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Multistep Finite Control Set Model Predictive
Control for Power Electronics

Tobias GeyerSenior Member, IEEBNnd Daniel E. Queved®dlember, IEEE

Abstract

For direct model predictive control with reference trackiof the converter current, we derive an efficient
optimization algorithm that allows us to solve the controbldem for very long prediction horizons. This is
achieved by adapting sphere decoding principles to therlyiaig optimization problem. The proposed algorithm
requires only few computations and directly provides thgnoal switch positions. Since the computational burden
of our algorithm is effectively independent of the numbercofiverter output levels, the concept is particularly
suitable for multi-level topologies with a large number afitage levels. Our method is illustrated for the case
of a variable speed drive system with a three-level voltagece converter.

Index Terms

Model predictive control, finite control set, sphere deogdibranch and bound, quantization, power elec-
tronics, drive systems

|. INTRODUCTION

During the past decade, model predictive control (MPC) fowgr electronics has received considerable
attention; see, e.g., [2] and the references therein. MPCbeausedoth for a large variety of topologies and
in various operating conditionsyith its flexibility stemming from the online optimization of aitable cost
function. In particular, direct (ofinite control st MPC schemes tackle the current control and modulation
problem in one computational stage and are, thus, promategnatives to conventional control schemes such
as PI controllers in a field-oriented settingyith direct MPC, the manipulated variable chosen by thetrader
is the inverter switch position, which is restricted to bejoto a discrete and finite set [3]-[8Therefore, a
modulator is not needed.

A disadvantage of usindirect MPC is that solving the underlying optimization problem atidis, deriving
the discrete manipulated variable, proves to be compuialtio challenging. Computational issues become

especially important for long prediction horizons, sinbe number of possible switching sequences grows
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exponentially as the horizon length is increased [9]. As sulte when reference tracking of the converter
currents is considered, the prediction horizon is usualtyts oné.

An alternative formulation ofdirect MPC for power electronics and variable speed drives was predent
in [12], [13]. In this approach, the machine’s electromagnerque and stator flux magnitude, as well as the
inverter’'s neutral point potential are kept within uppeddower bounds. Using the notion of extrapolation and
restricting oneself to switching close to the bounds, lgggadiction horizons can be achieved [14], [15]. The
same concept can be used to control the converter currestesath of the torque and stator flux [16]. Branch
and bound methods can be added to tackle the high compwhbarden, which can typically be reduced by
an order of magnitude [17]. This results in a family of MPC esties with very long prediction horizons and
a computational complexity that is suitable for impleméntaon a modern DSP [18]. It has been shown that
long prediction horizons lead to a significant performanogrovement at steady-state operating conditions,
lowering the current distortions and/or the switching freqcy [19].

Instead of directly manipulating the switch positions, e approaches a modulator is added between
the controller and the inverter. In this case, the MPC denisiariables are continuous, typically resulting in
a quadratic program (QP) [20]-[23]. The latter can be solwvedeal time using fast QP solvers [24]-[26],
or pre-computed off-line for all possible states, by usihg so-called explicit state-feedback control law of
MPC [27]. Alternatively, generalized predictive controlght be employed [28].

Despite the encouraging results in [19] for the scheme of, [[23], in case of the basic direct MPC
formulations in power electronics and drives (as used, mg3]-[8]), the question of whether longer horizons
lead to performance improvements or not remains largelynswared. We attribute the main reason for this
knowledge gap to computational issues: In both MPC famities optimization problem has traditionally been
solved using some form of exhaustive search, i.e., the sedofissible switching sequences is enumerated,
the corresponding response of the power electronic syssepredicted, the cost function is evaluated and
the switching sequence that yields the minimal cost is an@sethe optimal one. Enumeration is sometimes
perceived as an "easy” task; this is a misconception sinceneration is applicable only to MPC problems
featuring a limited number of switching sequences. Exlnaignumeration is not practical for problems with
thousands of sequences, which arise from MPC formulatidtis prediction horizons of four or more.

Motivated by the observations made above, this manuscrgtis second part [34] examine the use of
prediction horizons longer than one for direct MPC with refece tracking. To address computational issues,
our work exploits the geometrical structure of the undedyoptimization problem and presents an efficient
optimization algorithm. The algorithm uses elements ofesphdecoding [35] to provide optimal switching
sequences, requiring only little computational resourdéss enables the use of long prediction horizons in

power electronics applications.

