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A variety of supervised learningmethods using numerical weather prediction (NWP) data have been exploited for short-termwind
power forecasting (WPF). However, the NWP data may not be available enough due to its uncertainties on initial atmospheric
conditions. �us, this study proposes a novel hybrid intelligent method to improve existing forecasting models such as random
forest (RF) and arti�cial neural networks, for higher accuracy. First, the proposed method develops the predictive deep belief
network (DBN) to perform short-term wind speed prediction (WSP). �en, the WSP data are transformed into supplementary
input features in the prediction process of WPF. Second, owing to its ensemble learning and parallelization, the random forest is
used as supervised forecasting model. In addition, a data driven dimension reduction procedure and a weighted voting method are
utilized to optimize the random forest algorithm in the training process and the prediction process, respectively. �e increasing
number of training samples would cause the over�tting problem. �erefore, the k-fold cross validation (CV) technique is adopted
to address this issue. Numerical experiments are performed at 15-min, 30-min, 45-min, and 24-h to indicate the superiority and
signal advantages compared with existing methods in terms of forecasting accuracy and scalability.

1. Introduction

�e uncertainty of wind energy indeed imposes major chal-
lenges on power system operation and planning, such as
power system security assessment and reserve management
[1]. A reliable wind power forecasting plays an important role
in preventing damage to wind turbines and maintaining the
stability and security of the power system.

Numerous forecasting models which are generally classi-
�ed into four categories have been proposed for short-term
wind power forecasting.(1) Physical-based method includes spatial and temporal
factors in a full �uid-dynamics model of the atmosphere
[2]. NWP is a popular physical approach utilizing complex
mathematical models but always su�ers from the diculties
in gaining information and its limited spatial resolution.(2) Statistical-based method characterizes the history
data to yield precise performance for short-term forecasting

tasks. �e dynamical ensemble LSSVR [3], the closed-loop
forecasting engine including KIM and EMD[4], and adaptive
robust multikernel regression model [5] have been proposed
to yield the research. Adaptive neurofuzzy inference systems
were developed to perform a nonlinear mapping between
inputs and outputs [6].(3) Arti�cial intelligence-based method represents the
complex nonlinear relationship between inputs and outputs
without prede�ned mathematical models. �ese models
include Ridgelet ANN [7], bagging neural network [8], and
Multilayer Perceptron Networks [9].(4) Hybrid-based method based on two or more archi-
tectures bene�ts from the advantages of each approach to
reach the optimal results. A hybrid approach based on the
combination between least square support vector machine
and gravitational search algorithms is proposed [10].

Most methods reported in the current literature have
three disadvantages.
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(1) In most arti�cial intelligence methods, there is only
one single hidden layer [11–14]. Due to the �nite ability
of searching optimal solution in the parameter spaces of
ANN with more than one hidden layer, these models cannot
provide accurate outputs.(2) Some methodologies require tediously hand-
engineered features [13]. Due to the lack of sucient
knowledge for a speci�c domain, the selected features may
not be suitable for corresponding models.(3)�e conventional features in the previous supervised
forecasting models contain the NWP data of the wind farms
[15–19]. However, the NWP model usually runs once or
twice a day, which is o�en applied for medium- to long-term
forecasts [20].

Deep learning has attracted tremendous attention in
recent years of academia and industrial communities [21]. It
has been successfully used in the �eld of speed recognition
[22], image processing [23], and health status assessment
[24, 25]. However, it has not been actively utilized in the
wind power or wind speed forecasting �elds. Deep belief
network, due to its strong ability of learning, has been
performed in short-term WSP [26]. �e stacked denoising
autoencoder combined with rough set was applied to extract
features from wind speed series [20]. In the literature [27],
deep autoencoders act as base-regressors, whereas deep belief
network is used as ametaregressor. ADNN-MRT schemewas
proposed to predict wind power. �erefore, employing deep
learning to address the problemsmentioned above has a great
potential.

