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Multistatic Human Micro-Doppler Classification of 

Armed/Unarmed Personnel 

Francesco Fioranelli, Matthew Ritchie, Hugh Griffiths 

Electronic & Electrical Engineering, University College London 

Abstract 

Classification of different human activities using multistatic micro-Doppler data and features 

is considered in this paper, focusing on the distinction between unarmed and potentially 

armed personnel. A database of real radar data with more than 550 recordings from 7 

different human subjects has been collected in a series of experiments in the field with a 

multistatic radar system. Four key features were extracted from the micro-Doppler signature 

after Short Time Fourier Transform analysis. The resulting feature vectors were then used as 

individual, pairs, triplets, and all together before inputting to different types of classifiers 

based on the discriminant analysis method. The performance of different classifiers and 

different feature combinations is discussed aiming at identifying the most appropriate 

features for the unarmed vs armed personnel classification, as well as the benefit of 

combining multistatic data rather than using monostatic data only.  

 

1- Introduction  

This paper presents the analysis of radar micro-Doppler signatures from a multistatic radar 

system. The data was generated using NetRAD [1] which is a three-node multistatic radar 

system that has been developed over the last decade at University College London. The 

system has been adapted since 2007 to a higher power wireless configuration to increase the 

flexibility of the measurement possibilities [2], and has provided interesting and novel results 

in the field of bistatic sea clutter characterisation and analysis [3]. 

Radar Micro-Doppler is the phenomenon of the observed micro-motions on top of the bulk 

main Doppler component of a target’s motion. It has been the subject of research over a 

number of years focusing on the additional information that can be extracted from this signal. 

Such information can then be exploited in a variety of applications for security, law 

enforcement, urban warfare, and search and rescue, where the detection, tracking, and 

classification of many human targets moving in a cluttered environment is of paramount 

importance.  
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1.1 – Prior Literature 

Chen has authored some key publications in the field of human micro-Doppler analysis [4-6]. 

These studied simulated and real data results from human movement as measured by a radar 

system. The conclusions of this work state that micro-Doppler signals provide useful 

information about objects and their motion, and suggest that this information can be exploited 

for classification purposes. Micro-Doppler signatures have been previously studied using 

Short Time Fourier Transform (STFT) followed by feature extraction in [7], showing 

successful classification of different types of movements with data from a monostatic radar. 

Tahmoush has shown how micro-Doppler signatures can be used to analyse human gait 

movements along different trajectories [8], and the use of polarimetric information to 

distinguish between armed and unarmed personnel [9], as well as the different signatures that 

humans and animals such as horses can generate [10], all completed with monostatic radar 

systems.  

The analysis of micro-Doppler signatures in case of free and confined arm swinging was the 

core contributions seen within [11-13], where limited arm swinging or no arm swinging at all 

can be an indication of a person carrying objects or in hostile situations (hostages). This 

analysis exploited positive and negative micro-Doppler caused by the arms and the 

periodicity of their motion for successful classification based on different techniques (for 

instance hierarchical image classification architecture for visual pattern recognition), also 

considering different aspect angles between 0°-30°. The importance of the micro-Doppler 

contribution of the arms for classification purposes suggested by these papers has been taken 

into consideration in this work when extracting suitable features, but further analysis has been 

performed to exploit Radar Cross Section (RCS) related features and above all the use of 

multistatic operation to improve classification performance. The use of two bistatic sensors 

with reference to human activity classification has been reported in [14], with one receiver 

co-located with the transmitter and another physically separated. The successful identification 

of the motion direction for a series of human movements such as swinging arms or picking up 

an object is achieved with this system. In our work we investigate and try to quantify how the 

information collected using a multistatic radar with 3 receivers can improve classification 

performance. As pointed out in [14], it is expected that a bistatic/multistatic system allows the 

problem of micro-Doppler signature not visible to a monostatic sensor at particular aspect 

angles to be overcome. Other approaches to analyse micro-Doppler signatures use alternative 

time-frequency techniques such as Pseudo Wigner-Ville Distribution and B-Distribution [15], 
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principal component and independent component analysis [16], empirical mode 

decomposition [17] and the Hilbert-Huang transform [18], which may be more suitable to 

process non stationary signals. Research into the micro-Doppler domain has also been 

completed with an acoustic radar by Balleri [19]. This work not only qualitatively 

demonstrated the differences in the micro-Doppler signatures from different types of motion, 

but also quantified the motion using feature extraction techniques. These features were then 

used in classifiers algorithms in order to identify individuals from their unique micro-Doppler 

signatures. Prior research performed with the NetRAD system investigating micro-Doppler 

signatures was published by Smith [20]. This work showed both simulated and real micro-