1The authors are aware of only two exceptions, namely [10jhich a horizon of N = 2 is used, and [11]. In the latter, a heuristic
is used to reduce the number of switching sequences for ldmgézons. Moreover, a two-step prediction approach has hgoposed
in [3]. In here, in a first step, the computation delay is congag¢ed, followed by a standard predictive controller with= 1. Therefore,
this is considered to be aN = 1 approach.

2|t is worth emphasizing that the use of large horizons invg\inite control set MPC has been shown to be beneficial ifouarfields

other than power electronics; see, e.g., [29]-[33].



The proposed computational approach is derived for a lisgstem with a switched three-phase input with
equal switching steps in all phases. Specifically, the mteg®rk focuses on a variable speed drive system,
consisting of a three-level neutral point clamped voltagerse inverter driving a medium-voltage induction
machine. Our results in the second part [34] show that usiadigtion horizons larger than one does, in fact,
provide significant performance benefits. In particularstatdy-state operation, the current distortions and/or
the switching frequency can be reduced considerably wiheet to direct MPC witta horizon ofone. Indeed,
in some cases, a steady-state performance can be achiaevés shmilar to the one of optimized pulse patterns
[36].

In summary, the contribution of this paper and its second igafourfold, by substantiating the following
statements. First, direct MPC problems with referencekiracand long prediction horizons can be solved in
a computationally efficient way, by adopting sphere deapdind tailoring it to the problem at hand. Second,
long horizons provide at steady-state a better perform#rare the horizon one case. Third, long horizons do
not have an adverse impact on the transient performanceth-dlie computation time can be further reduced
by using a simple rounding scheme. The latter gives subaptiesults, which are close to optimal when the
switching effort is very high.

The remainder of this paper is organized as follows. Sedliaescribes the drive system case study used
throughout the two papers. Section Il states the modeligtied current control problem to be solved, which
can be cast as an integer quadratic program, as shown irS4&¢tiBy adopting the notion of sphere decoding,
the integer program can be solved efficiently, as describatktail in Section V. Conclusions are provided in
Section VI. The second part of this paper provides a detgitztbrmance evaluation of direct MPC with long
prediction horizons both at steady-state operation anthgdorque transients. A suboptimal MPC scheme can
be obtained through direct rounding. The computationatiéaoris analyzed and a detailed discussion of the
results is provided.

Throughout both papers, we use normalized quantiiesadopt the per unit (pu) systeixtending this to
the time scalé, one time unit corresponds 19'w;, seconds, where,, is the base angular velocity. Additionally,
we use{(t), t € R, to denote continuous-time variables, af(&), k¥ € N, to denote discrete-time variables
with the sampling interval’,. All variablesé¢,,,,. = [£, & &.]T in the three-phase systemab¢) are transformed

abc

t0 &, = [la ¢]7 in the stationary orthogonal coordinates throug§,,; = P §,,., Where

abe?
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II. DRIVE SYSTEM CASE STUDY

Whilst the ideas of the present work can be applied to gerseralc, dc-dc, dc-ac and ac-ac topologies with
linear loads, including active front ends, inverters witlh. loads and inverters with ac machines, we focus our

exposition on the setup describidthe sequel

A. Physical Model of the Inverter

As an illustrative example of a medium-voltage power elatt system, consider a variable speed drive

consisting of a three-level neutral point clamped (NPClage source inverter (VSI) driving an induction
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Fig. 1: Three-level three-phase neutral point clampedageltsource inverter driving an induction motor with a fixedtrad point potential

machine (IM), as depicted in Fig. 1. The total dc-link vokag. is assumed to be constant and the neutral
point potential N is fixed.
Let the integer variables,, uy,, u. € U denote the switch positions in the three phase legs, whera fo

three-level inverter the constraint set is given by
U={-1,0,1}. (2)

In each phase, the valuesl, 0,1 correspond to the phase voltaget%, 0, % respectively. Thus, the voltage

applied to the machine terminals in orthogonal coordinates
1 1
Vs,af = §%Cuo¢ﬂ = §VchU (3)

with

u [ta up uC]T. (4)

The voltage vectors are shown in Fig. 2.