In this paper, a hybrid intelligent method for short-
term wind power forecasting is proposed. First, DBN as a
probabilistic generativemodel consisting ofmultiple layers of
restricted Boltzmann machines (RBMs) provides the unsu-
pervised learning features from the wind speed series data in
the pretraining phase, and backpropagation neural network
(BPNN), as the top layer of the DBN, uses the labeled data to
�ne-tune the parameters of the DBN by stochastic gradient
decent. Performance of DBN is a�ected by its parameters,
which are o�en limited by hand-engineered features. �e bat
algorithm combined the major advantages between particle
swarm optimization and genetic algorithm and Harmony
Search is applied to yield optimal parameters in the DBN.
Second, random forest is suitable for handling large data due
to its parallelization [28]. It has been combined with the
Spark [28], heuristic bootstrap sampling method [29], kernel
principal component analysis [30], and other technologies to
perform fault diagnosis and regression tasks [31, 32]. Owing
to the improvement of the forecasting accuracy for high-
dimensional and large-scale wind turbine data, we propose
an optimized random forest method which consists of a
dimension reduction procedure and the weighted voting
process for the short-termWPF.

�e contributions of the paper are as follows.(1) Predictive deep belief network is applied as the deep
learning architecture to perform the short-term wind speed
prediction. �e DBN model has better generalized ability
than the traditional shallow architectures.(2) �e bat algorithm is incorporated with DBN to
improve the training accuracy and reduce the costing time
in wind speed prediction.

START

Perform the deep belief network to
predict wind speed series

Select the SCADA variables as the
supplementary input features

Conduct a Max Relevance-Min Redundancy

index to reduce the number of dimensions.

Apply the random forest to forecast
the wind power

Utilize the stochastic gradient decline to update the
weights for each decision tree in real time

END

Figure 1: �e process of the proposed method for multistep wind
speed and wind power prediction.

(3) Bene�ting from the dimension reduction and
weighted voting procedures, the random forest model
avoids the lack of prior knowledge for feature selection and
enhances the capacities of tackling new condition data.

�is paper is organized as follows. In Section 2, the DBN
and its learning algorithm for short-termWSP are presented.
Section 3 presents the optimized random forest and the
proposed model for short-term WPF. Numerical results and
conclusion are presented in Sections 4 and 5, respectively.

2. Brief Architecture about
the Proposed Method

In this section, the proposed method would be brie�y
introduced and its process is shown in Figure 1. Wind speed,
as the most important variable to the normal running of
wind turbine, is hard to predict because of its randomness
and �uctuation. �erefore, due to the merged advantages of
the deep learning architectures and the bat algorithm, the
WSP model based on predictive deep belief network and bat
algorithm is �rstly performed to capture the characteristics of
wind speed series. �en owing to its ensemble learning and
parallelization the random forest is used as the WPF model.
In addition, a data driven dimension reduction procedure
and a weighted voting method are utilized to optimize the
random forest algorithm in the training process and the
prediction process, respectively.

3. DBN for Wind Speed Prediction

Due to the intermittence and volatility of the wind energy, it
is dicult to gain the ecient future wind speed series.�us,
this sectionwould introduce a novelWSPmethod to perform
the wind speed forecasting.
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Figure 2: �e wind speed series recorded on October 30, 2017, in
northern China.
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Figure 3: Architecture of DBN composed of a number of stacked
RBMs and BPNN.

3.1. Short-Term Wind Speed Forecasting. �e wind speed
series can be described as � = {�1, �2, . . . , ��}, where �� is
the average wind speed in the past 15 minutes as illustrated
in Figure 2. For short-term wind speed prediction, it is to
forecast the future value of ��+� by utilizing the previous N
data, where t is the index of the wind speed series and � is the
forecast horizon.�erefore, it is a signi�cant task to build the
function f to describe the wind speed explicitly:

� (��−1, . . . , ��−�, �) = ��+� (1)

where � is the parameter vector.

3.2. Traditional Deep Belief Network. �e architecture of
DBN is shown in Figure 3. It is composed of several stacked
RBMs. �e unit number of �rst input layer is N, which is the
same as the number of previous data. �e numbers of units
for the hidden layers are gradually reduced. �e input layer
of BPNN, as well as the hidden layer of the last RBM, consists
of two units.�e output layer has one unit.�en, the optimal
mapping function can be found through the parameter space
which is in�uenced by the bat algorithm and avoid the e�ect
of personal experience.

