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Multistep Finite Control Set Model Predictive

Control for Power Electronics
 

Tobias Geyer, Senior Member, IEEE and Daniel E. Quevedo, Member, IEEE

Abstract

For direct model predictive control with reference tracking of the converter current, we derive an efficient

optimization algorithm that allows us to solve the control problem for very long prediction horizons. This is

achieved by adapting sphere decoding principles to the underlying optimization problem. The proposed algorithm

requires only few computations and directly provides the optimal switch positions. Since the computational burden

of our algorithm is effectively independent of the number ofconverter output levels, the concept is particularly

suitable for multi-level topologies with a large number of voltage levels. Our method is illustrated for the case

of a variable speed drive system with a three-level voltage source converter.

Index Terms

Model predictive control, finite control set, sphere decoding, branch and bound, quantization, power elec-

tronics, drive systems

I. I NTRODUCTION

During the past decade, model predictive control (MPC) for power electronics has received considerable

attention; see, e.g., [2] and the references therein. MPC can be usedboth for a large variety of topologies and

in various operating conditions,with its flexibility stemming from the online optimization of a suitable cost

function. In particular, direct (orfinite control set) MPC schemes tackle the current control and modulation

problem in one computational stage and are, thus, promisingalternatives to conventional control schemes such

as PI controllers in a field-oriented setting. With direct MPC, the manipulated variable chosen by the controller

is the inverter switch position, which is restricted to belong to a discrete and finite set [3]–[8].Therefore, a

modulator is not needed.

A disadvantage of usingdirect MPC is that solving the underlying optimization problem and, thus, deriving

the discrete manipulated variable, proves to be computationally challenging. Computational issues become

especially important for long prediction horizons, since the number of possible switching sequences grows
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exponentially as the horizon length is increased [9]. As a result, when reference tracking of the converter

currents is considered, the prediction horizon is usually set to one1.

An alternative formulation ofdirect MPC for power electronics and variable speed drives was presented

in [12], [13]. In this approach, the machine’s electromagnetic torque and stator flux magnitude, as well as the

inverter’s neutral point potential are kept within upper and lower bounds. Using the notion of extrapolation and

restricting oneself to switching close to the bounds, largeprediction horizons can be achieved [14], [15]. The

same concept can be used to control the converter currents instead of the torque and stator flux [16]. Branch

and bound methods can be added to tackle the high computational burden, which can typically be reduced by

an order of magnitude [17]. This results in a family of MPC schemes with very long prediction horizons and

a computational complexity that is suitable for implementation on a modern DSP [18]. It has been shown that

long prediction horizons lead to a significant performance improvement at steady-state operating conditions,

lowering the current distortions and/or the switching frequency [19].

Instead of directly manipulating the switch positions, in some approaches a modulator is added between

the controller and the inverter. In this case, the MPC decision variables are continuous, typically resulting in

a quadratic program (QP) [20]–[23]. The latter can be solvedin real time using fast QP solvers [24]–[26],

or pre-computed off-line for all possible states, by using the so-called explicit state-feedback control law of

MPC [27]. Alternatively, generalized predictive control might be employed [28].

Despite the encouraging results in [19] for the scheme of [12], [13], in case of the basic direct MPC

formulations in power electronics and drives (as used, e.g., in [3]–[8]), the question of whether longer horizons

lead to performance improvements or not remains largely unanswered2. We attribute the main reason for this

knowledge gap to computational issues: In both MPC families, the optimization problem has traditionally been

solved using some form of exhaustive search, i.e., the set ofadmissible switching sequences is enumerated,

the corresponding response of the power electronic system is predicted, the cost function is evaluated and

the switching sequence that yields the minimal cost is chosen as the optimal one. Enumeration is sometimes

perceived as an ”easy” task; this is a misconception since enumeration is applicable only to MPC problems

featuring a limited number of switching sequences. Exhaustive enumeration is not practical for problems with

thousands of sequences, which arise from MPC formulations with prediction horizons of four or more.

Motivated by the observations made above, this manuscript and its second part [34] examine the use of

prediction horizons longer than one for direct MPC with reference tracking. To address computational issues,

our work exploits the geometrical structure of the underlying optimization problem and presents an efficient

optimization algorithm. The algorithm uses elements of sphere decoding [35] to provide optimal switching

sequences, requiring only little computational resources. This enables the use of long prediction horizons in

power electronics applications.

1The authors are aware of only two exceptions, namely [10], inwhich a horizon ofN = 2 is used, and [11]. In the latter, a heuristic

is used to reduce the number of switching sequences for longer horizons. Moreover, a two-step prediction approach has been proposed

in [3]. In here, in a first step, the computation delay is compensated, followed by a standard predictive controller withN = 1. Therefore,

this is considered to be anN = 1 approach.