B. Physical Model of the Machine

The state-space model of a squirrel-cage induction madhittee stationaryys reference frame is summa-
rized hereafter. For the current control problem at hands @donvenient to choose the stator curreits and
isp as state variables. The state vector is complemented bytbeftux linkagesy,, and, 3, and the rotor’s
angular velocityw,. The model input are the stator voltages, andvsg. The model parameters are the stator
and rotor resistanceB, and R,., the stator, rotor and mutual reactancég, X;,. and X,,, respectively, the
inertia .J, and the mechanical load torqug. All rotor quantities are referred to the stator circuit.teims of

the above quantities, the continuous-time state equatiomn$37], [38]

di, 1 1 0 -1 |\X, X
s _ _ — .S - R . v, Sa
i o +<7'7- w Lo >D¢+Dv (52)
d X . 1 0 -1
Ve _Xmi Ly b W, (5b)
dt Tr Ty 1 0
dw, 1 ] ]
:_(Te - TZ) ) (SC)




Fig. 2: Voltage vectors produced by a three-level inverteavs in thea3 plane along with the corresponding values of the threeghas
switch positionsu (where +' refers to '1’ and -’ to '-1’)

where we have used, £ X, + X, X, 2 X;, + X,n, D 2 X, X, — X?2,. (To simplify the notation, in (5)
we droppedy from the vectorg, ¢, andwv,.) The transient stator time constant and the rotor time teons
are equal tor, = X,.D/(R, X2 + R.X2) and7, = X,./R,, whereas the electromagnetic torque is given by

Xm

T, =
X,

(wraisﬁ - /l/)rﬁisa) . (6)

IIl. M ODEL PREDICTIVE CURRENT CONTROL

The control problem is formulated in the3 reference frame. Let; denote the reference of the instantaneous
stator current, withi® = [i*, it5]". The objective of the current controller is to manipulate three-phase
switch positionu, see (4), such that the stator curréntclosely tracks its reference. At the same time, the
switching effort, i.e., the switching frequency or the shihg losses, are to be kept small. To avoid a shoot-
through, direct switching betweeinand —1 in a phase leg is prohibited.

The block diagram of the model predictive current controléeshown in Fig. 3. As can be appreciated in
that figure, the controller computes predicted trajectoné the variables of interest in order to optimize a
performance criterion online. For the predictions, the sueed stator current is required along with the rotor

flux vector, which is typically obtained using a flux observer

A. Prediction Model

The predictive current controller relies on an internal eloaf the physical drive system to predict future
stator current trajectories. The rotor spegdis assumed to be constant within the prediction horizonclwhi

turns the speed into a time-varying parameter. The predidiorizon being less than one ms, this appears to
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Fig. 3: Model predictive current control with referenceckimg for the three-phase three-level NPC inverter withraguction machine

be a mild assumptich
For our subsequent analysis, it is convenient to describesybtem by introducing the following state vector
of the drive model:

T = [isa isﬁ wra wrﬁ]T- (7)

The stator current is taken as the system output vectory.es i;, whereas the switch position,s in the
orthogonal coordinate system constitutes the input veuatbich is provided by the controller.
Given the model described in Section I, in termsagfthe continuous-time prediction model becomes

dz—f) =Fx(t) + Guap(t) (8a)

y(t) =Cx(1), (8b)

where the matrice$’, G andC' are provided in the appendiXote thatF' andG depend on the rotor speed
and the dc-link voltag&j., respectively. Therefore, in a general setup, these twoiceatneed to be considered
to be time-varying.

By integrating (8a) fromi = kT to ¢t = (k + 1)T, and observing that during this time-interva),s(t) is

constant and equal ta,s(k), one obtains the discrete-time representation
x(k+1)=Az(k) + Bus(k) (9a)
y(k) = Cz(k) (9b)
with k € N, whereA £ eFT> and B £ —F~' (I — A)G. Note thate refers to the matrix exponential, add

is the identity matrix of appropriate dimension (here 4).

SNevertheless, including the speed as an additional statteeimodel might be necessary for highly dynamic drives andiives with
a small inertia. The additional computational complextjstwould entail is marginal.



B. Cost Function

The control problem at time-stédpof tracking the current reference over a finite predictionizan of length

N can be addressed through minimization of the cost function

k+N—-1

TJ=> Alicabe(?+ D3+ Aul|Au(0)]]3, (10)
=k

where the current error inbe-frame is defined as
Ge,abe = by b — bsabe s (11)
and the switching effort is defined as
Au(k) & u(k) —u(k —1), (12)

thereby referring to the switch positions in the three phaseé andc.* The first term in (10) penalizes the
predicted three-phase current error at the time-steps, k+2, ...k + N, using the squared Euclidean norm;
the second term penalizes the switching effort at the titepss:, £+ 1, ...k + N — 1. The parametei, > 0
is a tuning parameter, which adjusts the trade-off betwhertracking accuracy (deviation of the current from
its reference) and the switching effort.

