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Multistream model for quantum plasmas
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The dynamics of a quantum plasma can be described self-consistently by the nonlinear Schro¨dinger-Poisson
system. We consider a multistream model representing a statistical mixture ofN pure states, each described by
a wave function. The one-stream and two-stream cases are investigated. We derive the dispersion relation for
the two-stream instability and show that a new, purely quantum, branch appears. Numerical simulations of the
complete Schro¨dinger-Poisson system confirm the linear analysis, and provide further results in the strongly
nonlinear regime. The stationary states of the Schro¨dinger-Poisson system are also investigated. These can be
viewed as the quantum mechanical counterpart of the classical Bernstein-Greene-Kruskal modes, and are
described by a set of coupled nonlinear differential equations for the electrostatic potential and the stream
amplitudes.

PACS number~s!: 52.35.2g, 03.65.2w, 05.60.Gg
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I. INTRODUCTION

The great degree of miniaturization of today’s electro
components is such that the de Broglie wavelength of
charge carriers is frequently comparable to the dimension
the system. Hence, quantum mechanical effects~e.g., tunnel-
ing! are expected to play a central role in the behavior
electronic components to be constructed in the next year
order to describe these quantum effects, it is unlikely t
classical transport models will be sufficient. Quantum tra
port equations, such as the Schro¨dinger-Poisson or the
Wigner-Poisson systems@1–7#, will therefore be a necessar
tool in order to understand the basic properties of th
physical systems.

In the present paper, we consider a one-dimensional q
tum plasma, where the electrons are described by a statis
mixture ofN pure states, with each wave functionc i obeying
the Schro¨dinger-Poisson system

i\
]c i

] t
52

\2

2M

]2c i

]x2
2efc i , i 51, . . . ,N, ~1!

]2f

]x2
5

e

«0
S (

i 51

N

uc i u22n0D , ~2!

where f(x,t) is the electrostatic potential. Electrons ha
massM and charge2e, and are globally neutralized by
fixed ion background with densityn0. Finally, we assume
periodic boundary conditions, with spatial period equal toL.

The system of Eqs.~1! and~2! takes into account diffrac
tion, which is the most prominent quantum effect, but n
glects dissipation, spin, and relativistic corrections. These
fects may be important in more realistic models for sm
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semiconductor devices. Nevertheless, it is useful to cons
simplified models that capture the main features of quan
plasmas. Indeed, Eqs.~1! and~2! are sufficiently rich to dis-
play a wide variety of behaviors, as will be seen in the res
this work. At the same time, this model is still amenable
analytic and numerical treatment.

A physically equivalent approach would consist in co
sidering a Wigner function describing the same mixture. T
Wigner function approach is a reformulation of quantum m
chanics in the classical phase space language@8–10#. The
price to pay for this otherwise appealing formalism is th
Wigner functions can take negative values, and cannot th
fore be regarded as true probability distributions. Howev
both for the analytical and the numerical treatment of
problems of interest in this paper, the Schro¨dinger-Poisson
formalism is more appropriate. This is particularly true f
the numerical simulations, since the Wigner formalism
cast into a two-dimensional phase space, while
Schrödinger-Poisson model only requires the discretizat
of the one-dimensional configuration space. Of course, if
number N of streams is large, the numerical cost for t
description of the system of Eqs.~1! and ~2! is also consid-
erable. Nevertheless, interesting physical phenomena~such
as instabilities! can take place even with a few streams (N
51 or 2!, as will appear in the rest of this work. More subt
effects ~Landau damping, for instance! would probably re-
quire a larger, although hopefully not prohibitive, number
streams (N.20–30!.

For the analytical study, the hydrodynamic formulation
the Schro¨dinger-Poisson system is particularly convenie
since it makes direct use of macroscopic plasma quanti
such as density and average velocity. Moreover, it ena
one to perform straightforward perturbation calculations
the same fashion as in the classical case. Let us introduce
amplitudeAi and the phaseSi associated to the pure statec i
according to

c i5Ai exp~ i Si /\!. ~3!
2763 ©2000 The American Physical Society
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Both Ai andSi are defined as real quantities. The densityni
and the velocityui of the i th stream of the plasma are give
by

ni5Ai
2 , ui5

1

M

] Si

] x
. ~4!

Introducing Eqs.~3! and ~4! into Eqs.~1! and ~2! and sepa-
rating the real and imaginary parts of the equations, we

] ni

] t
1

]

] x
~niui !50, ~5!