2It is worth emphasizing that the use of large horizons involving finite control set MPC has been shown to be beneficial in various fields

other than power electronics; see, e.g., [29]–[33].
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The proposed computational approach is derived for a linearsystem with a switched three-phase input with

equal switching steps in all phases. Specifically, the present work focuses on a variable speed drive system,

consisting of a three-level neutral point clamped voltage source inverter driving a medium-voltage induction

machine. Our results in the second part [34] show that using prediction horizons larger than one does, in fact,

provide significant performance benefits. In particular, atsteady-state operation, the current distortions and/or

the switching frequency can be reduced considerably with respect to direct MPC witha horizon ofone. Indeed,

in some cases, a steady-state performance can be achieved that is similar to the one of optimized pulse patterns

[36].

In summary, the contribution of this paper and its second part is fourfold, by substantiating the following

statements. First, direct MPC problems with reference tracking and long prediction horizons can be solved in

a computationally efficient way, by adopting sphere decoding and tailoring it to the problem at hand. Second,

long horizons provide at steady-state a better performancethan the horizon one case. Third, long horizons do

not have an adverse impact on the transient performance. Fourth, the computation time can be further reduced

by using a simple rounding scheme. The latter gives suboptimal results, which are close to optimal when the

switching effort is very high.

The remainder of this paper is organized as follows. SectionII describes the drive system case study used

throughout the two papers. Section III states the model predictive current control problem to be solved, which

can be cast as an integer quadratic program, as shown in Section IV. By adopting the notion of sphere decoding,

the integer program can be solved efficiently, as described in detail in Section V. Conclusions are provided in

Section VI. The second part of this paper provides a detailedperformance evaluation of direct MPC with long

prediction horizons both at steady-state operation and during torque transients. A suboptimal MPC scheme can

be obtained through direct rounding. The computational burden is analyzed and a detailed discussion of the

results is provided.

Throughout both papers, we use normalized quantitiesand adopt the per unit (pu) system. Extending this to

the time scalet, one time unit corresponds to1/ωb seconds, whereωb is the base angular velocity. Additionally,

we useξ(t), t ∈ R, to denote continuous-time variables, andξ(k), k ∈ N, to denote discrete-time variables

with the sampling intervalTs. All variablesξabc = [ξa ξb ξc]
T in the three-phase system (abc) are transformed

to ξαβ = [ξα ξβ ]
T in the stationary orthogonalαβ coordinates throughξαβ = P ξabc, where

P =
2

3





1 − 1
2 − 1

2

0
√
3
2 −

√
3
2



 . (1)

II. D RIVE SYSTEM CASE STUDY

Whilst the ideas of the present work can be applied to generalac-dc, dc-dc, dc-ac and ac-ac topologies with

linear loads, including active front ends, inverters withRL loads and inverters with ac machines, we focus our

exposition on the setup describedin the sequel.

A. Physical Model of the Inverter

As an illustrative example of a medium-voltage power electronic system, consider a variable speed drive

consisting of a three-level neutral point clamped (NPC) voltage source inverter (VSI) driving an induction
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Fig. 1: Three-level three-phase neutral point clamped voltage source inverter driving an induction motor with a fixed neutral point potential

machine (IM), as depicted in Fig. 1. The total dc-link voltage Vdc is assumed to be constant and the neutral

point potential N is fixed.

Let the integer variablesua, ub, uc ∈ U denote the switch positions in the three phase legs, where for a

three-level inverter the constraint set is given by

U , {−1, 0, 1} . (2)

In each phase, the values−1, 0, 1 correspond to the phase voltages−Vdc
2 , 0,

Vdc
2 , respectively. Thus, the voltage

applied to the machine terminals in orthogonal coordinatesis

vs,αβ =
1

2
Vdcuαβ =

1

2
VdcP u (3)

with

u , [ua ub uc]
T . (4)

The voltage vectors are shown in Fig. 2.

B. Physical Model of the Machine

The state-space model of a squirrel-cage induction machinein the stationaryαβ reference frame is summa-

rized hereafter. For the current control problem at hand, itis convenient to choose the stator currentsisα and

isβ as state variables. The state vector is complemented by the rotor flux linkagesψrα andψrβ , and the rotor’s

angular velocityωr. The model input are the stator voltagesvsα andvsβ . The model parameters are the stator

and rotor resistancesRs andRr, the stator, rotor and mutual reactancesXls, Xlr andXm, respectively, the

inertia J , and the mechanical load torqueTℓ. All rotor quantities are referred to the stator circuit. Interms of

the above quantities, the continuous-time state equationsare [37], [38]:

dis
dt

=− 1

τs
is +

(

1

τr
− ωr





0 −1

1 0





)