Doppler data of moving human targets, in particular for running movements along one 

direction, and then walking movement towards different directions. The research presented 

within this paper aims to build on these results and expand to the classification of different 

motion types using multiple features extracted by the micro-Doppler signatures from a 

multistatic radar, focusing on distinguishing between unarmed and potentially armed 

personnel. 

This paper is organized as follows. Section 2 briefly describes the NetRAD radar system and 

the experimental setup where the data were collected. Section 3 presents the data analysis, 

focusing on the selection and extraction of suitable features from the micro-Doppler 

signatures, and on the subsequent classification based on the discriminant analysis method. 

The performance of different classifier types for different feature combinations and the 

benefits of fusing multistatic data rather than using just monostatic data are discussed. 

Section 4 finally concludes the paper.  

2- Radar system and experimental setup 

The radar used for the experiments is a 2.4 GHz pulsed coherent three node netted radar 

system. It is capable of transmitting and receiving from all nodes, although for this work a 

single master node (node 3) was used to both transmit and receive, with the additional nodes 

(nodes 1 and 2) used only as receivers. 

The experimental geometry used was a straight line configuration for the 3 nodes with a 

separation of 40 m between the nodes, as shown in Figure 1. The transmitter node was 

located at the end of this line to enable measurements with two simultaneous bistatic angles, 

rather than two identical bistatic angles if located in the centre. The bistatic angles are 

approximately 30° for the node 3 and node 1 combination, and approximately 60° for the 
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node 3 and node 2 combination. The experiments were conducted in a large open football 

field at the University College London sports ground, to the north of London. 

 

Figure 1 Model of the experimental geometry 

The radar parameters that were selected for these experiments were a linear FM chirp pulse 

length of 0.6 µs, bandwidth of 45 MHz, PRF 5 kHz and each recording generated 25,000 

pulses covering 5 seconds in duration. The transmitted power was 200 mW and the gain of 

the antennas approximately 24 dBi, with 10° beamwidth in both azimuth and elevation 

angles. These parameters allow for the system to produce a sufficiently high PRF such that all 

human micro Doppler is contained within the unambiguous Doppler region. The length of the 

recording was set to capture a number of periods of the average walking gait for a human. As 

seen in [6], this is shown to be approximately 0.6 seconds, hence with a 5 seconds capture the 

data should include approximately 8 periods of motion. 

3- Data analysis 

Figure 2 shows Range Time Intensity (RTI) plots for one of the recordings, with data taken 

from all the three nodes. The target signature is located at the expected range as from the 

geometry in Fig. 1, namely at approximately 156 m for nodes 3 and 2, and at 145 m for node 

1. The average SNR for the human target over the 5 second recording was 32 dB, 33.3 dB 

and 33.4 dB for nodes 1, 2 and 3 respectively. This high SNR meant that the contribution of 

human appendages, such as arms and legs, were clearly visible, making the micro-Doppler 

signatures from them easier to extract from the data. The direct interference from the 

60° 

30° 
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transmitter node is present within the received signal at a range of 40 m for node 1 and at 80 

m for node 2, but it not shown in Figure 2. 

In this work we focus on walking movements performed on the spot, i.e. the person is facing 

node 1 and moving as if walking, swinging arms and raising and lowering legs and knees, but 

remaining in the same spatial location, without moving towards any direction. This removes 

the main Doppler shift contribution from the micro-Doppler signatures. This also ensures the 

target remains in the same range bin for the whole duration of the recording, as seen in Figure 

2, thus avoiding a decrease of signal-to-noise ratio due to the motion of the target outside the 

main beams of the receiving and transmitting antennas. 

