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Abstract— Multistatic active sonar has become an important
surveillance concept. To fully exploit its benefits in a real-time and
realistic scenario, a multihypotheses tracking (MHT) algorithm
is proposed which as a extension from standard approaches
allows high precision state estimation, treatment of multiple
different types of sonar signals and allows adaptation to the
highly instationary ocean environment. The algorithm is applied
to two data sets gathered at sea trials conducted by NURC,
and its performance is compared to the performance of the
standard MHT approaches. In particular, the proposed treatment
of the Doppler information, exploiting the Doppler notch of
the reverberation, similarly to applications in moving target
indication for ground surveillance, has led to a large performance
gain.
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Triangulation, Clutter Notch.

I. INTRODUCTION

Multistatic sonar allows a simultaneous look at the target,
from several aspects. Because a submarine, which is the target
of interest here, is generally designed to be stealth for a mono-
static source receiver sonar system, this results in a multistatic
sonar system in additional detection opportunities compared to
monostatic systems. To exploit this benefit, the association of
data gathered at different source receiver pairs is necessary.
From a Bayesian perspective, the fusion has to find the “best”
combination out of all possible detections from all source-
receiver pairs in a batch of a series of measurements. However,
for practical solutions the application of the multihypothesis
tracking (MHT) scheme has been shown to be sufficient and to
solve the data association problem implicitly [9], i.e. following
the sequential nature of MHT and updating the underlying
tree structure with every new data coming in. When this
scheme is applied to real data, however, it becomes obvious
that extensions to simple gating and simple approximations
of the nonlinear measurement model are necessary. Whilst
geometric features of the multistatic measurement can be
described deterministically, sonar measurements at sea are
stochastic by nature. We propose to extend the standard MHT
by two deterministic features:

(i) Incorporation of correct timing that allows the target state

estimation at the time when the sound arrives at the target
(not at the time when it arrives at a specific receiver, and
also not at the time when the active sound signal was
transmitted).

(ii) Matched Filter output has a high resolution in time. How-
ever, when relative movements between source, target
and transmitter exists, Doppler frequency shifts lead to
shifts of the correlation maximum in the Matched Filter
algorithm. The measurement equation of the Time of
Arrival has therefore to be corrected.

The approach to incorporate stochastic knowledge into the
tracking and fusion is described by the following steps: mod-
eling the knowledge about the environment by the SONAR
Equation, translating this into probability of detection and
probability of false alarms used inside the proposed tracking
algorithm. However, not only do different geometries occur in
a multistatic, but also different types of signals are used: in
particular in this paper we study frequency modulated sweeps
(FM) and continuous wave signals (CW), which have been
transmitted. Thus, in addition to the association necessary to
combine data generated by different source receiver pairs,
there is also a need to combine data from different “signal
channels”. Again, although a theoretically optimal approach
for this fusion exists in the Bayesian framework [10], for
practical considerations, and to result in a real-time capable
algorithm, we applied specific techniques (e.g. from ground
moving target indication) to combine FM and CW signals and
evaluate their performance with the help of data sets from real
measurements at sea.

This paper is organized as follows: after this introduction,
we will describe the system model and derive the scheme of
the standard algorithm in section II. Section III demonstrates
the extension of the algorithm with some additional features,
and we will discuss our results for two data sets gathered at the
NURC sea trials PreDEMUS ’06 and SEABAR 07 (NURC’s
sea trials) in section IV. Section V concludes this paper.
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II. DESCRIPTION OF THE ALGORITHM

A. Scenario Description

Multihypothesis Tracking (MHT) attracts interest in many
applications. Although based on the same idea, quite a large
number of different implementations exist. In this work we
follow the MHT architecture as described in Ground target
tracking and road map extraction by Koch et. al [3].
In the application of Active Multistatic Sonar, the state vector
is modeled in two-dimensional Cartesian coordinates and we
assume a second order movement model

xk = (pk, ṗk)T , with pk = (xk, yk)T and ṗk = (ẋk, ẏk)T

(1)
xk+1 = Fk+1|kxk + Gk+1|kvk+1, (2)

where Fk+1|k and Gk+1|k are matrices and vk+1 is a Gaussian
process noise, see [1,4]. Following the NP (Neyman-Pearson)
theorem to generate detections, a threshold is applied to the
normalized data: given a desired false alarm rate, the system
can handle the probability of detection and the threshold is
defined. We distinguish between the Detection Threshold (DT)
(contacts are considered for updating existing hypotheses) and
the Initiation Threshold (IT) (contacts will be considered to
initiate a new track).