Since in (7), the stator currents are represented/incoordinates rather than iabc, it is convenient to
express the first term in (10) also w5 coordinates. Recall that ., = P‘lie_,ag holds with the pseudo

inverse being

1 0
ER (13)
V3

2

Noting thatP~7 P! = 1.51, the first term in (10) can thus be rewritten as

||ie,abc||§ - (ie,abc>T ie,abc =15 ||ie,aﬁ||§ . (14)

Omitting the factor 1.5 to simplify the expression, the eglént cost function with the current error formulated

in orthogonal coordinates becomes

k+N—1
J= 3 llicas(+ DS+ Al Au(0)[3, (15)

where -
Au(t) = u(t) - u(l - 1) (16a)
feap(l+1) =15 ,5({+1) = Cx(l+1) (16b)
x((+1)= Az(l) + BPu(l). (16c)

Current references , ; at future time steps can be predicted by assuming a consteuiitade and frequency
of the current reference signal. Alternatively, to simplthe computations, future current references can be

derived by extrapolating (e.g., linearly or quadraticgfipm past and present reference values.

4Since in each phase, switching is only possible by one stepr own, i.e., we havé] Au(k)||~ < 1, the 1-norm and the (squared)
Euclidean norm of the switching effort yield the same cosu(k)||1 = ||Au(k)]||3.



Past | Horizon Past THorizon

A
\4

Y (k+ DUou(k +1)

U U t ]{3 + 1
opt
uopt k ]

P time — t t —p time

k k+1 k+ N k k+1k+2 k+N+1

(a) Horizon at time-step: (b) Horizon at time-stegk + 1

Fig. 4: Receding horizon policy exemplified for the horizdh= 6. The optimal switching sequendéopt is chosen such that the predicted

output sequencd” tracks the output referenck *. Out of the sequenc opt only the first elementuopt is applied to the inverter

C. Receding Horizon Optimization
We introduce the switching sequence
T
U(k) = [uT(k;) oo uT(k+ N - 1)} : 17)

which represents the sequence of inverter switch positieasontroller has to decide upon. The optimization

problem underlying direct MPC with current reference tiagkcan then be stated as

pu 1 1
Uopt(k) arggl(llg J (18a)
subj.to U(k) e U (18b)
[Au(0)|lo <1, Ve =Fk,....k+ N —1. (18c)

The cost function/ depends on the state vectefk), the previously chosen switch positiai{x — 1) and the
tentative switching sequendé (k). In (18b),U 2 U x --- x U is the N-times Cartesian product of the et
whereld denotes the set of discrete three-phase switch positidies Iafiter is obtained from the single-phase
constraintd/ viaUU = U x U x U, as defined in (2). We refer to (18c) as switching constraintsch are
imposed to avoid solutions leading to a shoot-through incineverter.

Following the receding horizon optimization principle,lyrhe first element of the optimizing sequence
Uop(k) is applied to the semiconductor switches at time-dtegee, e.g. [2]. At the next time-step;+ 1, and
given new information orx(k + 1), another optimization is performed, providing the optirsaitch positions

at time k + 1. The optimization is repeated online aad infinitum as exemplified in Fig. 4.

D. Obtaining the Switch Positions via Exhaustive Search

Due to the discrete nature of the decision varidllg:), the optimization problem (18) is difficult to solve,
except for short horizons. In fact, as the prediction harim enlarged and the number of decision variables
is increased, the (worst-case) computational complexibyvg exponentially, thus, cannot be bounded by a
polynomial, see also [9]. The difficulties associated witimimizing J become apparent when using exhaustive

search. With this method, the set of admissible switchirgueacedJ (k) is enumerated and the cost function



evaluated for each such sequence. The switching sequettcéheismallest cost is (by definition) the optimal
one and its first element is chosen as the control input. Atyetime-stepk, exhaustive search entails the
following procedure:

1) Given the previously applied switch positiat{k — 1) and taking into account the constraints (18b) and

(18c), determine the set of admissible switching sequeagesthe prediction horizon.

2) For each of these switching sequences, compute the sifgetory according to (16c¢) and the predicted

evolution of the current error (16b).

3) For each switching sequence, compute the doatcording to (15).

4) Choose the switching sequen&éqy(k), which minimizes the cost. Apply its first elementgp(k), to

the converter.
At the next time-stepk + 1, repeat the above procedure, using updated informatioh@wgurrent state vector,
x(k + 1), and reference trajectory, ,4(k +1),...,4¢ ,5(k + N +1).