The main aim of the experiment was to collect micro-Doppler data of separate persons 

performing different movements, focusing in particular on people walking empty-handed and 

people walking while carrying with both hands a metallic pole which represents a simulated 

rifle. The metallic pole was approximate 1 m in length and the manner in which it was held 

during the experiments was similar to the manner in which a rifle would be held. Data from 7 

separate subjects and more than 650 recordings were gathered by the three nodes. The data 

were then analysed to extract features to try and differentiate the case of unarmed and armed 

personnel through the use of a classifier. There is indeed interest in using micro-Doppler data 

to identify people carrying objects with their hands, which could be an indication of a 

potentially hostile activity, or people with reduced movements of their limbs, which could 

indicate the presence of hostages or injured people [13].  

In this work the micro-Doppler data were examined via time-frequency analysis using STFT, 

followed by the extraction of numerical parameters or features for classification purposes. 

This is a common approach in the literature for micro-Doppler analysis [7, 19, 21]. The 

STFTs were calculated using a 0.3 s Hamming window, with the duration of the window 

empirically chosen to obtain a clean contribution of the limbs in the micro-Doppler 

signatures. Each micro-Doppler signature was normalized to a peak of 0 dB with a dynamic 

range of 40 dB, in order to remove possible noise and clutter artefacts but still preserve the 

details of the contribution due to the movement of the person. The theory of human micro-

Doppler signatures is well known [22-23], hence it is not further discussed here for 

conciseness. 
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Figure 2 Range Time Interval (RTI) plots of human walking on the spot from Nodes 1, 2 and 3 

 

It can intuitively be assumed that the main difference between walking empty-handed and 

walking while carrying objects is the degree of swinging of the arms, which is reduced in the 

latter case because of the weight and size of the object. The impact of the swinging of arms 

can be empirically seen in Figure 3, which compares the micro-Doppler signatures of a 

person walking on the spot normally and when keeping arms stationary beside the torso. 

When the person tries to keep the arms stationary and does not swing them, the micro-

Doppler signature appears more compact and close to the main component at 0 Hz, without 

the peaks at about ±30 Hz which can be seen for normal walking. Such peaks are therefore 

related to the free swinging movements of the arms. 

A similar result can be seen in Figure 4, where the micro-Doppler signatures for normal walk 

and walking while holding the metallic pole are compared, showing data from all the three 

radar nodes used in these two experiments. As expected, when the person is carrying the 

metallic pole the micro-Doppler signature is more compact and regular as the movement is 

more regimented and the arms are less free to swing around. 
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Figure 3 Micro-Doppler signature of a person walking on the spot (a), and walking on the spot without moving arms (b) – 
Data received at node 3 

 

Figure 4 Micro-Doppler signature of a person walking on the spot with data received at node 1 (a), node 2 (b), and node 3 
(c), and signature of a person walking on the spot while carrying a metal pole with both hands with data received at node 1 

(d), node 2 (e), and node 3 (f) 

Figure 5 shows a further example where the person is walking empty-handed for the first few 

seconds and then picks up the metallic pole and walks holding it. In this particular case the 

recording was longer (10 seconds) and data from the monostatic and one of the bistatic nodes 

are shown. The difference between the two movements can be clearly seen in the micro-

Doppler signatures, with a more pronounced swinging of the limbs in the first seconds 

corresponding to the empty-handed walk, followed the absence of swinging at 4-5 seconds 

when the person bends and picks up the pole, and finally a limited swinging of the arms 
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corresponding to the walk carrying the pole with both hands. This result clearly captures 

these changes in one continual recording, to show these qualitative differences as clearly as 

possible. 