�ere are two steps included in the training process of
traditional DBN.(1) �e pretraining phase: As the hardcore of DBN,
RBM is a stochastic generative model which performs this
procedure as a technology of greedy layerwise unsupervised

learning. Each RBM consists of two layers, namely, the
visible layer and the hidden layer, as shown in Figure 2.
�e probability distribution over an RBM is de�ned by the
connection weights between visible units and hidden units
through an energy-based model 	(V, ℎ; �):

	 (V, ℎ; �) = −�V − ℎ�V − ℎ (2)

where � = (�, �, ) represents the model parameters, �
denotes the weights connecting hidden and visible units, and
b and c are the biases of the visible units and the hidden
units, respectively. �e conditional probability over visible
units and hidden units is de�ned as

� (ℎ | V) = exp (−	 (V, ℎ; �))� (3)

� = ∑
ℎ
exp (−	 (V, ℎ; �)) (4)

Considering the speci�c structure of the RBM, the neu-
rons are binary; the probabilistic version of activating a unit
is a logistic function which is given by

� (ℎ� = 1 | V) = ���� (� +��V) (5)

� (V� = 1 | ℎ) = ���� (�� +��ℎ) (6)

where ���� is the logistics sigmoid function.
�e objective by training the model is maximized log-

likelihood, which is de�ned by

� (�,�) = ∑
�∈	

log� (�, �) (7)

In the commonly studied case, the contrastive divergence
is adopted to calculate the derivative of the log probability
about the model parameter

� log� (�)�� = 	� [� ⋅ ℎ] − 	�
 [� ⋅ ℎ] (8)

� log� (�)� = 	� [�] − 	�
 [�] (9)

� log� (�)�� = 	� [ℎ] − 	�
 [ℎ] (10)

where 	� denotes an expectation under the data distribution
and	�
 denotes an expectation under themodel distribution.

�en update rules for the parameters can be written as

� = � + �� log� (�)�� (11)

� = � + �� log� (�)�� (12)

 =  + �� log� (�)� (13)

where � is the learning rate.(2)�e�ne-tune phase: For the DBNmodel, the gradient
descent associated with greedy layer-wise training method
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is performed in the pretraining phase, and this predictive
�ne-tune is carried out by adopting BPNN. �e parameters
space of the DBN model would be �ne-tuned by minimizing
the error between the predicted value and actual value. �e
parameters can be updated as

�� = �� − � ���� � (�, �;�) (14)

�� = �� − � ���� � (�, �;�) (15)

where�� and �� are the weights and bias of the lth layer, � is
the learning rate, and �(�, �;�) is the cost function.

�e DBN model has the capability of forecasting the
wind speed in the current condition space a�er the �ne-tune
procedure. When it comes to the new dataset, the parameters
space can be further �ne-tuned by simply performing the new
dataset instead of training from scratch.

3.3. Optimization of the DBN Model. To �nd the opti-
mal mapping function in Section 3.1, an improved DBN is
employed. �e connecting weights, the o�sets of the units,
and the learning rate need to be decided when the model
is applied. As mentioned above, the model parameters are
initialized by random experiments and then updated by
iterative training, which may take a long time and need the
mutual experience. To address this problem, a bat algorithm
is employed to help search the optimal parameters space,
which is composed of the connecting weights between visible
units and hidden units, the biases of the visible units and
the hidden units, the learning rate in the RBM, and the
parameters in the BPNN. �e detailed steps are shown as
follows.

Step 1. Initialize ���� = 1, bat position ��, velocity V�,
frequency ��, pulse rate ��, and loudness  � for each of the
n bats.

Step 2. Compute the �tness function value for every bat and
select the best bat

�� = 1�
�∑
=1
(" − "�)2 (16)

����� = argmin (��) (� = 1, 2, . . . , $) (17)

where� is the size of output vector, " is the predicted value
and "� is the measured value, and ����� is the best solution in

the current situation.

Step 3. Compute the new solution ��� , the new velocity V�� , and
the new �tness ��.