B. Measurement Model

The measurements are non-linear functions of the target
state

zk = h(xk) + wk, (3)

with Gaussian measurement noise wk . The FM signal pro-
vides measurement of the azimuth angle ϕ and the Time of
Arrival (ToA). We consider here the ToA multiplied by the
propagation velocity, which is the bistatic range r . For CW
we get additional Doppler information, which is proportional
to the bistatic range rate ṙ . Let us therefore distinguish
between the measurement vectors zFM

k = (ϕk, rk)T and
zCW

k = (ϕk, rk, ṙk)T for FM and CW respectively. Let
pk = (xk, yk)T be the target position and sk = (sx

k, sy
k)T and

ok = (ox
k, oy

k)T the localisation of the source and receiver;
then the measurement function can be expressed as

ϕk = arctan
(

xk − ox
k

yk − oy
k

)
,

rk = |pk − sk| + |pk − ok|,
ṙk =

∂rk

∂t
,

(4)

where | · · · | denotes the Euclidian norm. In multistatics, we
obtain contact information of different source receiver pairs
(S/R pairs) for the same ping. For track initiation we use Un-
scented Transform (UT)[3] to build an 2D Cartesian estimate
using angle and range information of one S/R pair. Velocity
will be initiated with zero mean and appropriate covariance.
Each set of contact files (for one source and receiver) is used to
update existing hypotheses according to the Unscented Kalman
Filter (UKF) update formulas. The update scheme is illustrated
in Fig. 1.

Fig. 1. To illustrate the update scheme we consider contact information of
two S/R pairs for the same ping. As a first step, the predicted state estimate is
updated with the contact information of the first S/R pair and successively the
new state is updated with the contact file of the next S/R pair. The sequence
of presenting contacts to the tracking algorithm is arbitrary.

C. Track Extraction and Track Termination

Track extraction as well as track termination is based on
sequential likelihood ratio testing. The principle of likelihood
ratio testing is briefly summarized in this subsection. We will
refer to this summary when extending this principle in the
following sections , see [3], [4] for more details.
Given a sequence of measurements Zk = {z1, Z2, ..., Zk}
with an initial measurement z1 and Zi denoting the incoming
measurements at time i. The Likelihood Ratio (LR) will be
calculated using the hypotheses:
h1: the data Zk contain target measurements and false alarms
h0: the data Zk contain only false alarms
by

L(Zk) =
p(Zk|h1)
p(Zk|h0)

(5)

Choosing thresholds A and B , we accept h1 if L(Zk) > A
and h0 if L(Zk) < B . The LR can be recursively calculated
summing over all hypotheses weights of the track [4].
Let Hk denote the interpretation of the track history up to time
step k , and ek

i be the interpretation of the incoming contact
information:

ek
i =

{
contact i belongs to the target i �= 0

no detection at time step k i = 0 (6)

Then the LR can be written as

L(Zk+1) =
∑
Hk+1

p(Zk+1,Hk+1|h1)
p(Zk+1,Hk+1|h0)

=
∑
Hk

∑
ek+1

i

λek+1
i ,Hk

p(Zk,Hk|h1)
p(Zk,Hk|h0)

(7)

with

λek+1
i ,Hk

=
p(Zk+1, e

k+1
i |Zk,Hk, h1)

p(Zk+1, e
k+1
i |Zk,Hk, h0)

=

⎧⎨
⎩

1 − PD if i = 0
PD

ρF
N (vi,k+1,Si,k+1) if i �= 0,

(8)

where N (vi,k+1,Si,k+1) is the innovation density, which is
a result of the Kalman update step at time k + 1 , PD is the
probability of detection and ρF the false alarm rate. For track
continuation, a two-step procedure has to be followed:
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(i) Check for measurements to continue the track. The posi-
tive outcome of this check should follow the assumptions
about PD and ρF .