It is easy to see that exhaustive search is computationadlgilble only for very small horizon¥, such as
one or two. ForN = 5, assuming a three-level converter and neglecting the kimgjcconstraint (18c), the
number of switching sequences amountsit6- 107. This is clearly impractical, even when imposing (18c),
which reduces the number of sequences by an order of magnitud

Techniques from mathematical programming, such as bramtbaund [17], [39], [40], can be used to reduce
the computational burden of solving (18). In particulaf-tbe-shelf solvers such as CPLEX [41], include a
wealth of smart heuristics and methods. However, none ofjimeral methods take advantage of the particular
structure of the optimization problem (18) and the fact thatIPC the solution is implemented in a receding
horizon manner. One of the main aims of the present work ishtave how these distinguishing features of
the problem at hand can be exploited in order to greatly redlue computational burden, thereby enabling the

use of large horizons in applications.

IV. INTEGERQUADRATIC PROGRAMMING FORMULATION

In this section, we reformulate the optimization probler)(ib vector form and state it as a truncated integer

least squares problem.

A. Optimization Problem in Vector Form
By successively using (16c), the state vector at time-6ted can be represented as a function of the state
vector at time-stefz and the switching sequend&é(k) as follows:
2(t+1) = A ak) + [AFBP ... A"BP|U(K) (19)

with ¢ = k,...,k+ N — 1. Let Y (k) denote the output sequence over the prediction horizon fiore-step
kE+1tok+ N,ie. Y(k)=[yT(k+1),...,y"(k+ N)]T andY*(k) correspondingly the output reference.
Substituting (19) into (9b) gives

Y (k) =Tx(k)+ YU (k), (20)

where the matrice¥ and Y are given in the appendix.



The dynamical evolution of the prediction model (16) camtbe included in the cost function (15), yielding
J = |[Cx(k) + YU (k) = Y (k)3 + Xo|[SU (k) = Bu(k —1)][3, (21)

whereS and E are defined in the appendix. As in (15), the first term in the fiosction penalizes the predicted
current tracking error, while the second term penalizessthigching effort.

The cost function (21) can be written in the compact form

J = 0(k) +2(0(k))"U (k) + U (k)lIg (22)
with
0(k) = [Tz (k) — Y™ (k)3 + A Bu(k - 1)I3 (23a)
Ok) 2 (Tz(k) — Y* (k)X — A (Bu(k —1))" 8)" (23b)
QaY'Yr 4+ ),8Ts. (23c)
Completing the squares shows that
J=UFk) +Q 'Ok)"QU k) +Q 'O(k)) + constk) . (24)

Note that the constant term in (24) is time-varying; it is adtion of (k) andu(k — 1), but independent of
U (k).

B. Solution in Terms of the Unconstrained Optimum

The unconstrainecbptimum of (18) is obtained by minimizationgglectingthe constraints (18b) and (18c),
thus allowingU (k) € R3 x --- x R3. Since Q is positive definite, it follows directly from (24) that the

unconstrained solution at time-stéps given by
Uunc(k> - *Q_l(')(k)' (25)

Since the first element of the unconstrained switching secpi®/ n(k) does not meet the constraints (18b)
and (18c), it cannot be directly used as gating signals te¢hgiconductor switches, bl (k) can be used to
state the solution to theonstrainedoptimization problem (18)—including the constraints (L&ind (18c)—as
shown next.

Following the derivation as in [9], [42], the cost functio?4] can be rewritten by inserting (25) as follows:
J = (U(k) = Uunek)TQ(U (k) — Uuyne(k)) + constk) . (26)

SinceQ is (by definition) symmetric and positive definite foy;, > 0, there exists a uniguavertible andlower

triangular matrix H € R3V>3N  which satisfies:
H"H=Q. (27)

The matrix H can be calculated by noting that its inverg#; !, is also lower triangular and is provided by

the following Cholesky decomposition @ ' [43]:

H'H"=Q" (28)

5Note thatHgHQQ 2 ¢T Q¢ denotes the squared norm of the veggoweighted with the positive definite matri@.



10

In terms of H and
Uunc(k) & HUund(k), (29)
the cost in (26) can be rewritten as
J = (HU (k) — Uyne(k)) " (HU (k) — Uyne(k)) + constk) . (30)
and the optimization problem (18) amounts to finding
Uop(k) =arg min ||HU (k) — Uunc(k)|13 (31a)
subj. to (18b) and (18c) (31b)

Thus, we have rewritten the optimization problem as a (@text)integer least-squaregroblem. Interestingly,

various efficient solution algorithms for (31a) subject 1@l§)—but not taking into account (18c)—have been

developed in recent years; see, e.g., [35], [44] and rebeetherein. In Section V, we tailor one such algorithm

to the optimization problem of interest.