Xm

D
ψr +

Xr

D
vs (5a)

dψr

dt
=
Xm

τr
is −

1

τr
ψr + ωr





0 −1

1 0



ψr (5b)

dωr

dt
=
1

J
(Te − Tℓ) , (5c)
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Fig. 2: Voltage vectors produced by a three-level inverter shown in theαβ plane along with the corresponding values of the three-phase

switch positionsu (where ’+’ refers to ’1’ and ’−’ to ’-1’)

where we have usedXs , Xls +Xm, Xr , Xlr +Xm, D , XsXr −X2
m. (To simplify the notation, in (5)

we droppedαβ from the vectorsis, ψr andvs.) The transient stator time constant and the rotor time constant

are equal toτs , XrD/(RsX
2
r +RrX

2
m) andτr , Xr/Rr, whereas the electromagnetic torque is given by

Te =
Xm

Xr

(ψrαisβ − ψrβisα) . (6)

III. M ODEL PREDICTIVE CURRENT CONTROL

The control problem is formulated in theαβ reference frame. Leti∗s denote the reference of the instantaneous

stator current, withi∗s , [i∗sα i∗sβ]
T . The objective of the current controller is to manipulate the three-phase

switch positionu, see (4), such that the stator currentis closely tracks its reference. At the same time, the

switching effort, i.e., the switching frequency or the switching losses, are to be kept small. To avoid a shoot-

through, direct switching between1 and−1 in a phase leg is prohibited.

The block diagram of the model predictive current controller is shown in Fig. 3. As can be appreciated in

that figure, the controller computes predicted trajectories of the variables of interest in order to optimize a

performance criterion online. For the predictions, the measured stator current is required along with the rotor

flux vector, which is typically obtained using a flux observer.

A. Prediction Model

The predictive current controller relies on an internal model of the physical drive system to predict future

stator current trajectories. The rotor speedωr is assumed to be constant within the prediction horizon, which

turns the speed into a time-varying parameter. The prediction horizon being less than one ms, this appears to
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Fig. 3: Model predictive current control with reference tracking for the three-phase three-level NPC inverter with an induction machine

be a mild assumption3.

For our subsequent analysis, it is convenient to describe the system by introducing the following state vector

of the drive model:

x , [isα isβ ψrα ψrβ ]
T . (7)

The stator current is taken as the system output vector, i.e., y = is, whereas the switch positionuαβ in the

orthogonal coordinate system constitutes the input vector, which is provided by the controller.

Given the model described in Section II, in terms ofx, the continuous-time prediction model becomes

dx(t)

dt
= F x(t) +Guαβ(t) (8a)

y(t) = C x(t) , (8b)

where the matricesF ,G andC are provided in the appendix.Note thatF andG depend on the rotor speedωr

and the dc-link voltageVdc, respectively. Therefore, in a general setup, these two matrices need to be considered

to be time-varying.

By integrating (8a) fromt = kTs to t = (k + 1)Ts and observing that during this time-intervaluαβ(t) is

constant and equal touαβ(k), one obtains the discrete-time representation

x(k + 1) = Ax(k) +Buαβ(k) (9a)

y(k) = C x(k) (9b)

with k ∈ N, whereA , eFTs andB , −F−1
(

I −A
)

G. Note thate refers to the matrix exponential, andI

is the identity matrix of appropriate dimension (here4× 4).

3Nevertheless, including the speed as an additional state inthe model might be necessary for highly dynamic drives and/or drives with

a small inertia. The additional computational complexity this would entail is marginal.
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B. Cost Function

The control problem at time-stepk of tracking the current reference over a finite prediction horizon of length

N can be addressed through minimization of the cost function

J =

k+N−1
∑

ℓ=k

||ie,abc(ℓ+ 1)||22 + λu||∆u(ℓ)||22 , (10)

where the current error inabc-frame is defined as

ie,abc , i
∗
s,abc − is,abc , (11)

and the switching effort is defined as

∆u(k) , u(k)− u(k − 1) , (12)

thereby referring to the switch positions in the three phases a, b and c.4 The first term in (10) penalizes the

predicted three-phase current error at the time-stepsk+1, k+2, . . .k+N , using the squared Euclidean norm;

the second term penalizes the switching effort at the time-stepsk, k+1, . . .k+N − 1. The parameterλu ≥ 0

is a tuning parameter, which adjusts the trade-off between the tracking accuracy (deviation of the current from

its reference) and the switching effort.