(ii) Association of new measurements to track history.

The derivation of the LR assumes well-separated targets and
at most one measurement of a target per ping and per each
source receiver pair (S/R pair).

III. EXTENDING THE STANDARD TRACKING ALGORITHM

Obviously, a good estimation accuracy is key to a multistatic
tracking and fusion algorithm, because the higher this accuracy
is, the better the data association will work. Hence, we
introduce in subsection A and B two methods, embedded in
the MHT framework, to improve estimation accuracy. In sub-
section C, we explain how the Doppler information extracted
from CW echoes is exploited within the MHT algorithm. In
subsection D, another extension is proposed that allows the
incorporation of a-priori knowledge about the environmental
conditions and about the shape of the target.

A. Timing

Due to the rather slow (compared to RADAR application)
propagation speed of sound in the water together with the
large detection ranges the SONAR system can achieve, it
is important to maintain the correct intra-ping timing: This
ensures the predicted target state is consistent with the updated
one. Assuming target velocity to be constant between two
pings, the standard range measurement (4) equation is replaced
by

r = |p + t0ṗ − s| + |p + t0ṗ − o|, (9)

where t0 is the travelling time of the sound from the source to
the target. Let vs denote the propagation speed of the signal,
then we need to solve

√
(x + t0ẋ − s1)2 + (y − t0ẏ − s2)2 =

t0vs. Calculations yield

t0 =
z

2(v2
s − v2

T )
±
√

z2

4(v2
s − v2

T )2
+

rST

v2
S − v2

T

, (10)

with rST = |p − s| and vT = |ṗ| . Since
rST

v2
S − v2

T

is always

the dominating term, the solution with the minus sign can be
neglected. We note that for track initiation it is not necessary
to consider the timing, since velocity is initiated with zero
mean.

B. Doppler Correction for FM

Relative movement between source target and receiver lead
to frequency shifts in the received target echo. The Matched
Filter converts these frequency shifts into shifts of detection
time. Assuming perfect knowledge of the target state, these
shifts can be corrected. Equation fmax + t(fmax − fmin) =

fmax + Δf delivers the time shift t =
Δf

fmax − fmin
.

The new measurement equation for range is therefore given
by:

r = |p − s| + |p − r| + ṙ

2
fmax + fmin

fmax − fmin
(11)

Both corrections (the correction for timing (III-A) and the
compensation of Doppler shifts described here) are applied
in the algorithms.

C. Processing of CW Contacts

During the experiments, FM and CW signals were trans-
mitted. The two waveforms differ in some aspects. Whilst
with FM a good range resolution is obtained, the CW delivers
additional Doppler information. To fuse information of the two
waveforms, it is necessary to bear in mind their characteristics.
Due to the poor resolution in range, we decided that CW
contacts will not be used for track initialisation.
Furthermore, we will model the probability of detection (PD)
of CW as a function of the measured Doppler value [6]. If the
Doppler of the target is close to the Doppler of the background,
the target is in the so called Clutter notch and the probability
of detection is low; The eventuality that target is in Clutter
Notch does not only concern non-moving targets, but may also
appear due to geometrical reasons [7]. Let ṙT be the range
rate of the target and ṙC the range rate of the corresponding
background. Using the modeling assumption in [6], we express
the PD depending on the distance nc(x) = |ṙt − ṙC | , on
a characteristic sensor information, the minimum detectable
velocity (MDV), and a fixed part pD (this part can also be
chosen to be variable with the SNR) :

PD(x) = pD

[
1 − exp

(
− ln 2)

( |ṙT − ṙC |
MDV

)2
)]

= pD

(
1 − MDV√

ln(2)/π

)
N
(

0;nC(x),
MDV 2

2 ln(2)

) (12)

We distinguish between the following approaches:

(i) Use CW measurements to weight hypotheses
Doppler Weighting Method -DoWg

(ii) Use CW measurements for hypotheses update
Doppler Update Method -DoUp
This Method is implemented in analogy to [6]

Ad (i): CW contacts are only used to weight existing hy-
potheses and do not generate new hypotheses. So, we can
choose a low detection threshold for CW contacts, without
increasing computational complexity in the following time
stages. However, the gain of using the CW signal depends
on a good localisation due to FM.
The new weights of the hypothesis tree after processing a set
of new CW contacts ZCW

s are calculated by multiplying the
added weights for all interpretation possibilities (8).