] ui

] t
1ui

] ui

]x
5

e

M

]f

] x
1

\2

2M2

]

] x S ]2~Ani !/] x2

Ani
D , ~6!

]2f

] x2
5

e

«0
S (

i 51

N

ni2n0D . ~7!

Quantum effects are contained in the pressurel
\-dependent term in Eq.~6!. If we set \50, we simply
obtain the classical multistream model introduced by Da
son @11#. Therefore, we shall refer to Eqs.~5!–~7! as the
quantum multistream model.

Equations~5!–~7! constitute the mathematical model us
in the rest of this work. We focus our attention on the on
stream~Sec. II! and two-stream~Sec. III! cases, the latte
being related to the well-known two-stream instability. T
relevant dispersion relations are derived, and the unst
branches are identified. We also investigate the propertie
stationary solutions of the Schro¨dinger-Poisson system
which can be viewed as the quantum counterpart of the c
sical Bernstein-Greene-Kruskal~BGK! modes@12#. The ana-
lytical calculations are checked against time-dependent
merical simulations, shown in Sec. IV. Our conclusions
presented in Sec. V.

II. ONE-STREAM PLASMA

In order to fix the basic ideas, we first consider the o
stream case and takeN51, i.e., a single pure quantum stat
For brevity, we writen1[n, u1[u. We obtain

] n

] t
1

]

] x
~nu!50, ~8!

] u

] t
1u

] u

] x
5

e

M

]f

] x
1

\2

2M2

]

] x S ]2~An!/] x2

An
D , ~9!

]2f

] x2
5

e

«0
~n2n0!. ~10!

A homogeneous zeroth-order solution for Eqs.~8!–~10! is
provided by

n5n0 , u5u0 , f50, ~11!

whereu0 is a constant representing the equilibrium veloc
of the stream. The linear stability of this solution is obtain
by Fourier analyzing Eqs.~8!–~10!,
d

,

-

-

le
of

s-

u-
e

-

n5n01n8exp@ i ~kx2v t !#, ~12!

u5u01u8exp@ i ~kx2v t !#, ~13!

f5f8exp@ i ~kx2v t !#. ~14!

Retaining only terms up to first order inn8, u8, andf8 leads
to the dispersion relation

~v2ku0!25vp
21\2k4/4M2, ~15!

wherevp5(n0e2/M«0)1/2 is the plasma frequency. Foru0
50, the dispersion relation given in@13# is recovered, the
term ku0 merely representing a Doppler shift. As the fr
quencyv is always real, there can be neither instability n
damping of the wave.

The classical analog of this system is the ‘‘cold plasm
model, which is known to sustain nonlinear oscillatio
when the amplitude of the initial perturbation is smaller th
a certain value. Beyond that value, the solution becomes
gular in a finite time, which is a sign that the model is n
longer valid. This phenomenon corresponds to the break
of the plasma wave, due to particle overtaking in the ph
space. Due to the pressurelike term in Eq.~9!, the quantum
solution nevers becomes singular, as was shown by comp
simulations@14#.

Let us now turn our attention to the stationary regimes
the system. If all quantities only depend on position, th
Eqs.~8! and ~9! are reduced to

d

dx
~nu!50, ~16!

u
du

dx
5

e

M

df

dx
1

\2

2M2

d

dx S d2~An!/dx2

An
D . ~17!

Equations~16! and ~17! possess the first integrals

J5nu, ~18!

E5
Mu2

2
2ef2

\2

2M S d2~An!/dx2

An
D , ~19!

corresponding to charge and energy conservation. The
stantE can be eliminated by the global shiftf→f1E/e,
and therefore we assumeE50 in the rest of this section
Eliminating u, introducing A5An, and using Poisson’s
equation, we obtain

\2
d2A

dx2
5M S MJ2

A3
22e Af D , ~20!

d2f

dx2
5

e

«0
~A22n0!. ~21!

It can be easily verified that theJ50 case cannot sustai
small-amplitude, periodic solutions. Hence, we assumeJ
5n0u0 with u0Þ0 and introduce the following rescaling:
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x* 5
vpx

u0
, A* 5

A

An0

,

~22!

f* 5
ef

Mu0
2

, H5
\vp

Mu0
2

.