Since in (7), the stator currents are represented inαβ coordinates rather than inabc, it is convenient to

express the first term in (10) also inαβ coordinates. Recall thatie,abc = P−1ie,αβ holds with the pseudo

inverse being

P−1 =











1 0

− 1
2

√
3
2

− 1
2 −

√
3
2











. (13)

Noting thatP−T P−1 = 1.5I, the first term in (10) can thus be rewritten as

||ie,abc||22 = (ie,abc)
T ie,abc = 1.5 ||ie,αβ ||22 . (14)

Omitting the factor 1.5 to simplify the expression, the equivalent cost function with the current error formulated

in orthogonal coordinates becomes

J =

k+N−1
∑

ℓ=k

||ie,αβ(ℓ+ 1)||22 + λu||∆u(ℓ)||22 , (15)

where

∆u(ℓ) = u(ℓ)− u(ℓ− 1) (16a)

ie,αβ(ℓ+ 1) = i∗s,αβ(ℓ + 1)−C x(ℓ + 1) (16b)

x(ℓ+ 1) = Ax(ℓ) +BP u(ℓ). (16c)

Current referencesi∗s,αβ at future time steps can be predicted by assuming a constant amplitude and frequency

of the current reference signal. Alternatively, to simplify the computations, future current references can be

derived by extrapolating (e.g., linearly or quadratically) from past and present reference values.

4Since in each phase, switching is only possible by one step upor down, i.e., we have||∆u(k)||∞ ≤ 1, the 1-norm and the (squared)

Euclidean norm of the switching effort yield the same cost:||∆u(k)||1 = ||∆u(k)||22.
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(b) Horizon at time-stepk + 1

Fig. 4: Receding horizon policy exemplified for the horizonN = 6. The optimal switching sequenceUopt is chosen such that the predicted

output sequenceY tracks the output referenceY ∗. Out of the sequenceUopt only the first elementuopt is applied to the inverter

C. Receding Horizon Optimization

We introduce the switching sequence

U(k) =
[

uT (k) . . . uT (k +N − 1)
]T

, (17)

which represents the sequence of inverter switch positionsthe controller has to decide upon. The optimization

problem underlying direct MPC with current reference tracking can then be stated as

Uopt(k) = arg min
U(k)

J (18a)

subj. to U(k) ∈ U (18b)

||∆u(ℓ)||∞ ≤ 1, ∀ℓ = k, . . . , k +N − 1. (18c)

The cost functionJ depends on the state vectorx(k), the previously chosen switch positionu(k − 1) and the

tentative switching sequenceU(k). In (18b),U , U × · · · ×U is theN -times Cartesian product of the setU ,

whereU denotes the set of discrete three-phase switch positions. The latter is obtained from the single-phase

constraintsU via U = U × U × U , as defined in (2). We refer to (18c) as switching constraints, which are

imposed to avoid solutions leading to a shoot-through in theconverter.

Following the receding horizon optimization principle, only the first element of the optimizing sequence

Uopt(k) is applied to the semiconductor switches at time-stepk; see, e.g. [2]. At the next time-step,k+1, and

given new information onx(k+ 1), another optimization is performed, providing the optimalswitch positions

at timek + 1. The optimization is repeated online andad infinitum, as exemplified in Fig. 4.

D. Obtaining the Switch Positions via Exhaustive Search

Due to the discrete nature of the decision variableU(k), the optimization problem (18) is difficult to solve,

except for short horizons. In fact, as the prediction horizon is enlarged and the number of decision variables

is increased, the (worst-case) computational complexity grows exponentially, thus, cannot be bounded by a

polynomial, see also [9]. The difficulties associated with minimizing J become apparent when using exhaustive

search. With this method, the set of admissible switching sequencesU(k) is enumerated and the cost function
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evaluated for each such sequence. The switching sequence with the smallest cost is (by definition) the optimal

one and its first element is chosen as the control input. At every time-stepk, exhaustive search entails the

following procedure:

1) Given the previously applied switch positionu(k − 1) and taking into account the constraints (18b) and

(18c), determine the set of admissible switching sequencesover the prediction horizon.

2) For each of these switching sequences, compute the state trajectory according to (16c) and the predicted

evolution of the current error (16b).

3) For each switching sequence, compute the costJ according to (15).

4) Choose the switching sequence,Uopt(k), which minimizes the cost. Apply its first element,uopt(k), to

the converter.

At the next time-step,k+1, repeat the above procedure, using updated information on the current state vector,

x(k + 1), and reference trajectory,i∗s,αβ(k + 1), . . . , i∗s,αβ(k +N + 1).

It is easy to see that exhaustive search is computationally feasible only for very small horizonsN , such as

one or two. ForN = 5, assuming a three-level converter and neglecting the switching constraint (18c), the

number of switching sequences amounts to1.4 · 107. This is clearly impractical, even when imposing (18c),

which reduces the number of sequences by an order of magnitude.

