balancer
offers, we ran a test with flows generating only maximum-size
Ethernet frames on a PC with four front-NIC and four back-
NIC. The PC was able to sustain about 4 Gb/s, which corre-
sponds to the maximum theoretical throughput when the PCI
bus is the bottleneck.

Scaling Performance of the Multistage Router
Performance results of the complete multistage architecture
can easily be predicted. Indeed, performance limitations of
L3-routers are identical to those of a standard single router,
and the Ethernet switches adopted in the interconnection net-
work proved to be capable of sustaining 100 percent through-
put even when fully loaded with minimum size packets. In a
multistage router formed by N1 L2-balancers, equipped with
at least three back-end NIC each and by N2 L3-routers, the
expected performance in kilopackets per second, considering
minimum-size packets is given by:

ρmin = min (N1 × 1488, N2 × 640)

To verify this, we set up multistage architectures with dif-
ferent values of N1 and N2 and validated the predicted results.
For example, in a test bed with two L2-balancers and two L3-
routers, we measured the maximum throughput performance
considering minimum size Ethernet frames, obtaining a value
of 1280 kp/s, which exactly matched the expected results of
doubling the performance of a single-PC router, that is, 2 ×
640 kp/s. Figure 6 shows the ρmin vs. the number of L2-bal-
ancers (in DTX-3 configuration) and L3-routers. Figure 6 also
shows that to reach one Gigabit Ethernet line rate (1488

n Figure 5. L2-balancer saturation forwarding rate vs. number of
DTX-n ports for minimum-size packets.

Number of DTX-n ports
1

0

200

Sa
tu

ra
ti

on
 f

or
w

ar
di

ng
 r

at
e

(k
p/

s)

400

600

800

1000

1200

1400

2 3

Line rate limit
IP forwarding limit
DTX-n

1 In case both front- and back-NIC are Ethernet NIC, a simple re-write
operation of the MAC address is required.

BIANCO LAYOUT 7/3/07 11:12 AM Page 19

IEEE Network • July/August 200720

kp/s), it is sufficient to use a single L2-balancer and three L3-
routers. Similarly, by considering a setup with four L2-bal-
ancers and ten L3-routers, it is possible to route 6 Mp/s, that
is, to reach wire speed.

Considering the maximum packet size scenario, each L2-
balancer and each L3-router is capable of forwarding four
Gigabit Ethernet flows. Therefore, the expected performance
of the multistage router in gigabits per second is given by

ρmax = 4 min(N1, N2),

which shows that the performance of the multistage architec-
ture increases linearly with the number of switching elements.
For example, the same architecture including four L2-bal-
ancers and ten L3-routers guarantees a maximum throughput
of 16 Gb/s.

Control and Management Plane
Implementation Issues
The multistage architecture requires an increase in the total
number of ports and switching elements, leading to higher
cost (but we use low-cost off-the-shelf components) and to
more elements to be controlled and managed. To limit man-
agement costs, the interconnected structure must appear to
other network routers as a single router, which implies that
coordination is required among switching elements. In partic-
ular, signaling protocol messages used in the control plane
must be correctly received and processed. For example, rout-
ing protocol packets must be sent/received only from the
proper NIC; TCP connections should be correctly managed by
a single entity; router management procedures must hide the
details of the internal interconnection to the system/network
administrator; and so on. Therefore, the goal is to define a
single virtual CP architecture, equivalent to a single-router CP
that must be capable of transparently managing, configuring,
and controlling all switching elements.