We obtain, in the transformed variables~omitting the stars
for simplicity of notation!,

H2
d2A

dx2
522f A1

1

A3
, ~23!

d2f

dx2
5A221, ~24!

a system that only depends on the rescaled parameteH,
which is a measure of the importance of quantum effects

Notice that the classical limit is singular, in the sense t
Eq. ~23! degenerates into an algebraic equation whenH
50. The equation for the electrostatic potential then
comes

d2f

dx2
5

1

A2f
21. ~25!

Equation~25! has a Hamiltonian character, and correspon
to the equation of motion of a ‘‘particle’’ moving in a po
tentialV(f)5f2A2f. Using this analogy, one can see th
Eq. ~25! has periodic solutions around the equilibriumf
51/2, provided that the initial condition satisfies 0,f(x
50),2. The fact that no spatially periodic solution exis
for sufficiently large values of the potential is easily und
stood. A large potential fluctuation induces a velocity flu
tuation, which can driveu(x) far from its nominal valueu0.
If the potential is sufficiently strong,u(x) can even vanish
but in that case the relationnu5J5const implies an infinite
density. This is the well-known effect of particle overtakin
that occurs in the cold plasma model.

Going back to the quantum mechanical case, we h
shown that Eqs.~23! and ~24! describe the inhomogeneou
QBGK ~quantum-BGK! equilibria of the one-componen
quantum plasma. We are faced with the mathematical p
lem of understanding the qualitative properties of the so
tions of a coupled, nonlinear system of two second or
differential equations depending on a parameter. Only a
analytical results can be obtained, shown in the rest of
section.

Equations~23! and~24! can be put into Hamiltonian form
by using the variables

Ā5 iA, f̄5f/H. ~26!

Notice that the rescaled amplitudeĀ is a purely imaginary
quantity. We have

d2Ā/dx252] U/]Ā, d2f̄/dx252] U/]f̄, ~27!

whereU[U(Ā,f̄) is the pseudopotential:
t

-

s

t

-
-

e

b-
-
r
w
is

U~Ā,f̄ !5
1

H
~11Ā2!f̄1

1

2H2Ā2
. ~28!

Since the equations of motion are autonomous with resp
to the independent variablex, the Hamiltonian formulation
immediately gives the first integral~subscripts denote differ
entiation!

I 5
1

2
~Āx

21f̄x
2!1U~Ā,f̄ !, ~29!

which is the Hamiltonian function in transformed coord
nates. Transforming back to the original variables, one
tains the first integral for Eqs.~23! and ~24!:

I 5
1

2
~2Ax

21H22fx
2!1

1

H2
~12A2!f2

1

2H2A2
. ~30!

According to the Liouville-Arnold theorem@15#, an autono-
mous two-degree-of-freedom Hamiltonian system is co
pletely integrable if it possesses two first integrals in invo
tion and with compact level surfaces. Even ifI has no
compact level surfaces, a second constant of motion wo
be a strong indication of the integrability of the QBGK sp
tial dynamics. We have tried to find a second constant
motion for Eqs.~23! and~24! by a variety of methods~geo-
metrical Noether and Lie symmetries, for instance!, but with-
out success. However, numerical integrations of Eqs.~23!
and~24! for a wide range of values ofH, and different initial
conditions, strongly suggest that, when bounded soluti
exist, they are always regular. An additional first integ
must therefore exist, although its actual expression may
difficult to guess.

It is interesting to perform a linear stability analysis
order to see in what conditions the system supports sm
amplitude spatially periodic solutions. Writing

A511A8exp~ ikx!, f51/21f8exp~ ikx!, ~31!

and retaining in Eqs.~23! and ~24! only terms up to first
order in the primed variables, we obtain the relation

H2k424k21450. ~32!

Again, we point out the singular character of the classi
limit: for H50, Eq. ~32! degenerates into a quadratic equ
tion, with solutionsk561. The wave numbers being alway
real, this corresponds to spatially periodic solutions. Wh
HÞ0, we obtain

k25
262A12H2

H2
. ~33!

For H,1 ~semiclassical regime!, both wave numbers are
real, and therefore the system can sustain spatially peri
oscillations. ForH.1 ~strong quantum effects!, the solu-
tions are spatially unstable, and grow exponentially. ForH
51, the spectrum is degenerate, with associated sec
terms. The corresponding solution is also spatially unsta
growing linearly withx. We conclude that small-amplitud
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stationary solutions of the one-stream Schro¨dinger-Poisson,
spatially periodic, system can only exist in the semiclass
regimeH,1.