�� = �min + (�max − �min) % (18)

V
�
� = V
�−1
� + (��� − �∗) �� (19)

��� = ��−1� + V
�
� (20)

START

Compute the fitness function

and select the best solution

Update the parameters space

according to the guide of bat

algorithm

Update the parameters space

according to the guide of BP or

RBM algorithm

Select the new best global
solution

YES Termination
condition is false

NO

END

Figure 4: Using bat algorithm to design an optimized DBN.

where % is a uniform random value within [0, 1] and �∗ is
the current global best solution, and�max and�min denote the
maximum and minimum frequency, respectively.

Step 4. BPNN or RBM updates the parameters space accord-
ing to its own learning method.

Step 5. Compare the performance of parameters spaces
between the BPNN or RBM and the bat algorithm using (16),
and select the best one as the new best global solution.

�e second step to the ��h step would be repeated
until the termination condition is true. Figure 4 shows the
framework of the DBN model developed in this section.

4. Optimized Random Forest for
Wind Power Forecasting

Random forest has been widely used for prediction problems.
�e proposed WPF model is based on WSP and optimized
random forest, which consists of attribute reduction and
weighted voting procedures. Figure 5 shows the training
and prediction process of the WPF model. First, Pearson’s
correlation coecient is conducted on the vector space to
select the favor features. Second, this paper adopts the WSP
and the selected SCADA variables as the input attributes.
Finally, a real-time weighted voting is constructed in the
prediction process.

4.1. Random Forest Algorithm. Random forest is an ensemble
predictor based on regression tree model. It generates k
di�erent decision trees by training di�erent data subsets.
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Training data
subset 1

Train procedure

with k-fold CV
Regression

tree 1

Result 1
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Start

Select the favor features

Resampling with Bootstrap

Sampling technique

Training data
subset 2

Train procedure

Training data
subset n

Train procedure

with k-fold CV
Regression

tree n

Result n

Regression
tree 2

Result 2

w2

with k-fold CV

Input

Final result

wn

Figure 5: Process of training and prediction of the WPF model.

Each regression tree provides a prediction for every testing
data, and the �nal result depended on the vote of these trees.

�e original training data is denoted as & = {(�, �), � =1, 2, . . . , �; ' = 1, 2, . . . , �}, where  is a sample and � is the
feature sets. Namely, the training data contains D variables
and L samples. �e steps of constructing each decision tree
of random forest are as follows.

Step 6. Select training subsets in a bootstrap manner.

Step 7. d features are randomly selected from D variables.

Step 8. Construct the tree to the maximum depth without
pruning.

�e above three steps are repeated until k decision trees
are collected into a random forest model.

4.2.�eDimension Reduction forHigh-Dimensional Data. To
improve the prediction accuracy of the random forest model,
we present a Max Relevance-Min Redundancy (MRMR)
index by conducting Pearson’s correlation coecient to
reduce the number of dimensions. In the training procedure
of each decision tree, the top d features according to the
MRMR index value are selected as the favor features, and
then we randomly select the (* − -) feature variables from
the remaining (� − -) ones. �erefore, the dimension is
reduced from� to *. �e process in the dimension reduction
is presented in Figure 6.

First, in the training process, Pearson’s correlation coef-
�cient based on the covariance matrix is adopted to evaluate
the relationship between two vectors �� and %.

START

Compute the MRMR index value of each feature

and sort in the descending order

Select the top d features in

the ordered list

Select the (I-d) features in the
remaining features

Obtain the I features

END

Figure 6: Dimension reduction in the training process.

� (��, %) = cov (��, %)√var (��) × var (%) (21)

�e relevance of each feature would be calculated by

" (�, 5�) = 1�∑��∈�� (�, 5�) (22)

where � is the feature, D is the size of dimension,5� is the tar-
get feature, and the most relevant feature can be obtained by

�max = argmax (" (�, 5�)) (23)
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(1) Input: a training dataset, the whole feature set 6�, favor feature size �, the favor feature set 6� = 7,
the remaining feature set 6� = 6� − 6�(2) for k=1 to s

search the favor feature from the remaining feature set according to

6��� = {{{{{{{
argmax
��∈��

[�(6, 5�) − 1> − 1 ∑��∈���(6, 6�)] > ̸= 1
argmax
��∈��

[�(6, 5�)] > = 1
(3) update the favor and the remaining feature sets 6� = 6� ∪ 6��� 6� = 6� − 6���
end for
Output: 6�

Algorithm 1: �e process of selecting the favor features.