Techniques from mathematical programming, such as branch and bound [17], [39], [40], can be used to reduce

the computational burden of solving (18). In particular, off-the-shelf solvers such as CPLEX [41], include a

wealth of smart heuristics and methods. However, none of thegeneral methods take advantage of the particular

structure of the optimization problem (18) and the fact thatin MPC the solution is implemented in a receding

horizon manner. One of the main aims of the present work is to shown how these distinguishing features of

the problem at hand can be exploited in order to greatly reduce the computational burden, thereby enabling the

use of large horizons in applications.

IV. I NTEGERQUADRATIC PROGRAMMING FORMULATION

In this section, we reformulate the optimization problem (18) in vector form and state it as a truncated integer

least squares problem.

A. Optimization Problem in Vector Form

By successively using (16c), the state vector at time-stepℓ+ 1 can be represented as a function of the state

vector at time-stepk and the switching sequenceU(k) as follows:

x(ℓ+ 1) = Aℓ−k+1 x(k) +
[

Aℓ−kBP . . . A0BP

]

U(k) (19)

with ℓ = k, . . . , k +N − 1. Let Y (k) denote the output sequence over the prediction horizon fromtime-step

k + 1 to k +N , i.e. Y (k) = [yT (k + 1), . . . ,yT (k +N)]T andY ∗(k) correspondingly the output reference.

Substituting (19) into (9b) gives

Y (k) = Γx(k) +ΥU(k), (20)

where the matricesΓ andΥ are given in the appendix.
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The dynamical evolution of the prediction model (16) can then be included in the cost function (15), yielding

J = ||Γx(k) +ΥU(k)− Y ∗(k)||22 + λu||SU(k)−Eu(k − 1)||22 , (21)

whereS andE are defined in the appendix. As in (15), the first term in the cost function penalizes the predicted

current tracking error, while the second term penalizes theswitching effort.

The cost function (21) can be written in the compact form5

J = θ(k) + 2(Θ(k))TU(k) + ||U(k)||2Q (22)

with

θ(k) , ||Γx(k)− Y ∗(k)||22 + λu||Eu(k − 1)||22 (23a)

Θ(k) ,
((

Γx(k)− Y ∗(k)
)T

Υ− λu
(

Eu(k − 1)
)T
S
)T

(23b)

Q , Υ
T
Υ+ λuS

TS . (23c)

Completing the squares shows that

J = (U(k) +Q−1
Θ(k))TQ(U(k) +Q−1

Θ(k)) + const(k) . (24)

Note that the constant term in (24) is time-varying; it is a function ofx(k) andu(k − 1), but independent of

U(k).

B. Solution in Terms of the Unconstrained Optimum

The unconstrainedoptimum of (18) is obtained by minimization,neglectingthe constraints (18b) and (18c),

thus allowingU(k) ∈ R
3 × · · · × R

3. SinceQ is positive definite, it follows directly from (24) that the

unconstrained solution at time-stepk is given by

Uunc(k) = −Q−1
Θ(k) . (25)

Since the first element of the unconstrained switching sequenceUunc(k) does not meet the constraints (18b)

and (18c), it cannot be directly used as gating signals to thesemiconductor switches, butUunc(k) can be used to

state the solution to theconstrainedoptimization problem (18)—including the constraints (18b) and (18c)—as

shown next.

Following the derivation as in [9], [42], the cost function (24) can be rewritten by inserting (25) as follows:

J = (U(k)−Uunc(k))
TQ(U(k)−Uunc(k)) + const(k) . (26)

SinceQ is (by definition) symmetric and positive definite forλu > 0, there exists a uniqueinvertibleand lower

triangular matrixH ∈ R
3N×3N , which satisfies:

HTH = Q. (27)

The matrixH can be calculated by noting that its inverse,H−1, is also lower triangular and is provided by

the following Cholesky decomposition ofQ−1 [43]:

H−1H−T = Q−1. (28)

5Note that||ξ||2
Q

, ξTQξ denotes the squared norm of the vectorξ weighted with the positive definite matrixQ.
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In terms ofH and

Ūunc(k) ,HUunc(k), (29)

the cost in (26) can be rewritten as

J = (HU(k)− Ūunc(k))
T (HU(k)− Ūunc(k)) + const(k) . (30)

and the optimization problem (18) amounts to finding

Uopt(k) = arg min
U(k)

||HU(k)− Ūunc(k)||22 (31a)

subj. to (18b) and (18c). (31b)

Thus, we have rewritten the optimization problem as a (truncated)integer least-squaresproblem. Interestingly,

various efficient solution algorithms for (31a) subject to (18b)—but not taking into account (18c)—have been

developed in recent years; see, e.g., [35], [44] and references therein. In Section V, we tailor one such algorithm

to the optimization problem of interest.