C. Direct MPC with HorizonN =1

Next, we focus on the particular case where the horizon isrtaqual to orfe[2], [3], [8]. Such a predictive

current control algorithm was originally introduced for lade-phasd? L load with voltage sources; the two-

level inverter is considered in [47], whereas the predéctiencept is extended to a three-level inverter in [48].

In both cases, instead of the squared 2-norm, the 1-norm vagged for penalizing the predicted current

error in the cost function. Since in virtually all the litéwae on direct MPC with reference tracking a prediction

horizon of one is considered, thé = 1 case is of particular importance and deserves some adalitdtention.
The low dimensionality of the problem at hand also allowsduorintuitively accessible visualization.
With N =1, we haveU (k) = u(k) and (22) reduces to

J = 0(k) +2(0(k) " u(k) +[|u(k)|G (32)
with
(k) = [|CAz(k) — 5 (k + 1|5 + Aul[u(k = 1[5 (33a)
Ok) = ((CAw(k) ik + 1) CBP — X, (ulk - 1))T)T (33b)
Q= (CBP)"CBP +\,I. (33¢)

To further elucidate this case, it is convenient to use thediod Euler approximation for the prediction model

to obtain:
X Vee, |1 -3 —3
BP = T, , 34
¢ 3D 0 V3 _ V3 (34)
2 2
so that
, 1 -3 -1 100
= (K Yae )y | Ly 1) RN 35
Q=(=p ) @) [-3 1 3| +X |0 1 0] (35)
- 1 00 1

8Note that, in some caseBprizon onesolutions are also multi-step optimal, see [45], [46].
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As in the N > 1 case,@ is always symmetric and positive definite fa; > 0.

For N = 1, the integer least-squares problem formulation (31) be&som

Uopt(k) =arg Ln(ikr)l [tunc(k) — Hu(k)|[3 (36a)
subj. to u(k) € U (36b)
|[Au(k)|lo < 1. (36¢)

where

tunck) & —HQ 'O(k).

Remark 1:If the design parametey,, is chosen to be much larger thaX . Vye/3D)?T?2, then the diagonal
terms of Q in (35) become dominant, i.eQQ ~ \,I. This turnsH effectively into a diagonal matrix with
H ~ /)], see (27). As a result, for sufficiently large values)gf, direct component-wise rounding of
uunc(k) to the constraint set often gives the optimal solution, dse E9].

On the other hand, if, > 0 is much smaller thariX, Vye/3D)?T?2, then

0 0 0
X Vie
~=p T —s B ). (37)
-5 -3

In particular, for\,, = 0, and unlike mentioned in [49], direct component-wise rangaf wync(k) provides—
in general—only suboptimal results. In the second part of plaper [34], we evaluate direct component-wise

rounding for horizons larger than one. O

V. AN EFFICIENT METHOD FORCALCULATING THE OPTIMAL SWITCH POSITIONS

In this section, we show how to adapt the sphere decodingitigo[35], [50] to find the optimal switching
sequencd/ (k). The algorithm is based on branch and bound techniques anasidllustrated in the second
part of this paper [34]—by far more efficient than the exhimestnumeration method described in Section IlI-D.

For ease of notation, throughout this section, we wiiténstead ofU (k).

A. Preliminaries and Key Properties

The basic idea of the algorithm is to iteratively considemdidate sequences, s&y € U, which belong to

a sphere of radiug(k) > 0 centered inl ync(k),
[Uundk) = HU |2 < p(k), (38)

and which satisfy the switching constraint (18c).
A key property used in sphere decoding is that, siBEés triangular, for a given radius, identifying candidate

sequences which satisfy (38) is very simple. In our c&#es lower triangular, and (38) can be rewritten as
p*(k) > (Uy — HayUi)* + Uz — Ho U — Ho0)U2)? + ... (39)

whereU; denotes the-th element ofU no(k), U; is thei-th element ofU, and H; ) refers to the(i, j)-th

entry of H. Therefore, the solution set of (38) can be found by procegedi a sequential manner somewhat
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akin to Gaussian elimination, in the sense that at each stlgpaoone-dimension problem needs to be solved;
for details, see [35].