Second, the redundancy for each input variable is calcu-
lated. �e min redundancy feature can be obtained by

" (��, �) = 1�2 ∑�� ,��∈�� (��, �) (24)

�min = argmin" (��, �) (25)

�e MRMR index is a simple form of "(�, 5�) and"(��, �), and the candidate feature can be selected by

A = " (�, 5�) − " (��, �) (26)

6��� = argmaxA (27)

Given the framework discussed above, we adopt the
MRMR index to select the favor features; the detailed steps
are shown in Algorithm 1. Compared with the traditional
RF model, the dimension reduction method balances the
accuracy and diversity of the RF algorithm and prevents the
over�tting eciently.

4.3. Weighted Prediction Process. In the prediction process,
limited to the training data, it likely leads to the performance
reduction of the traditional RF algorithm when the new
condition data is applied. To overcome this drawback, a real-
time update for weighted voting approach is proposed to
decrease the prediction error for the testing data.

Each sample of testing data is predicted by all the decision
trees in the RF model. �e prediction result is weighted
average value of all decision trees. �e weighted regression
result is de�ned as

5 = ∑��=1 C�D�∑��=1 C� (28)

where C� is the weight for the ith decision tree on the jth
sample, D� is the prediction result for the ith decision tree
on the jth sample, and 5 is the �nal prediction result.

�e objection of the predictor learning is to minimize the
prediction error. �e error function in this paper is de�ned
as

	�� = 0.5 × (D� − 5)2 (29)

�e stochastic gradient decline is conducted to update the
weights for decision trees as follows.

ΔC� = −G�	���C�
= G (D� − 5)
× (D� − 5)[[

D�∑��=1 J� − ∑��=1 J�D�(∑��=1 J�)2 ]]

(30)

J,�+1 = J� − ΔJ� (31)

In the weighted voting procedure of RF model, a reason-
able weight associatedwith each tree is applied to improve the
global prediction accuracy and reduce the generation error
especially for the new condition data.

4.4. �e Short-Term Wind Power Forecasting Model. To fur-
ther improve the inferential ability of the proposed method,
the k-fold cross validation partitions the training data into
k di�erent subsets. �en (k-1) of these subsets are selected
to train the model and the other one is used for testing the
performance of the trained model. �e root mean square
error is taken as the criterion to select the optimal model. To
clearly describe the process of the WPF, the detailed steps of
training and prediction procedure are given as follows.

�e training procedure includes the following.

Step 1. Select the training features from the input variables
according to the dimension reduction method mentioned
in Section 4.2. Twelve SCADA variables are selected as the
candidate features for RF model, which are as shown in
Table 1.

Step 2. Based on the input features selected in Step 1, the
regression tree model is built on its traditional way with k-
fold cross validation without pruning.

Step 3. �e above two steps are repeated until the size of
random forest model reaches the threshold.
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Table 1: �e list of candidate features.

no �e list of candidate features

1 generator speed (CCU)

2 Rotor speed

3 Wind speed

4 generator speed (PLC)

5 �e temperature of bearing A

6 �e temperature of bearing B

7 �e temperature of gearbox

8 �e ambient temperature

9 �e temperature of nacelle

10 �e temperature of gearbox bearing

11 Blade 1 actual value

12 Blade 2 actual value

13 Blade 3 actual value

Table 2: �e size of training sets and testing sets.

�e size of
training sets

�e size of
testing sets

Case 1 13873 195

Case 2 13783 285

Case 3 10000 150

Case 4 10000 150

�e prediction procedure includes the following.

Step 1. Each regression tree of the RF model applies the
testing data which consists of the future wind speed series
obtained from theWSP and the SCADA variables to perform
short-termWPF.

Step 2. Compute the �nal prediction result based on the
prediction values from all regression trees according to (28),
and then update the error weight for each regression tree in
real-time according to (30)-(31).