 

Figure 5 Micro-Doppler signature of a person walking on the spot empty-handed, picking up a metallic pole, and walking 
with the pole in both hands. Data from the monostatic (a) and one of the bistatic nodes (b) 

 

The following section of the research consisted of quantitative extraction of numerical 

parameters or features which can be used to differential between the differences in the 

motions observed by eye in the micro-Doppler signatures shown within Figure 4. From the 

empirical observation of the spectrograms, four features of interest have been selected as the 

most appropriate to identify different types of motion, as they are related to the kinetics of the 

movements and to the presence of objects carried by the subject under observation. They 

were extracted as follows.      

 Bandwidth: Defined as the total range of frequencies between the highest and the 

lowest Doppler frequency recorded in the micro-Doppler signature, i.e. at the positive 

and negative peaks due to the swinging of limbs. This parameter indicates the overall 

frequency width of the micro-Doppler signature and can give an indication on how 

free to swing the limbs are. This can be related to the presence of objects carried by 

the person, as these will limit the swinging movements of the limbs as observed 

empirically in Figures 4-5. 

 Mean Period: Defined as the average of the difference in time between each positive 

peak in the micro-Doppler signature due to the periodicity of the swinging of the 

limbs. This parameter is related to the speed at which the limbs move during the 
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walking gait, and may provide information on possible objects carried by the person, 

as these will slow down the movement of the limbs. 

 Doppler Offset: Defined as the difference between the highest and the lowest 

Doppler frequency recorded in the micro-Doppler signature. This parameter would be 

exactly 0 if the forward and backward movement of the limbs is perfectly symmetric, 

hence it can give an indication on the asymmetry of such movement, which may be 

due to the presence of an object carried by the person. 

 Radar Cross Section (RCS) Ratio between limbs and body: Defined as the ratio in 

dB between the magnitude of the micro-Doppler signature at the peaks related to the 

swinging arms and at the main Doppler line related to the body. Changes of this ratio 

can provide an indication of an object carried by the person, as the RCS of the limbs 

plus object would be different from the RCS of limbs only.   

A sample of each feature has been extracted from 2.5 seconds of data which correspond to 

half a recording, hence each 5 second recording contributes to 2 samples for each feature 

extracted. This has generated a database of 594 samples as whole, considering data collected 

from all the three radar nodes and for both empty-handed walking and walking with rifle 

classes. Each feature vector is therefore made of 594 samples extracted from data measured 

at all the three nodes, or only 198 if considering only data gathered at the monostatic node 3. 

These features vectors can be input as individual, pairs (2 vectors of 594 or 198 samples 

each), triplets (3 vectors) or 4 vectors altogether to a classifier, where each row represents a 

sample belonging to the unarmed or armed class. The dimensionality of the problem is 

therefore how many features are necessary to provide good classification performance for the 

example armed vs unarmed scenario, which features and which combinations are the most 

suitable, what classifier provides best results, as well as investigating the impact of using only 

monostatic data or the whole dataset of multistatic data. The focus of this work is on which 

features are most suitable and on the comparison of monostatic vs. multistatic classifier 

performance. 

Initially the extracted features were used in pairs, assuming that an individual feature did not 

provide good enough classification performance and combinations of more features increased 

the complexity of the classifier without a significant improvement of the performance. In 

addition by evaluating the classifier performance using pairs of features it was possible to 

identify which features provide the best performance. 
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Using the four features described above in pairs, six combinations of features are possible, 

namely bandwidth vs mean period, bandwidth vs offset, bandwidth vs RCS ratio, mean 

period vs offset, mean period vs RCS ratio, and offset vs RCS ratio. An empirical 

representation of the separation between the elements of the two classes can be given by 2D 

scatter plots as shown in Figure 6, where the samples in red refer to the walking with rifle 

classes and those in blue to the empty-handed walk classes. This includes data generated 

from all the radar nodes, not just monostatic results. The different shapes of the markers used 

in these sub-figures refer to the different subjects taking part to the experiment. This allows 

you to see how the features change for different people even when they are performing the 

same movement, although the focus of this work is not distinguishing between different 

subjects, rather distinguishing the rifle from the empty-handed case. Figure 6 demonstrates 

that some combinations provide a greater separation in the feature space of the two selected 

classes, for instance subfigures Figure 6a and Figure 6e have a greater separation than Figure 

6f, and therefore they are expected to improve the performance of classifier when input. 