C. Direct MPC with HorizonN = 1

Next, we focus on the particular case where the horizon is taken equal to one6 [2], [3], [8]. Such a predictive

current control algorithm was originally introduced for a three-phaseRL load with voltage sources; the two-

level inverter is considered in [47], whereas the predictive concept is extended to a three-level inverter in [48].

In both cases, instead of the squared 2-norm, the 1-norm was proposed for penalizing the predicted current

error in the cost function. Since in virtually all the literature on direct MPC with reference tracking a prediction

horizon of one is considered, theN = 1 case is of particular importance and deserves some additional attention.

The low dimensionality of the problem at hand also allows foran intuitively accessible visualization.

With N = 1, we haveU(k) = u(k) and (22) reduces to

J = θ(k) + 2(Θ(k))Tu(k) + ||u(k)||2Q (32)

with

θ(k) = ||CAx(k)− i∗s(k + 1)||22 + λu||u(k − 1)||22 (33a)

Θ(k) =
(

(

CAx(k)− i∗s(k + 1)
)T
CBP − λu(u(k − 1))T

)T

(33b)

Q =
(

CBP
)T
CBP + λuI . (33c)

To further elucidate this case, it is convenient to use the forward Euler approximation for the prediction model

to obtain:

CBP =
XrVdc

3D
Ts





1 − 1
2 − 1

2

0
√
3
2 −

√
3
2



 , (34)

so that

Q =

(

XrVdc

3D

)2
(

Ts
)2











1 − 1
2 − 1

2

− 1
2 1 − 1

2

− 1
2 − 1

2 1











+ λu











1 0 0

0 1 0

0 0 1











. (35)

6Note that, in some cases,horizon onesolutions are also multi-step optimal, see [45], [46].



11

As in theN > 1 case,Q is always symmetric and positive definite forλu > 0.

ForN = 1, the integer least-squares problem formulation (31) becomes

uopt(k) = argmin
u(k)

||ūunc(k)−Hu(k)||22 (36a)

subj. to u(k) ∈ U (36b)

||∆u(k)||∞ ≤ 1 . (36c)

where

ūunc(k) , −HQ−1
Θ(k) .

Remark 1: If the design parameterλu is chosen to be much larger than(XrVdc/3D)2T 2
s , then the diagonal

terms ofQ in (35) become dominant, i.e.,Q ≈ λuI. This turnsH effectively into a diagonal matrix with

H ≈
√
λuI, see (27). As a result, for sufficiently large values ofλu, direct component-wise rounding of

ūunc(k) to the constraint set often gives the optimal solution, see also [9].

On the other hand, ifλu > 0 is much smaller than(XrVdc/3D)2T 2
s , then

H ≈ XrVdc

3D
Ts











0 0 0

−
√
3
2

√
3
2 0

− 1
2 − 1

2 1











. (37)

In particular, forλu = 0, and unlike mentioned in [49], direct component-wise rounding of ūunc(k) provides—

in general—only suboptimal results. In the second part of this paper [34], we evaluate direct component-wise

rounding for horizons larger than one. �

V. A N EFFICIENT METHOD FORCALCULATING THE OPTIMAL SWITCH POSITIONS

In this section, we show how to adapt the sphere decoding algorithm [35], [50] to find the optimal switching

sequenceUopt(k). The algorithm is based on branch and bound techniques and is—as illustrated in the second

part of this paper [34]—by far more efficient than the exhaustive enumeration method described in Section III-D.

For ease of notation, throughout this section, we writeU instead ofU(k).

A. Preliminaries and Key Properties

The basic idea of the algorithm is to iteratively consider candidate sequences, sayU ∈ U, which belong to

a sphere of radiusρ(k) > 0 centered inŪunc(k),

‖Ūunc(k)−HU‖2 ≤ ρ(k) , (38)

and which satisfy the switching constraint (18c).

A key property used in sphere decoding is that, sinceH is triangular, for a given radius, identifying candidate

sequences which satisfy (38) is very simple. In our case,H is lower triangular, and (38) can be rewritten as

ρ2(k) ≥ (Ū1 −H(1,1)U1)
2 + (Ū2 −H(2,1)U1 −H(2,2)U2)

2 + . . . (39)

whereŪi denotes thei-th element ofŪunc(k), Ui is the i-th element ofU , andH(i,j) refers to the(i, j)-th

entry ofH. Therefore, the solution set of (38) can be found by proceeding in a sequential manner somewhat
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akin to Gaussian elimination, in the sense that at each step only a one-dimension problem needs to be solved;

for details, see [35].