III. TWO-STREAM PLASMA

A. Two-stream instability

We now turn to the more interesting case of two strea
which classically can give rise to instability. For this, w
consider Eqs.~5!–~7! with N52. We first linearize around
the equilibrium solutionn15n25n0/2, u152u25u0 , f
50, whereu0Þ0 is a nonzero reference velocity, and th
Fourier transform both in space and time variables. In te
of the dimensionless variables

V5v/vp , K5u0k/vp , H5\vp /Mu0
2 , ~34!

the dispersion relation becomes

V42S 112K21
H2K4

2 DV22K2S 12
H2K2

4 D
3S 12K21

H2K4

4 D50. ~35!

Consequently, one obtains

V25
1

2
1K21

H2K4

4
6

1

2
~118K214H2K6!1/2. ~36!

The solution forV2 has two branches, one of which is a
ways positive and gives stable oscillations. The other so
tion is negative (V2,0) provided that

~H2K224!~H2K424K214!,0. ~37!

Notice that instability, when it occurs, always arises throu
the marginal mode (V50). In the classical case, Eq.~37!
yields K2,1, which is the classical criterion for the occu
rence of the two-stream instability. In the quantum case,
~37! bifurcates forH51. If H.1, the second factor is al
ways positive, and the plasma is unstable ifHK,2. If H
,1, there is instability if either

0,H2K2,222A12H2 ~38!

or

212A12H2,H2K2,4. ~39!

This yields the stability diagram plotted in Fig. 1. The low
instability zone is semiclassical, as it represents an exten
of the classical instability criterion. The upper instabili
zone, on the other hand, has no classical analog. The
zones merge forH51. We callKA , KB , andKC the wave
numbers at which the growth rate vanishes. These are
fined by

H2KA,B
2 5262A12H2, ~40!

H2KC
2 54. ~41!

It is easy to verify the following property:
al

s,

s

-

h

q.

on

o

e-

KA
21KB

25KC
2 . ~42!

We shall see that these wavelengths are related to the
tionary solutions of the Schro¨dinger-Poisson system~QBGK
modes!. From the previous analysis, it appears that quant
mechanics has a destabilizing effect in the semiclassica
gime, where more modes are unstable compared to the
sical case. On the other hand, whenH.2, fewer modes turn
out to be unstable than in the classical regime. This is
result obtained by Suh, Feix, and Bertrand@16#, who found
that quantum effects are stabilizing for large enoughH.

It would be interesting to know whether the quantum
stability is stronger or weaker than the classical one. For t
one should search for the maximum~over all wave numbers!
growth rate for a fixed value ofH, and compare it to the
maximum classical growth rate. Although the algebra
rather involved, direct inspection of the functiong(K) for
different values ofH indicates that the maximum classic
growth rate is always larger than the maximum quant
growth rate~Fig. 2! @in this figure, the intersections with th
K axis correspond to wave numbersKA , KB , and KC as
defined in Eqs.~40! and ~41!, for which the growth rate
vanishes#. Of course, for some wave numbers, the quant

FIG. 1. Stability diagram for the two-stream plasma. The fill
area is unstable. The dashed line corresponds toHK51. Lower and
middle solid curves:KA

2 andKB
2 as defined in Eq.~40!. Upper solid

curve:KC
2 as defined in Eq.~41!.

FIG. 2. Plot of the squared growth rateg as a function of the
dimensionless wave numberK, for different values of Planck’s con
stant.H50.5, solid line;H51, dashed line;H52, dotted line. The
intersections of these curves with theK axis correspond to wave
numbersKA , KB , and KC as defined in Eqs.~40! and ~41!. For
H50.5, only the intersection atKA.1.035 is shown; the intersec
tions at KB.3.864 andKC54 are outside theK axis range. For
H51, the intersections are atKA5KB5A2 and KC52. For H
52, there is only one intersection atKC51.
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growth rate may be larger than the classical one, as ca
seen from Fig. 2. Note that the secondary maximum~be-
tween wave numbersKB and KC) is considerably smalle
than the one betweenK50 andKA , and goes to zero in the
classical limitH→0.