Analysing further Figure 6a and Figure 6b, the feature bandwidth is consistently lower for 

most of the elements of the “rifle” class, approximately not above 60 Hz, and this may relate 

to the smaller swinging movements of the limbs when the person is carrying the metallic 

pole. Also, the period appears to be higher for the “rifle” class, probably because the 

movement of the limbs is slower because of the weight of the carried object, and the offset 

appears to be more concentrated around 0 Hz for the “rifle” cases, as the movement of the 

limbs is more regimented and controlled compared with the empty-handed walk situation. 

After the visual inspection of the 2D scatter plots, a numerical evaluation of the classification 

performance for different types of classifiers is given in the following part of this work. The 

classifier used in this work is based on the discriminant analysis method, for which a rigorous 

mathematical description is provided in the literature [24-25]. Linear Discriminant Analysis 

(LDA) provides an optimal solution for linearly separable problem [26]. The method assumes 

that each different class generates samples represented by a different multivariate Gaussian 

distribution, and the parameters of these distributions, namely mean and covariance matrix, 

can be estimated by the classifier during the initial training phase. Equations 1-3 show 

respectively the density function of the Gaussian distribution and the aforementioned 

parameters: 

 ( | )   √  |  |    (   (    )     (    ))                    (1) 
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      ∑                                                            (2) 

        ∑ (     )(     )                                              (3) 

where µk is the mean for class k, Σk the covariance matrix, and |Σk | is the determinant of the 

matrix. Different types of classifiers perform different estimations of these parameters, for 

instance a linear classifier estimates one covariance matrix for all the classes assuming that 

only the mean values change between different classes, whereas a quadratic classifier 

estimates one covariance matrix for each class. These methods have both a diagonal variant 

where the diagonal of the covariance matrices is used. After the training phase the classifier 

divides the samples space into regions where an expected classification cost is associated to 

each predicted classification, and the aim is minimizing such cost as in equation (4):  ̂               ∑  ̂( | ) ( | )                                               (4) 

where  ̂ is the predicted classification, K is the total number of classes (2 in this work),  ̂( | ) is the posterior probability and  ( | )is the cost of mis-classifying a sample as y 

when it is actually k. 

 

Figure 6 2D plots of samples extracted from walking and walking with rifle data for different combinations of features: (a) 
Bandwidth vs period, (b) Bandwidth vs Doppler offset (c) Bandwidth vs RCS Ratio (d) Period vs Doppler offset (e) Period 

vs RCS Ratio (f) Doppler offset vs RCS Ratio  
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In the following work we have used four variants of discriminant analysis, namely linear, 

diagonal-linear, quadratic, and diagonal-quadratic, focusing on identifying the combinations 

of features providing the best classification performance for each variant, and possibly those 

which provide good performance regardless of the classifier type. Figure 67 shows examples 

of outputs from a linear and quadratic classifier for two combinations of features, namely 

bandwidth vs period and bandwidth vs offset. All three nodes data were used as an input to 

these different classifiers. The elements of the two classes can be distinguished by colours 

(red for rifle, blue for empty-handed walk), as well as the two areas separated by the magenta 

line estimated by the classifier. Any further samples analysed by the classifier will be 

assigned to one of the two areas and labelled as “rifle” or “normal walk”. The quadratic 

classifier offers further degrees of freedom in the estimation of the separating line, but its 

effectiveness in comparison with the linear classifier will depend on how the samples of the 

two classes are separated in the feature space. 

 

Figure 7 Examples of classifier plots for walking and walking with rifle data: (a) Linear classifier using bandwidth vs period 
(b) Bandwidth vs Doppler offset (c) Quadratic classifier using bandwidth vs period (d) Bandwidth vs Doppler offset 

Depending on how the samples are distributed in the feature space, a false positive consisting 

of a normal walk mistaken for a rifle walk event could be more or less likely to happen than a 

false negative when a rifle walk event is mistaken for a normal walk event, and one could 

argue as to which case is more detrimental to the overall performance. In the following 
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analysis of the classification performance there is no distinction between the two types of 

misclassification errors as both are considered equally important to avoid. The overall error 

for a given classifier and combination of features is calculated as the percentage of total 

misclassification events (sum of “empty-handed” mistaken for “rifle” events and “rifle” 

mistaken for “empty-handed” events) over the total number of samples.  