p(ZCW
s ,Zk|Hk, h1)

= p(Zk|Hk, h1)
∑

es,CW
i

p(ZCW
s , es,CW

i |Zk,Hk, h1), (13)

where Zk denotes the collection of FM and CW measurements
up to ping k and es,CW

i denote the interpretation of contact i
or that there is no target contact (i = 0).
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As part of the Likelihood function we calculate:

p(es,CW
i |Hk, h1) =

∫
p(es,CW

i ,xs|Hk, h1)dxs

=
∫

p(es,CW
i |xs,Hk, h1)p(xs|Hk, h1)dxs

∝
∫

N
(

0;nC(xs),
MDV 2

2 ln(2)

)
N (xs;xs|k,Ps,k)dxs

≈ N
(

0;NCxs|k,
MDV 2

2 ln(2)
+ NCPs|kNT

C

)
(14)

The proportionality in the third line is caused by expanding
a factor, which only depends on the number of incoming
measurements and the sensor parameter MDV; therefore it is
independent from the target state xs. From line three to four,
we also use the product formula for Gaussian densities and a
approximation by linearization of nC , with the Jacobian matrix
NC . Again linearization was replaced by UT in the algorithm.
The derivation shows that only the predicted state estimate
and state covariance influences the considered probability of
detection.
Ad (ii): In comparison to the first mentioned method the
Doppler Update method processes incoming CW contacts
similarly to FM contacts. But again, we need to take care
of the modeling assumption for the PD (12). The update
formulas are derived according to the Bayes formalism in
[6]. As it can be seen in (12) the fictious ’measurement’,
the target is in Clutter Notch, is Gaussian distributed due to
the modeling assumptions and can therefore processed as an
additional ’measurement’ information.

D. Environmentally Adaptive Tracking

Until now the probability of detection for FM (and partially
also for the CW) was modeled to be uniformly distributed
in the observation area. In the derivation of the Likelihood
function (8), we have seen that the parameters PD and ρF in-
fluence track extraction and track maintenance. The presented
approach is especially sensitive with respect to the model-
ing assumptions, since at each tracking stage information of
different S/R pairs is fused. For example, if the target is in
a geometrical region where one source receiver pair omits
detection, the assumption of uniformly distributed PD may
prevent the track from being extracted. To fix the problem
we propose to introduce a variable PD, which is estimated
from the Signal to Noise Ratio (SNR) of a potential contact.
Therefore we need to derive the SNR in dependence of the
predicted target state.

1) SONAR equation: The SONAR equation combines in
logarithmic units (i.e., units of decibels relative to the standard
reference of energy flux density of rms pressure of 1μPa
integrated over a period of one second), the following terms:

(S − TL) − (N − AG) − DT ≥ 0 (15)

which define signal excess where:

• S source energy flux density at a range of 1 m from the
source;

• TL propagation loss for the range separating the source
and the sonar array receiver;

• N noise energy flux density at the receiving array
• AG array gain that provides a quantitative measure of

the coherence of the signal of interest with respect to the
coherence of the noise across the receiving array;

• DT detection threshold associated with the decision pro-
cess that defines the SNR at the receiver input required
for a specified probability of detection and false alarm.

For the description of active sonar, the SONAR equation
has to be applied for the sound path from the source to
the target where the received level plus the target strength
(TS) is reflected to the receiver. Also important in the active
scenario is that the target echo has to be compared not only
to the surrounding noise level but also to the surrounding
reverberation level (RL).
Especially interesting with respect to target tracking are these
parts of the SONAR Equation, which depend on the target
position (TL,TS,NL,RL) and target velocity (TS).