Several issues must be addressed to obtain this goal. First,
although the considered topology is basically fixed, single PC
must be aware of several pieces of information, so automatic
bootstrap and topology-management procedures are mandato-
ry. Each switching element must be identified through a
unique ID; the number and ID of balancers and the number
and ID of L3 routers must be periodically distributed; the
number of active network interfaces in each switching element
must be declared; and so on. Indeed, this information may
change over time due to possible additions, removals, or fail-
ures of elements. Second, standard routing protocols, such as
Open Shortest Path First Protocol (OSPF), Routing Informa-
tion Protocol (RIP), Border Gateway Protocol (BGP), Inter-
mediate System to Intermediate System Protocol (IS-IS), and

management protocols such as Simple Network Management
Protocol (SNMP) must be supported in a coordinated way, as
they were designed in the context of a centralized solution in
which a single CP is present. Third, routing table computation
and distribution must be addressed, so that all L3-balancers
share the same configuration. Fourth, control and manage-
ment plane resilience issues must be handled, so that in case
of failure of the current virtual CP, a backup virtual CP is
automatically elected. Finally, a decision should be made on
whether to support the control and management planes in
kernel or in the user space. This issue is more low-level than
the previous ones, but it can have important effects in terms
of performance and flexibility.

The design of the logical architecture that supports control
and management planes could be centralized or distributed.
Although the distributed approach is a more elegant solution
and may provide some performance advantages due to the
load distribution effect, we believe that a centralized approach
should be preferred, also taking into account that control and
management processing and bandwidth loads rarely constitute
a bottleneck. Moreover, the coordination cost in the distribut-
ed solution may be fairly large, both in terms of software
development and signaling overhead required to support
coordination. Finally, for some specific cases, a distributed
solution is not viable, because the original design is specifical-
ly tied to a centralized approach. For example, all protocols
that rely on TCP at the transport layer (e.g., BGP or telnet-
like management sessions) can hardly be distributed, since
very complex mechanisms are required to correctly deal with
TCP connection termination. Note that the centralized
approach does not imply running all protocols on a single PC;
rather, different protocols may be run on different PCs, but a
single entity should exist for each supported protocol.

There are issues to consider about security, fault tolerance,
and impact on performance of the control plane. Considering
security issues, additional attention must be devoted to avoid
intruders from injecting forged control packets that can inter-
fere with internal information distribution. Other than this, no
differences apply when comparing the multistage router to a
single router. Considering fault management, the distributed
architecture offers more flexibility compared to the single-PC
architecture, as hot-swapping capability can be implemented as
detailed in the following. Finally, impact of control plane man-
agement on the switching performance must be carefully inves-
tigated. Although the management of each switching element
is equivalent to the management of a single router, the over-
head due to the multistage architecture management may
decrease the performance. However, it should be noted that
the PC processing power is continuously increasing, and multi-
core architectures make parallel processing a cheap and viable
solution for this issue. Given this, we selected a solution in
which the virtual CP is responsible for terminating all control
protocols and for managing all switching elements. To obtain
platform independence, we prefer to resort to already available
control-plane software, such as Quagga and XORP that run in
user space. Indeed, interacting directly with the operating sys-
tem (Linux or BSD) may provide performance advantages, but
it would create a strong dependency on the specific software
architecture; and moreover, it would require modifying the
kernel architecture. The virtual CP is responsible for receiv-
ing/sending all control protocol messages, elaborating the RT,
and managing all L2-balancer and L3-router configuration.

Considering the L2-balancer configuration, a simple mecha-
nism to push the list of MAC addresses used by the DTX-n
algorithm is required. This can be achieved, for example, by
simple messages encapsulated in Ethernet frames that are
broadcast to all L2-balancers. These messages can be inter-

n Figure 6. Router performance for minimum-size packets.

Number of
L3 routers

Number of
DTX-3 L2 balancers

9 10 1
2

3 4
5 6

7 8
9 10

1

6000
5000
4000
3000
2000
1000

0

7000

8765432

kp/s
7000
6000
5000
4000
3000
2000
1000
0

BIANCO LAYOUT 7/3/07 11:12 AM Page 20

IEEE Network • July/August 2007 21

cepted at the driver level, so that the list of available L3-
router MAC addresses can be updated.