Table 1 summarizes the classification results showing this error for different types of 

classifiers based on discriminant analysis and different combinations of features. The data 

used to generate Table 1 was taken from all three nodes and therefore includes monostatic 

and passive bistatic results. The classifier types are in order (1) Linear, (2) Diagonal-linear, 

(3) Quadratic, and (4) Diagonal-quadratic. The types (2) and (4), use a diagonal covariance 

matrix estimate as used in classic Naïve Bayesian classifiers. The combinations of features 

are I) bandwidth vs mean period, II) bandwidth vs offset, III) bandwidth vs RCS ratio, IV) 

mean period vs offset, V) mean period vs RCS ratio, and VI) offset vs RCS ratio. The 

training set for the classifiers presented in the following tables amounts to a randomly 

selected 10% subset of the recorded data samples and includes at least one sample from each 

different individual. The remaining 90% is used to assess the classification performance. This 

assessment is repeated 15 times with different training data to generalize the performance of 

the classifier, and the average of the classification error obtained in these repetitions is 

reported in the following tables.    

The first and fifth combinations present the lowest classification error for all types of 

classifier analysed, with the percentage of successful classification around 90%, using only 

10% training data. The performance is still good for feature combinations II to IV, with the 

classification error not higher than 24%, whereas the performance degrades for combination 

number VI (Offset vs. RCS ratio). This might have been expected looking at the 2D scatter 

plots in Figure 6f, where the samples of the two classes are almost completely overlapped for 

the feature combination number VI. 

Table 1 – Classification error percentage for four types of classifier and six pairs of features when distinguishing empty-
handed walk and walk with rifle. All three multistatic node data input. 

 I II III IV V VI 

Classifier 1 10.15 21.05 20.38 17.42 11.68 34.51 

Classifier 2 9.85 22.64 20.81 18.00 12.10 33.31 

Classifier 3 10.39 24.00 19.79 18.81 10.97 29.64 

Classifier 4 10.16 23.37 19.91 18.66 11.01 30.79 
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Another aspect to investigate is the benefit of collecting micro-Doppler signatures with the 

multistatic system NetRAD used in this work, in comparison with a conventional monostatic 

radar. A multistatic radar allows to gather the target micro-Doppler data from different aspect 

angles and this may therefore improve the classification performance, as in some 

circumstances the target may be not completely visible or the features not easy to extract for a 

particular node, whereas the other nodes can still provide information. The analysis of 

classification performance is repeated using only data from the monostatic node, rather than 

all nodes data used in Table 1. In this case the classifier is provided with one third of the 

whole dataset (hence feature vectors made of 198 samples rather than 594 samples), with 

samples extracted only from data recorded at node 3 (monostatic). The results are 

summarized in Table 2 with overall classification error. 

For the feature combinations I to III, the use of only monostatic data increases the overall 

error and shows the advantage of using a multistatic geometry. This happens only partially 

for combination number V, for which the error does not increase for the linear classifier, 

whereas for combination number IV the error seems to decrease consistently when using only 

monostatic data. An actual system could therefore exploit those feature combinations 

providing reduced classification error when multistatic data are available (for instance feature 

combination  I), and at the same time be robust towards failures of one or more multistatic 

passive nodes by using those feature combinations which provides good classification 

performance even with monostatic data only, such as feature combination V. 

Table 2 - Classification error percentage for four types of classifier and six pairs of features when distinguishing empty-
handed walk and walk with rifle, using only monostatic data. 