To determineU , the algorithm requires an initial value for the radius usedat time k. On the one hand,

the radiusρ(k) should be as small as possible, enabling us to remove as many candidate solutionsa priori

as possible. On the other hand,ρ(k) must not be too small, to ensure that the solution set is non-empty. We

propose to choose the initial radius by using the followingeducated guessfor the optimal solution

U sub(k) =























0 I 0 . . . 0

0 0 I
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 I

0 . . . . . . 0 I























Uopt(k − 1), (40)

which is obtained by shifting the previous solution by one time-step and repeating the last switch position. This

is in accordance with the receding horizon paradigm used in MPC, see also Fig. 4. Since the optimal solution

at the previous time-step satisfies both constraints (18b) and (18c), the shifted guess automatically meets these

constraints, too. Thus,U sub(k) is a feasible solution candidate of (31). Given (40), the initial value ofρ(k) is

then set to

ρ(k) = ‖Ūunc(k)−HU sub(k)‖2 . (41)

B. Modified Sphere Decoding Algorithm

At each time-stepk, the controller first uses the current statex(k), the future reference valuesY ∗(k), the

previous switch positionu(k − 1) and the previous optimizerUopt(k − 1) to calculateU sub(k), ρ(k) and

Ūunc(k); see (40), (41), (29), (25), and (23b). The optimal switching sequenceUopt(k) is then obtained by

invoking Algorithm 1:

Uopt(k) = MSPHDEC(∅, 0, 1, ρ2(k), Ūunc(k)), (42)

where∅ is the empty set7.

As can be seen in Algorithm 1, the proposed modification to sphere decoding operates in a recursive manner.

Starting with the first component, the switching sequenceU is built component by component, by considering

the admissible single-phase switch positions in the constraint setU . If the associated squared distance is smaller

than the current value ofρ2, then we proceed to the next component. Once the last component, i.e.,U3N , has

been reached, meaning thatU is of full dimension3N , thenU is a candidate solution. IfU meets the switching

constraint (18c) and if the distance is smaller than the current optimum, then we update the incumbent optimal

solutionUopt and also the radiusρ.

The computational advantages of this algorithm stem from adopting the notion of branch and bound [39],

[40]. Branching is done over the set of single-phase switch positionsU ; bounding is achieved by considering

solutions only within the sphere of current radius, see (38). If the distanced′ exceeds the radius, a certificate

has been found that the branch (and all its associated switching sequences) provides only suboptimal solutions,

7The notationH(i,1:i) refers to the firsti entries of thei-th row of H; similarly, U1:i are the firsti elements of the vectorU .
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Algorithm 1 Modified sphere decoding algorithm

function UOPT = MSPHDEC(U , d2, i, ρ2, Ūunc)

for eachu ∈ U do

Ui = u

d′2 = ||Ūi −H(i,1:i)U1:i||22 + d2

if d′2 ≤ ρ2 then

if i < 3N then

MSPHDEC(U , d′2, i+ 1, ρ2, Ūunc)

else

if U meets (18c)then

UOPT = U

ρ2 = d′2

end if

end if

end if

end for

end function

i.e., solutions that are worse than the incumbent optimum. Therefore, without having explored this branch, it

can be pruned and removed from further consideration. During the optimization procedure, whenever a better

incumbent solution is found, the radius is reduced and the sphere thus tightened, so that the set of candidate

sequences is as small as possible, but non-empty. The majority of the computational burden relates to the

computation ofd′ via evaluation of the termsH(i,1:i)U1:i. Thanks to (39),d′ can be computed sequentially,

by computing only the squared addition due to theith component ofU . In particular, the sum of squares ind,

accumulated over the layers1 to i− 1, does not need to be recomputed.

It is worth emphasizing that the computational advantages of the proposed algorithm do not come at the

expense of optimality: The algorithm always provides the optimal switch positions. This can be easily verified

by recalling that the optimal constrained solution minimizes the Euclidian distanced to the unconstrained

solution. Moreover, the use of the initial radius in (41) guarantees that a feasible switching sequence (which

satisfies the constraints) will be returned. Successive values ofρ2 in the iterations are always associated to, and

allow for, feasible sequences. The algorithm stops when theball centered around̄Uunc only contains a single

element. The latter amounts to the optimal constrained solution.

C. Illustrative Example for the HorizonN = 1 Case

To provide additional insight in the operation of the algorithm, we give an illustrative example of one problem

instance. Consider the horizonN = 1 case with the sampling intervalTs = 25µs and the penaltyλu = 1 ·10−3.

