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Multistream model for quantum plasmas
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The dynamics of a quantum plasma can be described self-consistently by the nonlinédingenfBoisson
system. We consider a multistream model representing a statistical mixtbhirpwoe states, each described by
a wave function. The one-stream and two-stream cases are investigated. We derive the dispersion relation for
the two-stream instability and show that a new, purely quantum, branch appears. Numerical simulations of the
complete Schrdinger-Poisson system confirm the linear analysis, and provide further results in the strongly
nonlinear regime. The stationary states of the Sdimger-Poisson system are also investigated. These can be
viewed as the quantum mechanical counterpart of the classical Bernstein-Greene-Kruskal modes, and are
described by a set of coupled nonlinear differential equations for the electrostatic potential and the stream
amplitudes.

PACS numbeps): 52.35—g, 03.65-w, 05.60.Gg

[. INTRODUCTION semiconductor devices. Nevertheless, it is useful to consider
simplified models that capture the main features of quantum
The great degree of miniaturization of today’s electronicplasmas. Indeed, Eqgl) and(2) are sufficiently rich to dis-
components is such that the de Broglie wavelength of thglay a wide variety of behaviors, as will be seen in the rest of
charge carriers is frequently comparable to the dimensions dhis work. At the same time, this model is still amenable to
the system. Hence, quantum mechanical efféets., tunnel- analytic and numerical treatment.
ing) are expected to play a central role in the behavior of A physically equivalent approach would consist in con-
electronic components to be constructed in the next years. Isidering a Wigner function describing the same mixture. The
order to describe these quantum effects, it is unlikely thawVigner function approach is a reformulation of quantum me-
classical transport models will be sufficient. Quantum trans<hanics in the classical phase space langy&8gd (. The
port equations, such as the Salirmer-Poisson or the price to pay for this otherwise appealing formalism is that
Wigner-Poisson systenig—7], will therefore be a necessary Wigner functions can take negative values, and cannot there-
tool in order to understand the basic properties of theséore be regarded as true probability distributions. However,
physical systems. both for the analytical and the numerical treatment of the
In the present paper, we consider a one-dimensional quamroblems of interest in this paper, the Safirger-Poisson
tum plasma, where the electrons are described by a statistic&lrmalism is more appropriate. This is particularly true for
mixture ofN pure states, with each wave functignobeying  the numerical simulations, since the Wigner formalism is

the Schrdinger-Poisson system cast into a two-dimensional phase space, while the
Schralinger-Poisson model only requires the discretization

i h? 9%y ) of the one-dimensional configuration space. Of course, if the

T my—eﬁb'ﬁi, i=1,...N, (1)  numberN of streams is large, the numerical cost for the

description of the system of Eqggl) and (2) is also consid-
5 erable. Nevertheless, interesting physical phenonisneh
Jd ¢ E lgi|2—n @) as instabilitie can take place even with a few streanié (

vi of =1 or 2, as will appear in the rest of this work. More subtle
effects (Landau damping, for instangevould probably re-
where ¢(x,t) is the electrostatic potential. Electrons havequire a larger, although hopefully not prohibitive, number of
massM and charge—e, and are globally neutralized by a streams K=20-30.
fixed ion background with densitgi,. Finally, we assume For the analytical study, the hydrodynamic formulation of
periodic boundary conditions, with spatial period equalto the Schrainger-Poisson system is particularly convenient,

The system of Eqg1) and(2) takes into account diffrac- Since it makes direct use of macroscopic plasma quantities,
tion, which is the most prominent quantum effect, but ne-such as density and average velocity. Moreover, it enables

glects dissipation, spin, and relativistic corrections. These efone to perform straightforward perturbation calculations in
fects may be important in more realistic models for smallthe same fashion as in the classical case. Let us introduce the

amplitudeA; and the phas§&; associated to the pure state
according to
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Both A; andS; are defined as real quantities. The density n=ny+n’'exdi(kx—wt)], (12)
and the velocityy; of theith stream of the plasma are given
by u=ug+u’exgi(kx—wt)], (13
10S — 4 i _
ni=Ai2, Uizm (9_X (4) ¢_¢ eX[{I(kX wt)]- (14)

Retaining only terms up to first order i, u’, and¢’ leads

Introducing Eqs(3) and (4) into Egs.(1) and(2) and sepa- éo the dispersion relation

rating the real and imaginary parts of the equations, we fin

o d (w—kug)?= wj+ £ %k*/4M?, (15)
Wﬂ?—x(niui):o’ ) .
where w,=(nge?/Me)*? is the plasma frequency. For,
) ) ) =0, the dispersion relation given i3] is recovered, the
ﬂﬂj.ﬁ:i% & i J (\/n_i)lﬁx 6) term ku, merely representing a Doppler shift. As the fre-
at Yax M ax M2 dx Jn; ’ quencyw is always real, there can be neither instability nor
damping of the wave.