5. Numerical Results

To verify the performance of the proposed method, numer-
ical experiments have been carried out on four sets of
historical SCADA data. �e task is to forecast the 15-min,
30-min, 45-min, and 24-h wind speed and the corresponding
wind power. �e size of training sets and testing sets in four
cases are as shown in Table 2.

5.1. Performance Index. �e root mean square error (RMSE),
the mean absolute error (MAE), the average percentage error
(APE), the bias (BIAS), and the standard deviation of the
error (SDE) are the measurements to compute the error
scores.

"M&	 = √ 1�
�∑
=1
(D − D�)2 (32)

M 	 = 1�
�∑
=1

OOOOOD − D�OOOOO (33)

�P & = 1�
�∑
=1
(D − D�) (34)

&�	 = √ 1�
�∑
=1
(D − D� − �P &)2 (35)

 �	 = 1�
�∑
=1

OOOOOD − D�OOOOOOOOOD�OOOO (36)

where D is the predicted value from the model and D� is the
true value;� is the number of testing samples.

5.2. Short-TermWind Speed Prediction Results. �e structure
of the predictive DBN is determined by human experience,
which is 10-7-5-4-2-4-1. How to search the optimal structure
is still an open problem. In this section, the proposed
method is compared with several wind speed forecasting
models, which have been proposed in the literature including
BPNN, ELMAN, persistence method, and traditional DBN.
To evaluate the generalization performance, the experiments
with the forecast horizon ranging from 15min to 24 hours are
carried out on four sets: Case 1-Case 4.

�e actual wind speed data and their predicted values
using predictiveDBN, traditional DBN, BPNN, ELMAN, and
persistence model are shown in Figure 7. Figures 7(a)–7(j)
show the predicted wind speed series in the future 15 minutes
and 30 minutes from predictive DBN, traditional DBN,
BPNN, ELMAN, and persistence model in Case 1 and Case 2.
Similarly, the results for the 45-minute and 24-hour horizon
in Case 3 and Case 4 are shown in Figures 7(k)–7(t), where
the green and blue lines denote the actual and predicted wind
speed series by these models, respectively. In the �rst two
cases, the estimated values from predictive DBN are very
close to the real data, but the others have obvious errors.
However, as we can see from Figures 7(k)–7(t), the perfor-
mance of these models decrease gradually as the inference
step increases, where the predictive DBN also generates the
minimum prediction errors.

To further show the performance of these models, the
RMSE, MAE, BIAS, SDE, and APE, as the indexes to
evaluate the approximate performance, are computed and
demonstrated in Table 3. As shown in Table 3, the deep
learning architectures procure much better results than shal-
low networks and persistence model. �e proposed model
shares nearly the same generalization capacities with the
traditional DBN to predict the future wind speed, while the
forecasting ability of the persistence model degrades with the
growth of the time scale. Predictive DBN, as a deep learning
network, has improved the RMSE, MAE, BIAS, SDE, and
APE by 1.505, 1.427, 2.439, 1.134, and 0.625 over multiple time
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(a) �e forecasting result of predictive DBN for 15-
min
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(b) �e forecasting result of traditional DBN for 15-
min
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(c) �e forecasting result of BPNN for 15-min
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(e) �e forecasting result of persistence model for 15-
min
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(f) �e forecasting result of predictive DBN for 30-
min
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(h) �e forecasting result of BPNN for 30-min

Figure 7: Continued.
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Figure 7: Continued.
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Figure 7: �e results of the short-term wind speed prediction.

Table 3: �e performance of wind speed forecasting models for di�erent horizons.