In the previous discussion, we have ignored the fact t
due to the periodic boundary conditions, the momentum v
able p5\k is discrete, and can only be a multiple of\k0,
wherek052p/L is the fundamental wave number. For th
previous stability calculations, we have assumed an in
equilibrium solution for which the densityn0 is spatially
uniform and the velocity is equal to6u0. This corresponds
to wave functions of the type

c6~x,0!5An0/2 exp~6 iMu0x/\!. ~43!

In order to satisfy the periodicity, one must have

Mu05n\k0 , n51,2,3, . . . . ~44!

Using the dimensionless variables introduced earlier,
condition becomes

HK051/n, ~45!

which impliesHK0<1. This result sets an upper bound o
the fundamental wave numberK0. In the instability diagram
of Fig. 1, this means that the upper instability region can
be accessed forK0, although of course it can for some of i
harmonics. Computing the intersection of the curveHK51
with the lower curve in the diagram (K5KA), we obtain
H253/4. Therefore, in the regionH2.3/4, the fundamenta
wave number is always unstable.

The previous discussion raises the question of the ph
cal meaning of the upper instability region in Fig. 1. In pa
ticular, we ask whether it is possible to locate the fundam
tal wave number in the stable region~betweenKA andKB)
and a higher harmonicKm5mK0 ~wherem is an integer! in
the unstable upper zone~betweenKB and KC). The con-
straints to be satisfied are

KB,Km,KC , ~46!

K0.KA . ~47!

Taking into account Eq.~45!, we can writeKm5m/(nH),
and the previous inequalities become

212A12H2,
m2

n2
,4, ~48!

222A12H2,
1

n2
. ~49!

The square root can be eliminated by summing Eqs.~48! and
~49!. We obtain

4n221,m2,4n2, ~50!

which cannot be satisfied for any pair of integer numb
(n,m). In summary, it is not possible to excite a harmonic
the unstable upper zone of Fig. 1 without also exciting
be

t,
i-

l

is

t

i-

-

s

e

fundamental mode in the lower unstable region. Therefore
least in the semiclassical regimeH,1, we cannot expect to
observe a ‘‘purely quantum’’ instability. However, as r
marked earlier, forH2.3/4 the fundamental mode is un
stable, as a result of quantum effects. We stress that
above restrictions are a result of the periodic boundary c
ditions, and do not apply to a truly infinite plasma, for whic
momentum space is continuous. Still, periodic conditions
be relevant, for instance, to solid state plasmas, where
periodicity is induced by the underlying ion lattice.

B. Stationary solutions: QBGK modes

Let us now consider the stationary states of the tw
stream Schro¨dinger-Poisson system~QBGK modes!. If all
quantities are dependent only on position, Eqs.~5! and ~6!
for N52 possess the first integrals

J15n1u1 , J25n2u2 , ~51!

E15
Mu1

2

2
2ef2

\2

2M

d2~An1!/dx2

An1

, ~52!

E25
Mu2

2

2
2ef2

\2

2M

d2~An2!/dx2

An2

. ~53!

We are particularly interested in the case of two symme
streams, each carrying the same current~with opposite sign!
and same kinetic energy. Therefore we write

J152J25n0u0/2, E15E25Mu0
2/2, ~54!

whereu0Þ0 is a nonzero reference velocity. Letn1[A1
2 and

n2[A2
2, and transform to the dimensionless variables

x* 5vpx/u0 , A1,2* 5A1,2/An0, ~55!

f* 5~ef1E1!/Mu0
2 , H5\vp /Mu0

2 . ~56!

In these variables, the two conservation laws, Eqs.~52! and
~53!, and Poisson’s equation~7! take the form of a six-
dimensional dynamical system~we omit the stars for sim-
plicity of notation!

H2
d2A1

dx2
5

1

4A1
3

22 f A1 , ~57!

H2
d2A2

dx2
5

1

4A2
3

22 f A2 , ~58!

d2f

dx2
5A1

21A2
221. ~59!

Equations~57!–~59! constitute a coupled, nonlinear syste
of three second-order ordinary differential equations,
pending on the control parameterH. They can be put into a
Hamiltonian form, using a procedure similar to the one e
ployed for the one-stream QBGK equations~23! and ~24!.
This immediately provides a first integral, which is th
Hamiltonian function itself~its actual expression is rathe
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involved, and not particularly illuminating!. Just as in the
one-stream case, we could not find any additional const
of motion, so that we cannot prove rigorously that the syst
is integrable. However, numerical integrations of Eqs.~57!–
~59! ~see end of this section! strongly suggest that the syste
is indeed integrable, with quasiperiodic solutions.