2) Estimating the PD in terms of the SONAR Equation: The
SONAR Equation describes the functional relationship of the
SNR of a measurement and the corresponding target state x.
In the following we use the function snr = h(x) to formulate
the dependency. We assume the SNR to be normal distributed
with variance σdB , which is also assumed to be the variance
of the noise level [1]. The probability of detection PD(x,DT )
and false alarm rate ρF (DT ) are obtained by integration:

PD(x,DT ) = p(h(x) > DT )

=
∫ ∞

t=DT

N (t;h(x), σ2
dB)dt

(16)

ρF (DT ) =
∫ ∞

t=DT

N (t; 0, σ2
dB)dt (17)

As a part of the LR we calculate in analogy to (14):

p(ek
i |Hk−1, h1)

∝
∫ ∫ ∞

t=DT

N (t, h(xk), σ2
dB)dtN (xk;xk|k−1,Pk|k−1)dxk

≈
∫ ∞

t=DT

N (t,Hxk|k−1, σ
2
dB + HPk|k+1H

T )dt,

(18)

where H is the Jacobian of the function h and ek
i again the

interpretation of the contact i or of a missed detection if i = 0.
Derivations show that the probability of detection depends on
the expected SNR and also on the estimation accuracy in this
SNR, which obviously depends on the accuracy in the position
and velocity estimate. If no knowledge is assumed about the
target state the PD will be about 0.5, which is also the value
for the fixed PD chosen in the standard approaches.
Noise measurements in each bearing and for each receiver and
the output of target strength and propagation loss modeling
software are used to calculate the actual value of h(x). By
using the UT instead of linearization, we do not need to look
deeper in the function itself (by calculating derivatives); we
can easily process foreign algorithms or even tabular entries.
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IV. DATA ANALYSIS

In the course of NURC’s project on deployable multistatic
active sonar, two major sea trials were conducted: PreDE-
MUS’06 and SEABAR 07. The setup of NURC’s deployable
equipment (called DEMUS) was different in both sea trials:
In the data set selected from PreDEMUS’06, a single source
and three receivers were installed, see Fig. 2. The source
was operating at low source level, avoiding reverberation and
allowing the signal, electronically time shifted and repeated,
generated by the Echo Repeater (E/R) towing vessel, to be
detected in a more or less stationary noise background. We will
call this data set from PreDEMUS’06 “B01” in the following
text. The data set selected from SEABAR 07 was generated

Fig. 2. Plan of B01 in 2D Cartesian; three receiver (RX1, RX2 and RX3)
and one source (BTX), the target starts from north-west (green)

Fig. 3. Plan of A01 transformed in 2D Cartesian; two receivers (RX2 and
RX3) and one source (BTX); the target is moving zigzag (green)

by a source operating at full power, thus causing reverberation,
and two receivers, see Fig. 3. We will call this data set
“A01”. In addition to the clutter targets that the reverberation
were generating, this data set has another complication caused

by very instationary and directional noise. This noise was
generated by fast-moving vessels passing the receivers in close
vicinity. The setting of the E/R was similar to the setting in
B01.
In the following, we will assess the performance of the
proposed extensions by applying the algorithms to both data
sets. Changes in performance should be made visible when
calculating measures like track duration, track fragmentation,
latency and number of false tracks. Because just two data sets
cannot lead to a sufficient statistical treatment, we focus our
discussion of the results on identifying major trends only.

A. Run B01

In B01, the target starts from north-west, see Fig. 2. We
choose a detection and initiation threshold of 10dB for FM and
no threshold for CW. The corresponding input files for each
source receiver (S/R) pair contain about 60 contacts per ping
for the FM and about 90 contacts per ping for the CW. Fig.
4 shows the SNRs of the associated target contacts. The three
rows include the SNRs for the FM and CW signal obtained by
receiver RX1, RX2 and RX3. The distance between the target
and the receivers, RX1 and RX3, in the beginning, see Fig. 2,
results in low SNRs and a large number of missed detections.
Close to ping 30, detection was missed for all three receivers.
But after that the probability of detection is quite good.

Fig. 4. SNR of target contacts for RX1, RX2 and RX3 respectively; SNR
of FM and CW are shown in different colours.

For environmentally adaptive tracking we need to model the
SNR values with the help of the SONAR equation. Values for
TL and NL were adapted for each receiver from ping to ping.
Since an E/R does not have aspect-dependent target strength,
the TS value was kept constant. Fig. 5 shows the modeled
SNRs calculated from the known position of the target. Model
results explain why missed detections occur at the beginning
of the RUN. For this run, a very exact ground truth is available
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Fig. 5. modeled SNR (FM) for RX1 (red), RX2 (blue) and RX3 (magenta);
calculated from the truth

[8]; this gives us the opertunity to analyze the estimation
performance.