Considering the redistribution of the RT to all L3-routers,
instead of distributing the forwarding information base (FIB)
routes computed by the virtual CP to the L3-routers, we opt to
directly distribute the routing information base (RIB)2 obtained
from each protocol and have each back-end PC calculate its own
FIB. One reason is that FIB are operating system (OS)-depen-
dent (being used at the kernel level by the forwarding code), and
hence, they may be incompatible in a scenario where the multi-
ple back-end stages may be running different OS. This approach
also enables support of FIB partitioning in the future so that
each L3-router can be used to route a subset of destinations.

More precisely, on each L3-router, a modified Zebra dae-
mon is running in our setup. A specifically developed addi-
tional Zebra module enables communication among remote
Zebra daemons. These additional modules are logically con-
nected in a star topology in which the virtual CP Zebra dae-
mon is connected directly to all other modules and enabling
the broadcast of the RIB information among all L3-routers.

The management of all PC is obtained through a single
console that corresponds to the virtual CP console. It relays
commands to and collects information from the specific L3-
router module, by explicitly selecting its ID. As such, SNMP
management, configuration files management, and static route
support for multiple PC is transparently performed by the sys-
tem administrator as if a single CP were present.

Finally, to support resilience when restarting routing proto-
col software from a crash, the latest version of the routing
information base should be available after the restart. A hot-
standby mechanism is established to support a backup of the
virtual CP that uses a heartbeat mechanism to detect the
crash of the active virtual CP and to activate the correct
standby module.

Conclusions
Based on off-the-shelf components and open-source software, we
presented performance results of software routers built on PCs.
A simple multistage architecture was designed to overcome the
intrinsic performance limitations of a single software router. By
combining simple layer-2 load-balancing capabilities at the front
stage with an array of layer-3 routers at the back stage, the
resulting architecture is shown to offer very good scalability prop-
erties, for example, enabling the routing of minimum size packets
at line rate of gigabit speeds. Moreover, the multistage architec-
ture permits us to increase router performance and scale the
number of physical interfaces, and opens the way to a more gen-
eral distribution of functionality and automatic fault recovery.

Although additional complexity is required to manage the
multistage architecture, the benefits of adopting off-the-shelf
PC and networking hardware and open-software solutions
enables the building of cheap, large-scale routers that can
compete with commercial solutions in terms of performance.

Our work shows that software routers can play an impor-
tant role in the mid- and high-end performance segment of
the router market.

Acknowledgments
This work was performed in the framework of the Bora-Bora
project funded by the Italian Ministry of University, Educa-
tion, and Research (MIUR) and developed in the high-quality
lab LIPAR at Politecnico di Torino. We wish to thank Robert

Birke and Azeem Khan for many discussions and for their
valuable comments on control and management plane issues.

References
[1] E. Kohler et al., “The Click Modular Router,” ACM Trans. Comp. Sys., vol.

18, no. 3, Aug. 2000, pp. 263–97.
[2] M. Handley, O. Hodson, and E. Kohler, “Xorp: An Open Platform for Net-

work Research,” Proc. 1st Wksp. Hot Topics in Networks, Princeton, NJ, Oct.
28–29, 2002.

[3] GNU, “Quagga,” http://www.quagga.net
[4] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An Engineer-

ing Approach, IEEE Comp. Soc. Press, 1997.
[5] Cisco Systems, “Carrier Routing System,” http://www.cisco.com/application/

pdf/en/us/guest/products/ps5763/c1031/cdccont 0900aecd800f8118.pdf
[6] Juniper Networks, “Routing Matrix,” http://www.juniper.net/solutions/literature/

white papers/200089.pdf
[7] IETF, “Forwarding and Control Element Separation (ForCES),” http://www.

ietf.org/html.charters/forces-charter.html
[8] H. Hagsand, M. Hidell, and P. Sjodin, “Design and Implementation of a Dis-

tributed Router,” Proc. 5th IEEE Int’l. Symp. Sig. Proc. Info. Tech., Athens,
Greece, Dec. 18–21, 2005.

[9] P. Pradhan and C. Tzi-Cker, “Evaluation of a Programmable Cluster-based IP
Router,” Proc. 9th Int’l. Conf. Parallel and Distrib. Sys., Taiwan, P.R. China,
Dec. 17–20, 2002.