 I II III IV V VI 

Classifier 1 12.38 24.15 26.47 16.47 11.26 39.05 

Classifier 2 11.12 29.44 24.15 15.99 13.70 35.24 

Classifier 3 13.05 32.16 27.59 17.39 11.96 36.81 

Classifier 4 12.89 29.19 22.77 16.47 13.84 33.22 

 

The following step of the analysis was checking the classification performance with triplets 

of feature vectors rather than pairs as input to the classifier. The possibility of combining 

information from more features may indeed improve the classification, but the actual 

performance depends on how the samples belonging to the different classes are spread in the 

3D space generated by three features. Given the four features considered in this work, there 

are four combinations of three features which can be examined, namely I) bandwidth, period 
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and offset, II) bandwidth, period and RCS ratio, III) bandwidth, offset and RCS ratio, and IV) 

period, offset and RCS ratio. Table 3 shows the overall error for the different triplets of 

features and the different types of discriminant analysis classifier. Combination number II 

provides the lowest classification error, with percentage of success higher than 90%, but very 

good results and low error (below 13%) are also provided by combinations I and IV. The 

classification error tends to decrease in comparison with the results shown in Table 1 where 

pairs of features were combined, so there is an advantage in combining more features to 

perform the classification, but this needs to be assessed with the increased complexity and 

computational burden of the classifier. Again it is interesting to test how the classification 

results differ if only data from the monostatic node are used, as if in a conventional radar 

system. Table 4 shows the results for this test. In most cases the classification error slightly 

increases when using only monostatic data, but the performance remains fairly good with 

percentage of success higher than 87% for combinations number I, II, and IV for linear and 

diagonal-linear classifiers. Feature combination II still provides the best performance. The 

difference in classification error between monostatic only data vs multistatic data from three 

nodes has been evaluated for the four triplets of features and averaged across the four types of 

classifier. This average difference is 2.5%, 1.7%, 5.8% and 0.6% for combinations I to IV 

respectively. The greatest improvements were found in feature combination III but despite 

this it still has the highest error rate when using monostatic or multistatic data. These results 

confirm the robustness of the proposed feature-based classification approach for a multistatic 

radar system even in case of failure of one or more passive nodes, as well as the advantage in 

exploiting data from different nodes if available.  

Table 3 - Classification error percentage for four types of classifier and four triplets of features when distinguishing empty-
handed walk and walk with rifle. All three multistatic node data input. 

 I II III IV 

Classifier 1 10.57 9.75 21.40 11.94 

Classifier 2 9.42 9.46 22.11 13.74 

Classifier 3 11.36 9.17 22.14 11.57 

Classifier 4 11.16 9.08 21.74 11.47 

 

Table 4 - Classification error percentage for four types of classifier and four triplets of features when distinguishing empty-
handed walk and walk with rifle, using only monostatic data 

 I II III IV 

Classifier 1 12.18 11.32 27.59 11.79 

Classifier 2 12.52 9.41 24.62 13.00 

Classifier 3 15.38 11.82 29.92 14.43 

Classifier 4 12.49 11.54 28.57 11.93 
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Finally the classification error when all four feature vectors are used as inputs to the classifier 

have been calculated when using both multistatic data and monostatic data only. The error for 

the multistatic data is 9.47%, 9.60%, 10.71%, and 9.72%, respectively for classifier type 1 to 

4. The error for the monostatic data only is 10.53%, 12.18%, 13.05%, and 12.16%. The use 

of multistatic data consistently improve the classification error for all types of classifier 

considered.  

Using 4 feature vectors, the classification error has not significantly decreased in comparison 

with using the best triplet of feature vectors in tables 3-4 (namely triplet II), and even in 

comparison with the best pair of feature vectors in tables 1-2 (namely pair I). Figure 8 shows 

the classification accuracy for all the possible combinations of feature vectors when used as 

individual (4 combinations), pairs (6 combinations), triplets (3 combinations), or altogether (1 

combination). In this case classifier 2 (diagonal-linear) has been used as it has provided the 

best results in the previous analysis. This shows that the classification accuracy can be very 

similar when using pairs of feature vectors in comparison with triplets or all feature vectors, 

provided that the most suitable features are extracted and exploited, in this case bandwidth 

and mean period (pair I). Hence good classification can be achieved using only two feature 

vectors reducing the complexity of the classifier and the computational time to extract feature 

vectors which may be not necessary. 