Index Cases Predictive DBN BPNN ELMAN Persistence Traditional DBN

RMSE

Case 1 0.446 0.721 0.479 0.462 0.494

Case 2 0.654 0.831 0.716 0.673 0.669

Case 3 2.416 3.307 3.491 4.14 2.435

Case 4 1.869 2.076 1.913 1.949 1.879

MAE

Case 1 0.34 0.555 0.362 0.337 0.386

Case 2 0.508 0.684 0.566 0.519 0.523

Case 3 1.786 2.494 2.553 3.08 1.809

Case 4 1.421 1.749 1.558 1.581 1.425

BIAS

Case 1 0.051 0.403 0.065 0.004 0.064

Case 2 0.037 0.526 0.015 0.003 0.038

Case 3 -0.193 -0.4 0.259 0.078 0.186

Case 4 -0.093 1.484 -1.085 0.1 0.024

SDE

Case 1 0.443 0.597 0.475 0.452 0.49

Case 2 0.653 0.673 0.716 0.416 0.668

Case 3 2.408 3.283 3.491 4.139 2.417

Case 4 1.867 1.952 1.976 1.949 1.868

APE

Case 1 0.078 0.111 0.092 0.53 0.089

Case 2 0.156 0.177 0.163 0.083 0.162

Case 3 0.544 0.933 0.874 0.739 0.549

Case 4 0.298 0.48 0.437 0.393 0.302
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Table 4: �e performance of wind power forecasting models for di�erent horizons.

Models Experiments RMSE MAE BIAS SDE APE

�e optimized random forest

Case 1 33.41 21.48 -9.26 32.11 0.97

Case 2 21.84 14.37 -7.73 19.39 0.67

Case 3 72.72 54.61 42.06 59.32 0.52

Case 4 71.85 44.04 15.28 70.21 0.69

Random forest without
weights updating

Case 1 34.58 24.61 -18.47 29.23 7.89

Case 2 24.47 15.46 -10.08 23.23 0.69

Case 3 140.1 72.12 49.79 130.96 0.71

Case 4 120.8 63.2 27.36 84.37 1.34

Random forest without favor
features

Case 1 52.03 36.80 2.52 51.97 10.93

Case 2 37.81 23.87 -6.72 37.21 1.07

Case 3 177.67 83.16 55.5 168.78 0.76

Case 4 289.05 160.76 -59.77 282.81 2.55

Table 5: �e performance of wind power forecasting models with 10-fold CV for di�erent horizons.

Models Experiments RMSE MAE BIAS SDE APE

�e optimized random forest

Case 1 31.27 19.56 -8.39 32.08 0.95

Case 2 20.59 13.65 -7.43 18.66 0.59

Case 3 71.49 54.28 41.34 58.62 0.52

Case 4 71.82 43.63 14.08 69.62 0.68

Random forest without weights
updating

Case 1 34.26 23.87 -17.84 29.68 8.01

Case 2 24.25 14.63 -9.78 22.78 0.65

Case 3 133.45 67.54 45.65 128.57 0.67

Case 4 111.34 60.49 27.36 82.43 1.12

Random forest without favor
features

Case 1 50.36 31.24 2.69 49.51 9.58

Case 2 35.67 22.76 -6.41 35.17 0.88

Case 3 156.62 74.52 46.21 139.28 0.63

Case 4 267.45 150.32 -47.53 271.47 2.13

horizons compared to BPNN; this demonstrates the ability
of deep learning network to handle the highly varying wind
speed series. As for the proposed model, predictive DBN
outperforms traditional DBN with the total improvement
of the RMSE, MAE, BIAS, SDE, and APE by 0.092, 0.088,
0.062, 0.072, and 0.026.�is is mainly due to the employment
of bat algorithm, which can not only reduce the training
time, but also provide more accurate network architec-
tures.

5.3. Short-Term Wind Power Forecasting Results. Graphical
representation about the predicted and actual power value
in four cases is shown in Figure 8. Figures 8(a)–8(c) denote
the predicted wind power and actual value in Case 1 from the
proposed method, random forest without the weights updat-
ing (RFWWU), and random forest without the favor features
(RFWFF), respectively. Similarly, Figures 8(d)–8(f), Figures
8(g)–8(i), and Figures 8(j)–8(l) represent the predicted results
from those models in Case 2, Case 3, and Case 4.