Pp e ( N ) The classical analog of this system is the “cold plasma”
N;—Ng

— (7)  model, which is known to sustain nonlinear oscillations
when the amplitude of the initial perturbation is smaller than
a certain value. Beyond that value, the solution becomes sin-
gular in a finite time, which is a sign that the model is no
longer valid. This phenomenon corresponds to the breaking
‘of the plasma wave, due to particle overtaking in the phase
. space. Due to the pressurelike term in E), the quantum
quantum multistream model. . solution nevers becomes singular, as was shown by computer
Equationg5)—(7) constitute the mathematical model used simulations[14].
in the rest of this work. We focus our attention on the one- Let us now turn our attention to the stationary regimes of

stream(Sec. 1) and two-streamSec. lll) cases, the latter L L
) - " the system. If all quantities only depend on position, then
being related to the well-known two-stream instability. The%qs.(s) and (9) are reduced to

relevant dispersion relations are derived, and the unstab
branches are identified. We also investigate the properties of d

stationary solutions of the Schtimger-Poisson system, —(nu)=0, (16)
which can be viewed as the quantum counterpart of the clas- dx

sical Bernstein-Greene-Kruskd@GK) modeg 12]. The ana-

lytical calculations are checked against time-dependent nu- du ed¢ 4% d[d¥ Jn)/dx@
merical simulations, shown in Sec. IV. Our conclusions are Uix ™ M dx oM2 dx Jn

presented in Sec. V.
Equations(16) and (17) possess the first integrals

ax2 €0\ St

Quantum effects are contained in the pressurelike
fi-dependent term in Eq6). If we setn=0, we simply
obtain the classical multistream model introduced by Daw
son[11]. Therefore, we shall refer to Eq§5)—(7) as the

) . (17)

Il. ONE-STREAM PLASMA

In order to fix the basic ideas, we first consider the one- J=nu, (18
stream case and také=1, i.e., a single pure quantum state. 5 - 5
For brevity, we writen,=n, u;=u. We obtain Eo Mu _e¢_ﬁ_ d?(yn)/dx 19
2 2M Jn '
an d
—+ -~ (hu)=0, ) : :
Jt  dx corresponding to charge and energy conservation. The con-

stantE can be eliminated by the global shifi— ¢+E/e,
Jdu du e dp h% 9 [ ¥ \/ﬁ)/&x2 and therefore we assunte=0 in the rest of this section.
EJFU(;_X:MK oM2 IX N ) Eliminating u, introducing A=+n, and using Poisson’s
equation, we obtain

Pp e 2 2
FZS—(I’]—I’]O). (10) ﬁzd A M MJ 2e Ad (20)
X 0 oM ,
dx? A3
A homogeneous zeroth-order solution for E¢R.—(10) is
provided by d’¢ e
— =—(A?=ny). (21)
n=ng, U=u,, ¢=D0, (12) dx= €0

whereu, is a constant representing the equilibrium velocity It can be easily verified that th&=0 case cannot sustain
of the stream. The linear stability of this solution is obtainedsmall-amplitude, periodic solutions. Hence, we assuime
by Fourier analyzing Eqg8)—(10), =ngyUg With ug# 0 and introduce the following rescaling:
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RO pe A UA D)= —(1+R2) 5+ 28
X :—, :—, s = — —
Uo NGRS H 2H2A2
(22) _ . . :
ed Lo Since the equations of motion are autonomous with respect
P =——, = —2 to the independent variabbe the Hamiltonian formulation
Mug Mug immediately gives the first integrésubscripts denote differ-
entiatio
We obtain, in the transformed variablésmitting the stars r)
for simplicity of notation, 1, - _
=S (At #)+UA D), (29)
,d%A 1
H —=-2¢ A+ —, (23 L — L :
dx? A which is the Hamiltonian function in transformed coordi-
nates. Transforming back to the original variables, one ob-
424 tains the first integral for Eq$23) and(24):
— =A%-1, (24)
dx* 1 1
— _(_A2 -2 42 T (1_ A2 _
I 2( AFHT ) +—(1-A¢ > (30
a system that only depends on the rescaled parank&ter H 2HA

which is a measure of the importance of quantum effects. . o

Notice that the classical limit is singular, in the sense thaf\ccording to the Liouville-Arnold theorerfil5], an autono-
Eq. (23) degenerates into an algebraic equation wien Mous two-degree-of-freedom Hamiltonian system is com-
=0. The equation for the electrostatic potential then bePletely integrable if it possesses two first integrals in involu-

comes tion and with compact level surfaces. Evenlifhas no
compact level surfaces, a second constant of motion would
d2¢ 1 be a strong indication of the integrability of the QBGK spa-
—=7==-1 (250  tial dynamics. We have tried to find a second constant of
dx  \2¢ motion for Eqs.(23) and(24) by a variety of methodggeo-