B. Run A01

In A01 the target is moving zigzag, see Fig.3. In Fig. 6
the SNRs for the target measurements of RX2 and RX3 are
shown; again the DT and IT for each S/R pair is 10dB for
FM and there is no threshold for CW. The PD is high for the
whole run. We only note some missed detections for RX3 close
to ping 40. The Input files for the tracker contain about 150
contacts per ping for the FM and about 100 contacts for the
CW. Once E/R detections are uniquely identified, it is possible

Fig. 6. SNR of target contacts for RX2 and RX3 respectively; SNR of FM
and CW are shown in different colors.

to modify their SNR. Fig. 7 shows modified SNRs for the
target contacts, calculated by Doug Grimmet, which are about
10dB lower than the original ones, whilst the SNR of the non-
target contacts was retained. Of course, this data set is more
realistical than the original, but also more challenging with
regard to target tracking. Choosing the same DTs as before
would cause in a poor PD for the whole run. So we choose
two different thresholds, a detection threshold (DT) of 2dB
for FM and CW contacts and an initiation threshold (IT) of
10dB for FM. In this case, the tracker has to process about 500
contacts per ping and each S/R pair for the FM and again about
100 contacts for the CW. However, also in this case we look
at a still optimistic scenario, it is questionable whether 2dB is
a realistic threshold to form a contact. To model the SNRs for
the modified data set, we use the Transmission Loss and Noise
Level calculated for this run. The values are given by tabular
entries dependent on a distance and angular information. Again

Fig. 7. Modified SNR of target contacts for RX2 and RX3 respectively;
SNR of FM and CW are shown in different colours.

the target strength is assumed to be fixed.
The modeled SNRs are shown in Fig. 8. We use the tracking
results to illustrate the modeling, since the truth of the target
is not available. The missed detections close to ping 40, can
be explained by some noise affecting RX3.

Fig. 8. modeled SNR (FM) for RX2 (red) and RX3 (blue); calculated from
the tracking result

C. Results for Timing and Doppler Correction

To demonstrate the increase in accuracy, we apply four
“procedures” to calculate the ToA for FM contacts: Doppler
Correction (DoCor), Timing (TiCor), Doppler Correction and
Timing (DoTiCor) and no correction (NoCor). To understand
the effect of the Doppler Correction, we examine the tracking
results in detail, see Fig. 10. The truth is marked by green
circles; the DoTiCor tracking results is given by blue circles
and NoCor by black plus signs. Results for Doppler Correction
are shifted at the line; this reflects a bias in the range
measurement due to the frequency shift. Now they match the
real postions of the E/R source. The data from A01 have been
analyzed during the experiment at sea. Hence, only positional
information about the E/R towing vessel was available at that
time and a detailed post-analysis step to determine the exact
position of the E/R sound source (as was accomplished for
the B01 data set) was missing. So, we have to compare our
results with the position of the towing ship and calculation
of the estimation error is not possible. Fig. 10 illustrates the
results for DoTiCor and NoCor. Again we note that the result
of DoTiCor has shifted with respect to NoCor at the line.
At the first maneuver, we observe that the DoTiCor is less
robust against deviations from the motion model. This is a
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Fig. 9. Estimation error for tracking results of B01 using approaches TiCor
and DoCor

Fig. 10. Tracking results of B01 for NoCor and DoTiCor. The position of
the E/R is shown in green.

consequence of the influence that the estimated Doppler has
on the range measurement.
Table 1 and 2 show the start, the end of the track and the total
number of tracks that has been extracted during the whole run.
For both runs the latency, which is the time the tracker needs
to decide that threre is a target, and the number of false tracks
could be slightly reduced with DoTiCor. But statistics are not
sufficient to note trends.