6. Discussion

As seen clearly, the DBN together with optimized random
forest can provide notably accurate future wind power series.
In Case 1, Case 2, and Case 3, the lines of predicted values
and the actual data are almost overlapping. It makes a little
error in Case 4 because of the wind �uctuation and the
longer time horizon, as can be seen from Figure 7(p). To
further inspect the generalization ability of the proposed
model, Table 4 reports the RMSE,MAE, BIAS, SDE, andAPE
indexes of the proposed model and unoptimized random
forest. What is more, Table 5 shows the forecasting indexes
by utilizing tenfold cross validation in training procedure
of random forest. �e training data would be divided into
ten subsets. Each subset of the training data is used once
for testing while being used nine times for training. CV
method contributes to searching the optimal weights of the
RF algorithm. From Table 5, the e�ectiveness of CV can be
easily seen by comparing the indexes with Table 4. Most
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(b) �e forecasting result of RFWWU for 15-min
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(c) �e forecasting result of RFWFF for 15-min
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(d) �e forecasting result of proposed method for 30-
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(e) �e forecasting result of RFWWU for 30-min
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(f) �e forecasting result of RFWFF for 30-min
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(g) �e forecasting result of proposedmethod for 45-min
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(h) �e forecasting result of RFWWU for 45-min

Figure 8: Continued.
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(i) �e forecasting result of RFWFF for 45-min
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(j) �e forecasting result of proposed method for 24-h
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(k) �e forecasting result of RFWWU for 24-h
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(l) �e forecasting result of RFWFF for 24-h

Figure 8: �e results of the short-term wind power forecasting.

Table 6: �e MRMR index and the favor features.

Attribute name 1 2 3 4 5

generator speed (CCU) 0.7404 -0.099 0.79038 - - - - - - - - - - - - - - - - - -

Rotor speed 0.7398 -0.098 0.7901 0.4401 0.265

Wind speed 0.846 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

generator speed (PLC) 0.7404 -0.099 0.79036 0.4404 - - - - - - - - -

�e temperature of bearing A 0.024 -0.102 0.064 -0.002 -0.036

�e temperature of bearing B 0.409 -0.098 0.427 0.238 0.144

�e temperature of gearbox 0.509 -0.138 0.557 0.296 0.165

�e ambient temperature -0.183 -0.132 -0.173 -0.148 -0.136

�e temperature of nacelle -0.36 -0.069 -0.354 -0.243 -0.188

�e temperature of gearbox bearing 0.675 -0.097 0.690 0.404 0.261

Blade 1 actual value -0.523 0.2064 - - - - - - - - - - - - - - - - - - - - - - - - - - -

Blade 2 actual value -0.523 0.2063 -0.658 -0.3 -0.121

Blade 3 actual value -0.523 0.2062 -0.658 -0.3 -0.121

indexes of the all cases degrade with CV in the training
procedure except for some individual situations. From this
observation, using the CV technology in the training process
of random forest is a reasonable choice. It can be observed
that the predicted accuracy of optimized random forest is
greater than that of RFWWU and RFWFF for all cases.
�e performance of RFWWU is just a little bit worse

than the optimized random forest. �e predicted values
from RFWFF have the largest errors among those models,
which from another point of view prove the importance of
favor features. �e results of MRMR index and the favor
features are illustrated in Table 6. �e favor features size
is set to 5, and the bold one is chosen to be a favor fea-
ture.
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7. Conclusions

In this paper, we proposed a multistep wind speed and wind
power forecasting model combined with predictive deep
belief network and optimized random forest to produce the
future 15-min, 30-min, 45-min, and 24-h wind speed and
wind power series.�eDBNmodels the wind speed series by
its deep learning ability, and the bat algorithm is employed to
further enhance its inference performance. �e performance
of the predictive DBN is veri�ed by four cases, and the
results demonstrate that the DBN makes a major prediction
accuracy increase. Wind speed has a pivotal e�ect on the
windpower generation. Bene�ted by the approximated ability
of the DBN model, random forest algorithm can procure
better future wind power data with higher precise wind speed
series than traditional WPF models. On the other hand, the
competitive generalization property can be further obtained
with the dimension reduction and weights updating in real-
time.

However, there are stillmany problems for thewind speed
and wind power forecasting model. One is that the learning
time will be booming when it has a large scale. �erefore, a
parallel deep learning algorithm is developing in recent years.
�e second one is the parameters selection; in this paper,
we utilize the bat algorithm to search the parameter space.
However, it is very dicult to determine the optimal number
of layers, number of the units in each layer, and the number
of epochs.�ese setting parameters a�ect the learning ability
of the deep network signi�cantly. Some automatic selection
models should be developed to �x this problem.
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