. o metrical Noether and Lie symmetries, for instandait with-
Equatlon(25). has a Hamlltonlan char_acter, anq co.rrespond%ut success. However, numerical integrations of Hg8)
to the equation of motion of a “particle” moving in & po- 4n4(24) for a wide range of values ¢, and different initial
tential V() = ¢— \24. Using this analogy, one can see that conditions, strongly suggest that, when bounded solutions
Eqg. (25 has periodic solutions around the equilibriugn  exist, they are always regular. An additional first integral
=1/2, provided that the initial condition satisfies<@(x  must therefore exist, although its actual expression may be
=0)<2. The fact that no spatially periodic solution exists gjfficult to guess.
for sufficiently large values of the potential is easily under- |t js interesting to perform a linear stability analysis in
stood. A Iarge potential fluctuation induces a VelOCity ﬂUC'Order to see in what conditions the system supports small-

tuation, which can driVGI(X) far from its nominal ValU&JO. amp"tude Spa’ua”y periodic solutions. Wrmng
If the potential is sufficiently strongj(x) can even vanish,

but in that case the relatiamu=J= const implies an infinite A=1+A"exp(ikx), ¢=1/2+ ¢ expikx), (31
density. This is the well-known effect of particle overtaking
that occurs in the cold plasma model. and retaining in Eqs(23) and (24) only terms up to first

Going back to the gquantum mechanical case, we haverder in the primed variables, we obtain the relation
shown that Eqs(23) and (24) describe the inhomogeneous
QBGK (quantum-BGK equilibria of the one-component H%k*—4k?+4=0. (32
guantum plasma. We are faced with the mathematical prob- ] ) )
lem of understanding the qualitative properties of the solu/Again, we point out the singular character of the classical
tions of a coupled, nonlinear system of two second ordefmit: for H=0, Eq.(32) degenerates into a quadratic equa-
differential equations depending on a parameter. Only a feWion, with solutionsk= *1. The wave numbers being always
analytical results can be obtained, shown in the rest of thi§al, this corresponds to spatially periodic solutions. When
section. H+#0, we obtain
Equationg23) and(24) can be put into Hamiltonian form
by using the variables

_24_f2\/l—H2

2
k "

(33
A=iA, ¢=¢/H. (26)
_ e _ _ For H<1 (semiclassical regime both wave numbers are
Notice that the rescaled amplitudeis a purely imaginary real, and therefore the system can sustain spatially periodic

quantity. We have oscillations. ForH>1 (strong quantum effectsthe solu-
_ - _ tions are spatially unstable, and grow exponentially. Ror
d?A/dx?=—aUldA, d*¢pldx’=—aUld¢, (27) =1, the spectrum is degenerate, with associated secular

o terms. The corresponding solution is also spatially unstable,
whereU=U(A, ¢) is the pseudopotential: growing linearly withx. We conclude that small-amplitude
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stationary solutions of the one-stream Schinger-Poisson, 6" '
spatially periodic, system can only exist in the semiclassical !
regimeH<1. '
4F 1
lll. TWO-STREAM PLASMA k) \

A. Two-stream instability

We now turn to the more interesting case of two streams,
which classically can give rise to instability. For this, we
consider Egs(5)—(7) with N=2. We first linearize around
the equilibrium solutionn;=n,=ny/2, u;=—UuU,=Ugy, ¢
=0, whereuy#0 is a nonzero reference velocity, and then
Fourier transform both in space and time variables. In terms
of the dimensionless variables a

FIG. 1. Stability diagram for the two-stream plasma. The filled
rea is unstable. The dashed line corresponttide- 1. Lower and
middle solid curvesk3 andK3 as defined in Eq(40). Upper solid

Q=w/wp, K=u0k/wp, H=hwp/Mug, (34) curve:K¢ as defined in Eq4l).

the dispersion relation becomes Ki+ K§= Ké. (42)
24 H2K2
Q4= 1+2K?+ > )QZ—KZ( 1-— ) We shall see that these wavelengths are related to the sta-

tionary solutions of the Schdinger-Poisson systef@BGK

H2K4 modes$. From the previous analysis, it appears that quantum
X[ 1-K2+ 7 ):O (35 mechanics has a destabilizing effect in the semiclassical re-
gime, where more modes are unstable compared to the clas-
Consequently, one obtains sical case. On the other hand, Whén>_2, fewe_r modes_ turn
out to be unstable than in the classical regime. This is the
1 H2K% 1 result obtained by Suh, Feix, and Bertrgrid], who found
92:§+ K2+ 7 i§(1+8K2+4H2K6)1/2- (36)  that quantum effects are stabilizing for large enoiyh