To determineU, the algorithm requires an initial value for the radius us¢dime &£. On the one hand,
the radiusp(k) should be as small as possible, enabling us to remove as naajdate solutions priori
as possible. On the other hangdk) must not be too small, to ensure that the solution set is mopbe We

propose to choose the initial radius by using the followatlyicated gues®r the optimal solution

o 1 o ... 0]
0 0 I
Uswl(k) = | : .. o] Uoptlk — 1), (40)
0 ... ... 0 I
o ... ... o I

which is obtained by shifting the previous solution by omaeistep and repeating the last switch position. This
is in accordance with the receding horizon paradigm used RCMsee also Fig. 4. Since the optimal solution
at the previous time-step satisfies both constraints (188)(48c), the shifted guess automatically meets these
constraints, too. Thud/suy(k) is a feasible solution candidate of (31). Given (40), théahwvalue of p(k) is
then set to

p(k) = |Uunc(k) — H Usu(k)]2 - (41)

B. Modified Sphere Decoding Algorithm

At each time-stepk, the controller first uses the current statg:), the future reference valués™(k), the
previous switch positioru(k — 1) and the previous optimizel/on(k — 1) to calculateUsuy(k), p(k) and
Uunc(k); see (40), (41), (29), (25), and (23b). The optimal switghgequencd/qp(k) is then obtained by
invoking Algorithm 1:

U opt(k) = MSPHDEC(0), 0, 1, p*(k), Uund(k)), (42)

where() is the empty sét

As can be seen in Algorithm 1, the proposed modification te@spldecoding operates in a recursive manner.
Starting with the first component, the switching sequelices built component by component, by considering
the admissible single-phase switch positions in the caimdtset/. If the associated squared distance is smaller
than the current value gf?, then we proceed to the next component. Once the last compdree, Us, has
been reached, meaning tHatis of full dimension3 NV, thenU is a candidate solution. Il meets the switching
constraint (18c) and if the distance is smaller than theeturoptimum, then we update the incumbent optimal
solutionU pr and also the radiug.

The computational advantages of this algorithm stem frowptidg the notion of branch and bound [39],
[40]. Branching is done over the set of single-phase swit$itipnsi/; bounding is achieved by considering
solutions only within the sphere of current radius, see.(B&he distancel’ exceeds the radius, a certificate

has been found that the branch (and all its associated sagtslequences) provides only suboptimal solutions,

"The notationH (; 1.;) refers to the first entries of thei-th row of H; similarly, Us.; are the firsti elements of the vectol/.
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Algorithm 1 Modified sphere decoding algorithm
function U opr = MSPHDEC(U, d?, i, p?, Uuno)

for eachu € U do
U=u
d? = ||U; — H i 1.5U 145 + d°
if d? < p? then
if i <3N then
MSPHDEC(U, d?,i + 1, p?, Uunc)
else
if U meets (18c}hen

end function

i.e., solutions that are worse than the incumbent optimuneréfore, without having explored this branch, it
can be pruned and removed from further consideration. Qutie optimization procedure, whenever a better
incumbent solution is found, the radius is reduced and tiergpthus tightened, so that the set of candidate
sequences is as small as possible, but non-empty. The tyagfrthe computational burden relates to the
computation ofd’ via evaluation of the term#1 ; ;.;U1.;. Thanks to (39)d’ can be computed sequentially,
by computing only the squared addition due to ittecomponent oJ. In particular, the sum of squares dh
accumulated over the layetsto i — 1, does not need to be recomputed.

It is worth emphasizing that the computational advantadethe proposed algorithm do not come at the
expense of optimality: The algorithm always provides th&mal switch positions. This can be easily verified
by recalling that the optimal constrained solution miniesizthe Euclidian distancé to the unconstrained
solution. Moreover, the use of the initial radius in (41) ardees that a feasible switching sequence (which
satisfies the constraints) will be returned. Successiveegabfp? in the iterations are always associated to, and
allow for, feasible sequences. The algorithm stops wherbgilecentered around/ .. only contains a single

element. The latter amounts to the optimal constrainedisolu

C. lllustrative Example for the HorizoW = 1 Case

To provide additional insight in the operation of the algjom, we give an illustrative example of one problem
instance. Consider the horizov = 1 case with the sampling interval = 25 us and the penalty, = 1-1073.
Assuming a drive system with a three-level inverter as in. Bigthe set of single-phase switch positions is