[10] E. Oki et al., “Concurrent Round-Robin-based Dispatching Schemes for Clos-Net-
work Switches,” IEEE/ACM Trans. Net., vol. 10, no. 6, 2002, pp. 830–44.

[11] A. Bianco et al., “Click vs. Linux: Two Efficient Open-Source IP Network
Stacks for Software Routers,” Proc. IEEE Wksp. High Perf. Switching and
Routing, Hong Kong, P.R. China, May 12–14, 2005, pp. 18–23.

[12] I. Keslassy and N. McKeown, “Maintaining Packet Order in Two-Stage Switch-
es,” Proc. IEEE INFOCOM, New York, NY, June 23–27, 2002, pp. 1032–42.

[13] A. Bianco et al., “Boosting the Performance of PC-Based Software Routers
with FPGA-Enhanced Network Interface Cards,” Proc. IEEE Wksp. High Perf.
Switching and Routing, Poznan, Poland, June 7–9, 2006.

Biographies
ANDREA BIANCO [M’97] (Andrea.Bianco@polito.it) is an associate professor in the
Electronics Department of Politecnico di Torino, Italy. His current research inter-
ests are in the fields of protocols and architectures of all-optical networks and
switch architectures for high-speed networks. He has co-authored over 100
papers published in international journals and presented at leading international
conferences in the area of telecommunication networks. He was Technical Pro-
gram Co-Chair of High Performance Switching and Routing 2003 and Design of
Reliable Communication Networks 2005. He has been a Technical Program
Committee member of several conferences, including IEEE INFOCOM, IEEE
GLOBECOM, IEEE ICC, HPSR, and Networking.

JORGE M. FINOCHIETTO (Jorge.Finochietto@polito.it) is a post-doctoral researcher
in the Electronics Department of Politecnico di Torino. His research interests are
in the field of switching architectures, scheduling algorithms, and performance
evaluation. Since 2002 he has been involved in several European and Italian
projects related to optical networks and switching architectures.

GIULIO GALANTE (galante@ismb.it) has been with Istituto Superiore Mario Boella,
Torino, since January 2003. His research is mainly focused on the design of
vehicular and mesh networks, the performance evaluation of wireless extensions
to the TCP/IP protocol suite, and switching architectures based on off-the-shelf
hardware and open-source software.

MARCO MELLIA [M’97] (Marco.Mellia@polito.it) is an assistant professor in the
Electronics Department of Politecnico di Torino. His research interests are in the
fields of all-optical networks, traffic measurement and modeling, and QoS rout-
ing algorithms. He has co-authored over 80 papers published in international
journals and presented at leading international conferences, all in the area of
telecommunication networks. He has participated in the program committees of
several conferences including IEEE INFOCOM, IEEE GLOBECOM, and IEEE ICC.

FABIO NERI [M’98] (Fabio.Neri@polito.it) is a full professor in the Electronics
Department of Politecnico di Torino. His research interests are in the fields of
performance evaluation of communication networks, high-speed and all-optical
networks, packet-switching architectures, discrete event simulation, and queuing
theory. He has co-authored over 150 papers published in international journals
and presented at leading international conferences. He leads a research group
on optical networks at Politecnico di Torino and is the coordinator of the FP6
Network of Excellence e-Photon/ONe on optical networks that involved 40 Euro-
pean institutions. He has been a Technical Program Committee member of sever-
al conferences, including IEEE INFOCOM and IEEE GLOBECOM. He was
general co-chair of the 2001 IEEE Local and Metropolitan Area Networks Work-
shop, and of the 2002 and 2007 IFIP Working Conference on Optical Network
Design and Modeling. He serves on the Editorial Board of IEEE/ACM Transac-
tions on Networking and is Co-Editor-in-Chief of Elsevier’s Optical Switching and
Networking Journal.

2 RIB holds all routes from each protocol source. FIB holds the active
(best) routes and is used to forward traffic based on an LPM algorithm.

BIANCO LAYOUT 7/3/07 11:12 AM Page 21