It would be interesting to know whether the quantum in-
The solution forQ? has two branches, one of which is al- Stability is stronger or weaker than the classical one. For this,
ways positive and gives stable oscillations. The other solu®n€ should search for the maximuover all wave numbeys

tion is negative 2<0) provided that growth rate for a fixed value off, and compare it to the
maximum classical growth rate. Although the algebra is
(H2K?—4)(H?K*—4K?+4)<0. (37)  rather involved, direct inspection of the functigr{K) for

different values ofH indicates that the maximum classical
Notice that instability, when it occurs, always arises throughgrowth rate is always larger than the maximum quantum
the marginal mode@=0). In the classical case, E@7)  growth rate(Fig. 2) [in this figure, the intersections with the
yields K?< 1, which is the classical criterion for the occur- K axis correspond to wave numbeks,, Kg, and K¢ as
rence of the two-stream instability. In the quantum case, Eqdefined in Eqgs.(40) and (41), for which the growth rate
(37) bifurcates forH=1. If H>1, the second factor is al- vanishe$ Of course, for some wave numbers, the quantum
ways positive, and the plasma is unstabldHiK<2. If H
<1, there is instability if either 0.15 ' ‘

0<H?K?<2-2\1—H? (39
or
2+2\1-H?<H?K?<4. (39 0.05

This yields the stability diagram plotted in Fig. 1. The lower
instability zone is semiclassical, as it represents an extension 0.00 .
of the classical instability criterion. The upper instability 0 05 1.0 15 20
zone, on the other hand, has no classical analog. The two
zones merge foH=1. We callK,, Kg, andK the wave FIG. 2. Plot of the squared growth rajeas a function of the
numbers at which the growth rate vanishes. These are deimensionless wave numbk for different values of Planck’s con-
fined by stant.H=0.5, solid line;H=1, dashed linetd=2, dotted line. The
intersections of these curves with theaxis correspond to wave
H?KZ g=2+2V1-H?, (400 numbersk,, Ky, andK¢ as defined in Eqs(40) and (41). For
H=0.5, only the intersection a€,=1.035 is shown; the intersec-
H2Ké=4. (41 tions atKz=3.864 andK-.=4 are outside th& axis range. For
H=1, the intersections are &,=Kg=2 andK.=2. For H
It is easy to verify the following property: =2, there is only one intersection Kt-=1.
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growth rate may be larger than the classical one, as can Handamental mode in the lower unstable region. Therefore, at
seen from Fig. 2. Note that the secondary maxim{ime- least in the semiclassical regirit<1, we cannot expect to
tween wave numberkKg and K¢) is considerably smaller observe a “purely quantum” instability. However, as re-
than the one betwee=0 andK,, and goes to zero in the marked earlier, forH?>3/4 the fundamental mode is un-
classical limitH—0. stable, as a result of quantum effects. We stress that the
In the previous discussion, we have ignored the fact that@above restrictions are a result of the periodic boundary con-
due to the periodic boundary conditions, the momentum variditions, and do not apply to a truly infinite plasma, for which
able p=7k is discrete, and can only be a multiple %Ky, momentum space is continuous. Still, periodic conditions can
whereky,=2=/L is the fundamental wave number. For the be relevant, for instance, to solid state plasmas, where the
previous stability calculations, we have assumed an initiaperiodicity is induced by the underlying ion lattice.
equilibrium solution for which the density, is spatially
uniform and the velocity is equal taxug. This corresponds B. Stationary solutions: QBGK modes

to wave functions of the type Let us now consider the stationary states of the two-

(X0 =Vna2 exg +iMugx/f). 43 stream Schidinger-Poisson syster(QBG_K modes. If all
¥+(x.0) 0 H ox/11) “3 quantities are dependent only on position, E¢s.and (6)
In order to satisfy the periodicity, one must have for N=2 possess the first integrals

Mug=nfky, N=1,23.... (44) Ji=ngug,  Jp=nyup, (51)

Using the dimensionless variables introduced earlier, this Mu3 #2 d?(yny)/dx?
condition becomes S A Tv O (52

HKo=1/n, (45)

Mu2 #2 d2(Jn,)/dx2

which impliesHKy=<1. This result sets an upper bound on EZZT_G‘?"—W —\/n—z (53

the fundamental wave numbKy,. In the instability diagram

of Fig. 1, this means that the upper instability region cannotye are particularly interested in the case of two symmetric
be accessed fd(o, although of course it can for some of its streams, each Carrying the same Cun(w'ith Opposite 5|gh
harmonics. Computing the intersection of the cuHi€=1 and same kinetic energy. Therefore we write
with the lower curve in the diagramK(=K,), we obtain
H2=3/4. Therefore, in the regioH?>3/4, the fundamental Ji=—J,=ngup/2, Ei=E,=M u§/2, (54)
wave number is always unstable.