 

Figure 8 Classification accuracy for all possible combinations of feature vectors as input to the diagonal-linear classifier 

One of the main challenges in classification based on micro-Doppler is the dependence on the 

aspect angle, as the torso may shield the arm movements and reduce their contribution to the 

overall micro-Doppler signature. Additional data have been collected for a preliminary 

investigation of the proposed features and classification performance for different aspect 

angles. In this case the subject was walking on the spot and facing different directions for 
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each recording, namely facing node 3, then node 1, then node 2, and then facing opposite 

direction to node 1 (see Figure 1). This allows an evaluation of micro-Doppler signatures 

with differences of aspect angles up to 60° (for instance when the person is facing node 3 and 

data recorded at node 2) and with the person showing his back to node 1.  

Samples of the previously described features have been extracted, with an equal number of 

samples for each facing direction, and these samples have been used as inputs to a separate 

classifier for each aspect angle. In particular 20 samples for each direction have been 

generated at each of the three nodes, so that each feature vector input to the classifier is made 

of 60 samples. The single classifier used is the diagonal-linear, as in Figure 8, and all four 

feature vectors have been used as inputs. The error percentages obtained are as follows: 4.7% 

for direction 1 (facing node 3), 3.8% for direction 2 (facing node 1), 6.3% for direction 3 

(facing node 2), and 9.3% for direction 4 (facing opposite to node 1). Better classification 

performances are obtained when the person is facing at least one of the nodes, with the error 

slightly increasing when the person is facing the bistatic node (node 2) that is furthest away 

from the transmitter. The maximum error occurs when the person is facing the opposite 

direction to node 1, but the performance of the classifier using the proposed features is still 

reasonably robust. These preliminary results show that there is classification dependence on 

the aspect angle, as expected, with error rates increasing when the person is facing away from 

the radar nodes. Further work will be carried out to investigate in detail such dependence and 

identify the most suitable deployment strategy for a multistatic radar system to achieve best 

classification performance. 

4- Conclusions 

In this paper we have presented the analysis of human micro-Doppler data generated by the 

multistatic radar system NetRAD, focusing on the classification of unarmed and potentially 

armed personnel. The analysis shows that suitable features can be extracted from the micro-

Doppler signatures after time-frequency processing through STFT, and that these features can 

be fed to classifiers based on discriminant analysis. Classification performances with 

percentage of success up to approximately 90%, using a training set of only 10%, have been 

achieved for classifiers combining pairs of features. Feature vectors have been used as input 

to classifiers as individual, pairs, triplets, or altogether. The impact on the classification 

performance has been evaluated, showing that good performance can be achieved even with 

pairs of feature vectors, provided that the most suitable features are exploited (in this case 
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bandwidth and mean period). The effect of using only data from the monostatic node 

compared with the full multistatic database has been investigated. Quantifiable increases in 

classification performance have been demonstrated when using a 3 node multistatic system in 

comparison to a single monostatic radar. It has been shown that some feature combinations 

can provide reduced classification errors when combining data from multistatic aspect angles, 

on the other side other combinations are robust in providing low errors even with just 

monostatic data. This would allow a classifier to perform well in actual in-field applications 

for both monostatic and multistatic systems.  

It is believed that the suitability of the features and hence the multistatic vs. monostatic 

classifier performance will be very geometry specific and dependent on the aspect angle of 

the motion. Although the proposed feature provided good performance for a preliminary test 

using data collected with different aspect angles, further experimentation are needed to 

quantify performance based on different geometries of the multistatic sensor, different 

bistatic angles, and different motion directions. In addition to this, future analysis will be 

performed to investigate the effectiveness of the proposed classification method using data 

where the subject is actually walking, producing a net Doppler motion and more realistic leg 

micro-Doppler signature compared with walking on the spot. A better knowledge of these 

parameters would further the practical recommendations when deploying multistatic systems 

for micro-Doppler classification. The work can be also extended by applying different 

classification methods (naïve-Bayes, nearest neighbour, support vector machine) to the data 

already available and comparing the results. The database could be also extended including 

further measurements with more subjects taking part.  
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