U ={-1,0,1}. We use the same drive parameters as in [34].
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(b) Optimization problem in the transformed coordinateteyscre-
(a) Optimization problem in the orthogonal coordinate eyst ated by H

Fig. 5: Visualization of the sphere decoding algorithm ie #fd-plane for the horizonV = 1 case

The set of admissible three-phase switch positiefis) € U is shown in Fig. 5(a) as black circles. To simplify
the exposition, only thab-plane is shown in this figure, neglecting thexis. Suppose that(k—1) = [1 0 1]
and that the problem instance at time-stepields the unconstrained solutiann(k) = [0.647 — 0.533 —
0.114]7, shown as a blue circle in the figure. Rounding.(k) to the next integer values leads to the possible
feasible solutionusys(k) = [I — 1 0]7, which corresponds to the red circle. It turns out, howevas-shown
in the sequel-that the optimal solution isop(k) = [1 0 0]7, indicated by the green circle.

The modified sphere decoding problem is solved in the tramsfd coordinate system, which is created by

the generator matrix
36.45 0 0

H=|-6068 3695 0 |-107%,
—5.265 —5.265 37.32
see (27). UsingH, the integer solutions € U in the orthogonal coordinate system can be transformed to
Hwu, which are shown as black squares in Fig. 5(b) and connegtetebdash-dotted lines. The coordinate
system created b is slightly skewed, but almost orthogonal, with the angleneen the axes beingg.2°
for the chosen parameters. As discussed in Section IV-@Gedsing\,, results in this angle converging towards
90°.

The optimal solutionuop(k) is obtained by minimizing the distance between the uncamstd solution and
the sequence of integer switch positions in the transforooeddinate system. The initial value pfk) results
from (41) and is equal t6.638. This defines a ball of radiyg(k) arounduync(k) = Huunc(k), which is shown
in the ab-plane in Fig. 5(b) as the blue circle. This ball reduces tieof possible solutions from3® = 27
elements to two, since only two transformed integer sofistif (%) lie within the sphere, namelf uop(k)
(the green square) anH ug,(k) (the red square). The algorithm sequentially computes istarttes between

uync(k) and each of these two points. These distances are indicgtetlgreen and red line, respectively. The
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green line is slightly shorter than the red one. Therefori@jmizing the distance yields the optimal solution

uopt(k) = [1 0 0]7 and not the (suboptimal) naively rounded switch positiea,(k) = [I — 1 0]7.

VI. CONCLUSIONS

This manuscript addresses the major, and so far unsolvetgon of efficiently solving the optimization
problem of direct model predictive control schemes withyMeng prediction horizons. As was shown, this can
be achieved by adopting the notion of sphere decoding andiloyihg it to the power electronics problem at
hand. Sphere decoding is effectively a smart branch anddmethod. It is expected that sphere decoding will
enable the use of long prediction horizons in power ele@tsby facilitating the solution of the optimization
problem within one sampling interval of, say, 25.

The method proposed and results obtained in this paper agetlgi applicable to both the machine-side
inverter in an ac drive setting, as well as to grid-side coterg using direct MPC of horizon lengthy > 1.
The concepts can also be used for converter topologies tithrrthe neutral point clamped converter—indeed,
they are particularly promising for topologies with a highnmber of voltage levelsprovided that the system
can be described by a switched linear model.

As shown in the second part of this paper [34], long predictiorizons improve the converter performance
at steady-state operating conditions, by either redudirgstvitching frequency or the total harmonic distortion
(THD) of the current, or both. Specifically, direct MPC witlorizon N = 10 reduces the current THD by
approximately 20%, when compared to tNe= 1 case and considering a three-level inverter. As a resuécti
MPC can outperform space vector modulation and carrieed®SWM. In some cases, the performance of direct
MPC may even approach the one of optimized pulse patternshverte generally considered to provide the

upper bound on the attainable steady-state performance.
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VII. APPENDIX

The matrices corresponding to the continuous-time priediahodel (8) are

1 X Xm
- V35 WP
0 -1 gy Xe X
F: Ts D TTD , (43a)
.
0 Xom w L
10
X, Ve | 01 1000
G=:r2% , C = . (43Db)
D219 0 01 0 0
0 0
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The matrices used in (20) and (21) are the following:

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
El

[20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

CBP 0 0
CABP CBP 0
Y = _ _ . (44)
cAN'BrP cAY?2BP ... CBP
‘1 0o ... 0] 1]
CA
,I I 0 0
CA?
T = ~|,8=]0 -1 - ofl,E=|o0 (45)
cAV
0 0 - I 0]
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