The previous discussion raises the question of the physihereuy# 0 is a nonzero reference velocity. Let=A? and
cal meaning of the upper instability region in Fig. 1. In par-n,=A3, and transform to the dimensionless variables
ticular, we ask whether it is possible to locate the fundamen-

tal wave number in the stable regidbetweenK , andKg) X* = wpXlUg,  Af,=Ay /g, (55)
and a higher harmoniK ,,=mK, (wherem s an integerin ) )
the unstable upper zongetweenKy and K¢). The con- ¢*=(e¢p+E1)/Mug, H=hw,/Mug. (56)

straints to be satisfied are _ .
In these variables, the two conservation laws, E§8) and

Kg<Kn<Kc, (46) (53), and Poisson’s equatiofv) take the form of a six-
dimensional dynamical systefuwe omit the stars for sim-
Ko>Ka. (47  plicity of notation
Taking into account Eq(45), we can writeK,,=m/(nH), 2dZA1 1
and the previous inequalities become > =3 2¢Ag, (57)
dx®  4A7
2
m
2+2 1—H2<—2<4, (48) szZA2 1 2 6 A 59
n =—— ,
a2 4Ad ?
2-2 1—H2<i. (49 d?¢
n? —=AT+A3-1. (59
dx?
The square root can be eliminated by summing E4f). and . ) i
(49). We obtain Equations(57)—(59) constitute a coypled, _nonllnear_ system
of three second-order ordinary differential equations, de-
4n?—1<m?<4n?, (50) pending on the control parametidr They can be put into a

Hamiltonian form, using a procedure similar to the one em-
which cannot be satisfied for any pair of integer numbersployed for the one-stream QBGK equatiof®3) and (24).
(n,m). In summary, it is not possible to excite a harmonic in This immediately provides a first integral, which is the
the unstable upper zone of Fig. 1 without also exciting theHamiltonian function itself(its actual expression is rather
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involved, and not particularly illuminating Just as in the 0.030
one-stream case, we could not find any additional constants
of motion, so that we cannot prove rigorously that the system
is integrable. However, numerical integrations of E&S)—

(59) (see end of this sectipstrongly suggest that the system

is indeed integrable, with quasiperiodic solutions.

For the study of small-amplitude oscillations, it suffices to
expand Eqs(57)—(59) in the vicinity of the spatially homo-
geneous equilibriumA;=1/\2, A,=1/\2, ¢=1/2. After -0.030 . ‘ . .
Fourier transforming, the following system is obtained, for 0 2 4 8 8 10
the perturbed quantitie& , ¢': X

0.015

0.000 -

Amplitudes

-0.015

(4—H2K?)A/ +\2¢'=0, i=1,2, (60)
V2(AL+AY) +K2p' =0, (61)

where K=kuy/w, is the dimensionless wave number. By
searching for nontrivial solutions, one obtains the relation

A"

Notice that this is the sam@vith an equality sigh as the
previously obtained Eq37). Solutions of Eq(62) represent K

wave numbers for which both the real and imaginary parts of

the frequency vanish, and can be considered as the homoge- FIG. 3. Stationary solution of the two-stream Sdlinger-
neous limit of generally inhomogeneous stationary state®oisson plasmaQBGK mode, with H=0.7, €,=0, and €

(QBGK modes. If H<1, there are three such solutions, = —€,=0.02. () Spatial variation of the density fluctuations

which are the wave numbei§,, Kg, and K defined in (solid line), A, (dashed ling and potential fluctuationg’ (dotted
Egs. (40) and (41). If H>1, only the solutiorK ¢ survives. line). Notice_ that the potential remains sn_mb) Fqurier transform
The other two solutions become complex, so that spatiallpf A1 the linear wave numbe c=2.857 is dominant.

periodic QBGK modes can no longer exist.

It is also interesting to look for the eigenvectors corre-
sponding to the eigenvaluds,, Kg, andKc. From Egs.
(60) and(61) we can express the perturbed amplitudgsn
terms of the potential. Two cases are possilib: if K
=Kc=2/M, then one must have’'=0 andA;=—AJ; (2)
otherwise, if K=K, or Kg, we have Aj=A, A standard numerical technique has been employed in
=\2¢'/(H?K?—4). The first case is particularly interest- order to integrate the time-dependent Sclimger-Poisson
ing. It means that the mode characterized by wave numbesystem. Let us write the Schiimger equation as
K¢ is a “quasineutral” mode, in the sense that the associated
electrostatic potential is zero to first order. Indeed, one can ih&—(szer(I)zp 63)
see that no plasma parametdmich as the plasma fre- at '
qguency enter the definition oK-=2/H. These modes can
be actually accessed, for example, by choosing the fundavhereK is the kinetic part of the Hamiltonian, ari(x,t) is
mental wave numbeh(oz 1/H, which is the |argest admis- the pOtential. The Hamiltonian is Spllt into these two parts,
sible value forK, [see Eq(45)]. In this case, the harmonic and each is treated separately. For the potential part, the so-
2Ko=2/H corresponds to the quasineutral mode. lution is trivial:

Numerical integration of Eq$57)—(59) confirms the pre-
vious results. For instance, it was verified that periodic solu-

tions only exist forH<1. We takeH=0.7 and initialize the \yhere y"=y(nAt), andAt is the time step. For the kinetic
amplitudes and the potentigdt x=0) with their equilibrium part, we use a Crank-Nicolson scheme, which is exact to

Figs. 3 and 4, for whicke=0.02), although the linear wave
numbers are still dominant. For even larger perturbations,
bounded solutions no longer exist.

IV. TIME-DEPENDENT NUMERICAL SIMULATIONS

YN I=yexp(—iDAL/A), (64)

value, plus a small perturbatios, i.e., #(0)=1/2+€,,  second order imt,

Ai(0)=(1+¢)//2. In agreement with the discussion of the .

previous paragraph, if we choogg=0 ande;=—¢,, the Yti=yn . 1

wave numbeiK -=2.857 is linearly excited and thus domi- i At :i(K'p)M + §(K’p)n' (69)

nates(Fig. 3), while the potential remains very small. On the

other hand, ife;= €, and e, arbitrary, modeK ,=1.08 and  The kinetic operatoK is spatially discretized by using the
Kg=2.645 are linearly excitedFig. 4). For generic pertur- standard centered differences formula. The time evolution is
bations, all three wave numbers are excited. Of course thesgbtained by subsequently applying the potential and kinetic
results are strictly valid only for infinitesimally small pertur- steps described above. Poisson’s equation is solved with a
bations. For moderate values, other modes appgsible on  fast Fourier transform technique just before the potential step
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0.030 ‘ ' ' ' 102
(a) 0
w  0.015 10
g -2
3 : 107 %}
= = _
] 0.000 & ot
g -6
< -0.015 10
1078
-0.030 . ) . .
0 2 4 6 8 10 time
X
FIG. 5. Two-stream instability—evolution of the fundamental
modeK,=0.8 (solid line) and first harmonic K (dashed ling of
the electrostatic potential, foHd=0.25. The straight line corre-
sponds to the growth rate ¢f, computed from linear theoryy
=0.3116.
- tum space is discrete, withp=#k, (=0.2 in the above
- cas@. For our simulations, the total momentum distribution
of the unperturbed wave functions is simply
: ‘ 1 1
0 2 4 6 F(p)=§5(p—Mu0)+ 55(p+Mu0), (67)
K

FIG. 4. Stationary solution of the two-stream Sdalirger-  where§ is the Dirac delta function. During the linear phase,
Poisson plasm&QBGK modeg, with H=0.7, €,=0, ande;=€,  the momentum distribution remains virtually unchanged,
=0.02. (a) Spatial variation of the density fluctuatiods (solid  whereas at saturation we observe a significant spreading in
line), A; (dashed ling and potential fluctuationg’ (dotted ling. momentum space, which extendspe: +2.5Mu, (Fig. 6).

Note that the solid and dashed lines are superposed, #iice Thijs is similar to the behavior of the classical two-stream
=A;. (b) Fourier transform ofA; : the linear wave numberk 5 instability.
=1.080 andKg=2.645 are dominant. As was shown in the preceding section, one cannot excite
) o ) ~a mode in the unstable upper region of Fig. 1, without also
(notice that the kinetic step does not alter the spatial de“S'téxciting an unstable mode in the lower zone. However, if
and, therefore, the potential The resulting numerical only the larger wave number is initially perturbed, one can
scheme is unconditionally stable and second order accuraigype to see it grow with the correct rate before other unstable
in both space and time variables. Another crucial property ofodes can be excited. In order to do so, we tdke0.9 and
the scheme is that it conservesactlythe integralf|#/°dX  n=5. The fundamental wave number is ths=2/9, and is
[17]. A typical resolution used in the simulation Ny  of course unstable sind€,=1.18 in this case. We only per-
=512 points and time stept=0.02. _ turb the harmonic B,=2, which falls within the upper un-

The initial condition for the simulations is obtained by gtgple zone, sinc&z=1.883 andK,=2.222. Of course,
applying a sudden sinusoidal potential to the equilibriumgeyeral other modes are also unstafsiemely, those from
wave functions given in Eq43). In dimensionless variables, K, to 5K,), but they are not initially perturbed. Figure 7
we have shows the evolution of modek®), which closely agrees with

o . i the result of the linear calculation for the growth rate. Sev-

P+ (x,00=2""exp(x inKpx) explieH COS(KmX)(]é6) eral other linearly unstable modes appear at a later time, so

wheree andK ,=mKg are the amplitude and the wave num-
ber of the perturbation, and,m are integer numbers. We
recall that one must havydKy=1/n.