D. Results for using also CW measurements

In this part we analyze the results for using the additional
CW measurements for weighting hypotheses (DoWg) or for
using them for hypothesis update (DoUp). Table 3 and 4

Fig. 11. Tracking results of A01 for NoCor and DoTiCor. The position of
the towing ship is shown in green. Distances in [m]

TABLE 1

DOTICOR - TRACKING RESULTS FOR B01

Start of End of Total Number
track [ping] track [ping] of tracks

FM NoCor 54 146 66
FM DoTiCor 53 146 63

TABLE 2

DOTICOR - TRACKING RESULTS FOR A01

Start of End of Total Number
track [ping] track [ping] of tracks

FM NoCor 15 88 69
FM DoTiCor 12 88 58

point out the results in terms of track duration, track latency
and the number of false tracks compared with the standard
tracking results using only FM. The number of false tracks
can be reduced, due to the additional contact information. As
foreseen, the two data sets do not deliver sufficient statistics to
rank DoUP and DoWg. An interesting finding is that the speed
of the algorithm can be improved by processing additional
information. Generally we note that the runtime of the MHT is
directly proportional to the number of considered hypotheses.

TABLE 3

FM AND CW - TRACKING RESULTS FOR B01

Results only Start of End of Total Number
for NoCor track [ping] track [ping] of tracks

FM 54 146 66
FMCW DoUp 50 146 55
FMCW DoWg 51 144 44

1) Results for the modified data set A01: As expected the
exploitation of CW information results for A01 in a decrease
of the number of false tracks. For the modified data set of A01
we test whether, under these conditions, it is possible to lower
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TABLE 4

FM AND CW - TRACKING RESULTS FOR A01

Results only Start of End of Total Number
for NoCor track [ping] track [ping] of tracks

FM 15 88 69
FMCW DoUp 12 88 17
FMCW DoWg 13 88 37

the SNR of E/R detection and still find the algorithm capable
of generating only a reasonable number of false tracks. But

TABLE 5

DOUP - TRACKING RESULTS FOR THE MODIFIED DATA SET OF A01

Results only Start of End of Total Number
for NoCor track [ping] track [ping] of tracks

FMCW DoUp 13 37 20
45 87

in comparison to the processing of the original data set we
observe a worse tracking performance, see Table 5. The track
is terminated earlier and also fragmentized. This is caused by a
lower PD in the tracking inputs. The fragmentation coincides
with the region, in which we note some missed detections due
to Noise. Additionally, tracking performance is influenced by
the value of the false alarm density (8), which increases with
the number of considered contacts.

E. Results for variable probability of detection

The large latency in B01 requires some improvements.
At best, we need 50 pings to extract the target (FMCW
DoUP). The reasons are of course the missed detections
in the beginning, whilst the probability of detection has
been set equally to 0.5 during the whole run and for each
S/R pair. In this section we discuss the effect of a variable
probability of detection (SNRPD) dependent on the modeled
SNR in Fig. 5. Table 6 shows the results. The track is already
extracted during ping 20 and 28. It is terminated when all
three receivers miss detection and starts again at ping 48; at
least this is six pings earlier than in the standard approach.
For A01 we use the Noise Level and the Transmission Loss

TABLE 6

SNRPD - TRACKING RESULTS FOR B01

Results only Start of End of Total Number
for NoCor track [ping] track [ping] of tracks

FM 54 146 66
FM SNRPD 20 28 63

48 146

and Ezio Baglioni to model the SNR, see Fig. 8. We only
show tracking results for the modified data set and the FMCW
Doppler Update method. By embedding the knowledge about
the SNR in the tracker we get rid of the fragmentation, but
we also observe a worse behavior in the beginning and in the
end than with the fixed PD, see Table 7 . These results show
that if we are able to predict missed detection this knowledge
will help the tracker to become more robust. More effort has
to be invested.

TABLE 7

SNRPD - TRACKING RESULTS FOR A01

Results only Start of End of Total Number
for DoUP Cor track [ping] track [ping] of tracks

FMCW 13 37 20
45 87

FMCW SNRPD 21 87 28

V. CONCLUSION

Extending the MHT strategy to incorporate deterministic
and stochastic a priori knowledge seems to be a viable way
towards a robust, precise and real-time capable multistatic
tracking algorithm. Several extensions have been implemented
and evaluated by applying them to real data sets. Further
evaluation is planned, using more available data sets from the
same cruises, preDEMUS’06 and SEABAR 07.
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