Assuming a drive system with a three-level inverter as in Fig. 1, the set of single-phase switch positions is

U = {−1, 0, 1}. We use the same drive parameters as in [34].
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Fig. 5: Visualization of the sphere decoding algorithm in the ab-plane for the horizonN = 1 case

The set of admissible three-phase switch positionsu(k) ∈ U is shown in Fig. 5(a) as black circles. To simplify

the exposition, only theab-plane is shown in this figure, neglecting thec-axis. Suppose thatu(k−1) = [1 0 1]T

and that the problem instance at time-stepk yields the unconstrained solutionuunc(k) = [0.647 − 0.533 −
0.114]T , shown as a blue circle in the figure. Roundinguunc(k) to the next integer values leads to the possible

feasible solutionusub(k) = [1 − 1 0]T , which corresponds to the red circle. It turns out, however—as shown

in the sequel—that the optimal solution isuopt(k) = [1 0 0]T , indicated by the green circle.

The modified sphere decoding problem is solved in the transformed coordinate system, which is created by

the generator matrix

H =











36.45 0 0

−6.068 36.95 0

−5.265 −5.265 37.32











· 10−3 ,

see (27). UsingH, the integer solutionsu ∈ U in the orthogonal coordinate system can be transformed to

Hu, which are shown as black squares in Fig. 5(b) and connected by the dash-dotted lines. The coordinate

system created byH is slightly skewed, but almost orthogonal, with the angle between the axes being98.2◦

for the chosen parameters. As discussed in Section IV-C, increasingλu results in this angle converging towards

90◦.

The optimal solutionuopt(k) is obtained by minimizing the distance between the unconstrained solution and

the sequence of integer switch positions in the transformedcoordinate system. The initial value ofρ(k) results

from (41) and is equal to0.638. This defines a ball of radiusρ(k) aroundūunc(k) =Huunc(k), which is shown

in the ab-plane in Fig. 5(b) as the blue circle. This ball reduces the set of possible solutions from33 = 27

elements to two, since only two transformed integer solutionsHu(k) lie within the sphere, namelyHuopt(k)

(the green square) andHusub(k) (the red square). The algorithm sequentially computes the distances between

ūunc(k) and each of these two points. These distances are indicated by the green and red line, respectively. The
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green line is slightly shorter than the red one. Therefore, minimizing the distance yields the optimal solution

uopt(k) = [1 0 0]T and not the (suboptimal) naı̈vely rounded switch positionusub(k) = [1 − 1 0]T .

VI. CONCLUSIONS

This manuscript addresses the major, and so far unsolved, problem of efficiently solving the optimization

problem of direct model predictive control schemes with very long prediction horizons. As was shown, this can

be achieved by adopting the notion of sphere decoding and by tailoring it to the power electronics problem at

hand. Sphere decoding is effectively a smart branch and bound method. It is expected that sphere decoding will

enable the use of long prediction horizons in power electronics, by facilitating the solution of the optimization

problem within one sampling interval of, say, 25µs.

The method proposed and results obtained in this paper are directly applicable to both the machine-side

inverter in an ac drive setting, as well as to grid-side converters, using direct MPC of horizon lengthsN ≥ 1.

The concepts can also be used for converter topologies otherthan the neutral point clamped converter—indeed,

they are particularly promising for topologies with a high number of voltage levels, provided that the system

can be described by a switched linear model.

As shown in the second part of this paper [34], long prediction horizons improve the converter performance

at steady-state operating conditions, by either reducing the switching frequency or the total harmonic distortion

(THD) of the current, or both. Specifically, direct MPC with horizonN = 10 reduces the current THD by

approximately 20%, when compared to theN = 1 case and considering a three-level inverter. As a result, direct

MPC can outperform space vector modulation and carrier-based PWM. In some cases, the performance of direct

MPC may even approach the one of optimized pulse patterns, which are generally considered to provide the

upper bound on the attainable steady-state performance.
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VII. A PPENDIX

The matrices corresponding to the continuous-time prediction model (8) are

F =

















− 1
τs

0 Xm

τrD
ωr

Xm

D

0 − 1
τs

−ωr
Xm

D
Xm

τrD

Xm

τr
0 − 1

τr
−ωr

0 Xm

τr
ωr − 1

τr

















, (43a)

G =
Xr

D

Vdc

2

















1 0

0 1

0 0

0 0

















, C =





1 0 0 0

0 1 0 0



 . (43b)
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The matrices used in (20) and (21) are the following:

Υ =

















CBP 0 · · · 0

CABP CBP · · · 0

...
...

...

CAN−1BP CAN−2BP · · · CBP

















(44)

Γ =

















CA

CA2

...

CAN

















,S =























I 0 · · · 0

−I I · · · 0

0 −I · · · 0

...
...

...

0 0 · · · I























, E =























I

0

0

...

0























. (45)
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