Several simulations have been run in order to compare | ——
with the analytical results obtained in the linear regime, with
excellent agreement between the two. As an example, we use
the parameter$l=0.25 andn=5 (K,=0.8), and perturb

ﬁ

the fundamental modex(=1). Figure 5 shows the evolution v— — !
of two modes of the electrostatic potential. The straight line " -E+
corresponds to the linear growth rate #6g, as computed - ¥ S —

from Eg. (36), and closely matches the measured growth

rate. At saturation, several modes are present. FIG. 6. Momentum distribution for the same case of Fig. 5, at
The total momentum distributioff (p) is given by the  timest=0 (dotted ling andt==80 (solid line). The final distribution

sum of the square modulus of the Fourier transform of eachas been magnified by a factor of 2. Momentum space is discrete

wave function, withp=7%Kk. As pointed out earlier, momen- with Ap=#k,=0.2.
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FIG. 7. Two-stream instability—evolution of mode&§ of the
electrostatic potential, foH=0.9 andKy=2/9. The straight line
corresponds to the growth rate computed from linear thegry,

FIG. 9. Two-stream instability—evolution of the fundamental
modeK =1 (solid line) and first harmonic B, (dashed lingof the
electrostatic potential, foH=1. The straight line corresponds to

=0.1085. the growth rate of mode&K, computed from linear theoryy
=0.2297.

that at saturation the spectrum is large. This is reflected in

the momentum distribution, plotted in Fig. 8. case where only th&.=2/H mode is present. This, as de-

The results for the fully quantum regime, and particularly tajled in the previous section, is a “quasineutral” mode, in
for H=1, are more surprising. As an example, let us takgne sense that the associated electrostatic potential is zero to
H=1, Ko=1, and perturb the fundamental mode itself. In-first order in the perturbation parameter. We construct a
stability occurs as expected with the correct growth faee weakly inhomogeneous equilibrium by using the form of Eq.
Fig. 9). However, instead of saturating at a certain level, thez) for the wave functions), ,. Both the amplitude and the

system appears to decay with the same rate, and then to grqyase should be sinusoidal functions. For the amplitudes, we
again. These nonlinear periodic oscillations do not damg,gye

even for very long times, as has been checked numerically.

Higher harmonics, which are linearly stable, are driven by

the fundamental mode, and show a similar pattern, although A; =

at a lower level. The period of the oscillations is not univer- “ 2

sal, and depends on the amplitude of the initial perturbation,

which confirms that this is indeed a nonlinear effect. A simi-whereK.=mK, is the wave number of the QBGK modws;

lar, although less pronounced behavior, is also observed fdherefore represents the number of density oscillations. The

H>1. The momentum distribution is virtually unchanged phasesS, , are obtained from the definition of E(), and

over the entire duration of the simulation. It must be notedremembering that, in dimensionless unitg; =+ 1/2. One

that, for parameters such thetK,=1, the minimum non- obtains, to first order ir,

zero value of the momentum |®,i,|=Mug, and is there-

fore equal to the momentum of the unperturbed streams. In S1= +x—2eKctsin(Kex). (69)

other words, the streams occupy the lowest possible level in

momentum space. Although we do not have a detailed exgy virtue of the relationsiHK,=1 andKc=mKy=2/H, we

planation for this phenomenon, it appears to be an examplgptain thatm=2n must be an even number.

of a completely reversible quantum system, in which the As an example, we takd=0.5, Kc=4. With n=1, we

initial condition is almost perfectly reconstructed after onegptain K,=2, and the number of spatial oscillationsris

period[18]. This is to be compared with the inherently irre- —2n=2 Notice that, in this case, the fundamental wave

versible classical dynamics, for which returning to the initial nymber is stable. If we had choser 2, we would have had

state after saturation is virtually impossible. Ko=1, which is unstable. With this value ¢f, it is there-
Finally, we have studied the evolution of perturbedfgre possible to construct a stable QBGK mode displaying at

QBGK equilibria. It is particularly instructive to consider the most two spatial oscillations. In order to have more oscilla-

tions, a smaller value dfl should be used. For small values

i[1iecos(ch)], (68)

0.6 T of the perturbation parameter the simulations confirm the
linear analytical results, and virtually no evolution is ob-
0.4F 1 served; besides, the potential fluctuations stay small com-

pared to the density ones. For larger values of the perturba-
tion (e=0.1), some temporal variations are observEd).
10), since the wave functions given by E@68) and(69) no
A N longer represent an exact stationary state. However, the pe-
0.0 = Sl DI I riodic structure is not destroyed, and the potential fluctua-
-3 -2 - /&u ro= 3 tions remain an order of magnitude smaller than the density
P/ fluctuations. These results show that a quantum plasma can
FIG. 8. Momentum distribution for the same case of Fig. 7, atSupport almost stationary, quasineutral, periodic solutions.
timest=0 (dotted ling andt= 160 (solid ling). The final distribu- These display significant density fluctuations for each
tion has been magnified by a factor of 2. Momentum space is disstream, but small potential fluctuations. They have no analog
crete withAp=17%ky=0.2. in a classical two-stream plasma.

F(p)

0.2 1




PRE 62 MULTISTREAM MODEL FOR QUANTUM PLASMAS 2771

t=20 tation for the time-dependent simulations, since accurate nu-
0.2} ' merical techniques for this equation are well known from the

: E computational literature.

For the case of the two-stream instability, it has been
shown that the dispersion relation possesses three branches,
one of a semiclassical character and two of a purely quantum
nature. It is interesting to observe that even the classical
branch reveals some unexpected features: for shajuan-
tum effects tend to enhance the two-stream instability. More
precisely, some classically stable wave numbers are destabi-
lized for sufficiently large values oH<1. On the other
hand, a strong quantum effect can yield the opposite result:
for H>2, some classically unstable wave numbers become
stable. The purely quantum region of the dispersion relation
(the upper unstable zone of Fig. dannot, however, be ex-
cited without also exciting some wave number in the lower
(semiclassicalregion. This means that a purely quantum in-
stability cannot be observed fét<<1. Extensive numerical
simulations, run for different values of the relevant param-
eters, wholly support the analytical results obtained from lin-
ear theory. In the fully quantum case, we have observed a
surprising, yet unexplained, regime of undamped nonlinear
oscillations. This is a purely quantum effect, which is prob-
ably linked to quantum recurrences and ecHd&s.

We have also considered the stationary states of the
Schralinger-Poisson system, which can be viewed as the
quantum analog of the classical BGK modes. Such QBGK
modes are described by a nonlinear system of coupled
second-order differential equations, parametrized by the di-
mensionless Planck’s constaft Such a system provides an
adequate framework for the analysis of QBGK modes, a task

FIG. 10. Evolution of a strongly nonlineae € 0.1) quasineutral  which would be rather difficult in the Wigner-Poisson for-
(K=Kc=4) QBGK equilibrium, for the set of parametet  malism. In particular, numerical simulations have shown that
=0.5, Ko=2. The number of spatial oscillations l=2. The  quasineutral, spatially periodic, stationary states can be cre-

density fluctuations); (solid ling) andn; (dashed lingand poten-  ated in the two-stream plasma, and can survive over long
tial fluctuations¢’ (magnified by a factor of 100, dotted lnare  times.

shown at different times. Some interesting questions remain to be addressed. In the
present work, we have considered in detail only the one- and
V. CONCLUSION two-stream cases. Further investigations are needed to ex-

plain the properties of the quantum multistream model when
he number of streams is large. In this case, the Wigner-
Poisson system could be a more appropriate model, despite
-és intrinsic mathematical difficulties. However, an interme-

In this work, we have introduced a quantum multistream
model to describe some physical phenomena arising in qua
tum plasmas. The quantum multistream model may be co

sidered as a discrete version of the Wigner-Poisson model, ity; . - ;
the same sense as the classical multistream model is a diaiate number of streams might be sufficient to describe the

crete form of the Vlasov-Poisson system. Indeed, it is wellg‘aln _physflcal phenclnmela. Ilc_jmt?ar ang non(ljl_gear Landau
known [19] that the Wigner-Poisson system is formally amping, for example, shou e good candidates to test

equivalent to an infinite set of Schiimger equations, these ideas, both analytically and numerically.
coupled by a scalar potential obeying Poisson’s equations.
However, it is often more appropriate to work with the hy-
drodynamic formulation of quantum mechanics, since it We would like to thank Pierre Bertrand for his valuable
makes direct use of the same physical quantities that areomments and suggestions. One oflad$d.) thanks the Lab-
employed in classical physigglensity, velocity, pressure oratoire de Physique des Milieux longsdor hospitality
Moreover, the stability analysis and perturbation calculationsvhile this work was carried out and the Brazilian agency
become straightforward in the hydrodynamic formulation.Conselho Nacional de Desenvolvimento Cientifico e Tecno
On the other hand, we have used the Sdhmger represen- logico (CNPg for financial support.
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