For the study of small-amplitude oscillations, it suffices
expand Eqs.~57!–~59! in the vicinity of the spatially homo-
geneous equilibriumA151/A2, A251/A2, f51/2. After
Fourier transforming, the following system is obtained,
the perturbed quantitiesAi8 , f8:

~42H2K2!Ai81A2f850, i 51,2, ~60!

A2~A181A28!1K2f850, ~61!

where K5ku0 /vp is the dimensionless wave number. B
searching for nontrivial solutions, one obtains the relation

~H2K224!~H2K424K214!50. ~62!

Notice that this is the same~with an equality sign! as the
previously obtained Eq.~37!. Solutions of Eq.~62! represent
wave numbers for which both the real and imaginary parts
the frequency vanish, and can be considered as the hom
neous limit of generally inhomogeneous stationary sta
~QBGK modes!. If H,1, there are three such solution
which are the wave numbersKA , KB , and KC defined in
Eqs.~40! and ~41!. If H.1, only the solutionKC survives.
The other two solutions become complex, so that spati
periodic QBGK modes can no longer exist.

It is also interesting to look for the eigenvectors cor
sponding to the eigenvaluesKA , KB , and KC . From Eqs.
~60! and~61! we can express the perturbed amplitudesAi8 in
terms of the potential. Two cases are possible:~1! if K
5KC52/H, then one must havef850 andA1852A28; ~2!
otherwise, if K5KA or KB , we have A185A28
5A2f8/(H2K224). The first case is particularly interes
ing. It means that the mode characterized by wave num
KC is a ‘‘quasineutral’’ mode, in the sense that the associa
electrostatic potential is zero to first order. Indeed, one
see that no plasma parameters~such as the plasma fre
quency! enter the definition ofKC[2/H. These modes can
be actually accessed, for example, by choosing the fun
mental wave numberK051/H, which is the largest admis
sible value forK0 @see Eq.~45!#. In this case, the harmoni
2K052/H corresponds to the quasineutral mode.

Numerical integration of Eqs.~57!–~59! confirms the pre-
vious results. For instance, it was verified that periodic so
tions only exist forH,1. We takeH50.7 and initialize the
amplitudes and the potential~at x50) with their equilibrium
value, plus a small perturbatione, i.e., f(0)51/21ef ,
Ai(0)5(11e i)/A2. In agreement with the discussion of th
previous paragraph, if we chooseef50 ande152e2, the
wave numberKC.2.857 is linearly excited and thus dom
nates~Fig. 3!, while the potential remains very small. On th
other hand, ife15e2 andef arbitrary, modesKA.1.08 and
KB.2.645 are linearly excited~Fig. 4!. For generic pertur-
bations, all three wave numbers are excited. Of course th
results are strictly valid only for infinitesimally small pertu
bations. For moderate values, other modes appear~visible on
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Figs. 3 and 4, for whiche50.02), although the linear wav
numbers are still dominant. For even larger perturbatio
bounded solutions no longer exist.

IV. TIME-DEPENDENT NUMERICAL SIMULATIONS

A standard numerical technique has been employed
order to integrate the time-dependent Schro¨dinger-Poisson
system. Let us write the Schro¨dinger equation as

i\
]c

]t
5Kc1Fc, ~63!

whereK is the kinetic part of the Hamiltonian, andF(x,t) is
the potential. The Hamiltonian is split into these two par
and each is treated separately. For the potential part, the
lution is trivial:

cn115cnexp~2 iFDt/\!, ~64!

wherecn[c(nDt), andDt is the time step. For the kinetic
part, we use a Crank-Nicolson scheme, which is exac
second order inDt,

i\
cn112cn

Dt
5

1

2
~Kc!n111

1

2
~Kc!n. ~65!

The kinetic operatorK is spatially discretized by using th
standard centered differences formula. The time evolutio
obtained by subsequently applying the potential and kin
steps described above. Poisson’s equation is solved wi
fast Fourier transform technique just before the potential s

FIG. 3. Stationary solution of the two-stream Schro¨dinger-
Poisson plasma~QBGK mode!, with H50.7, ef50, and e1

52e250.02. ~a! Spatial variation of the density fluctuationsA18
~solid line!, A28 ~dashed line!, and potential fluctuationsf8 ~dotted
line!. Notice that the potential remains small.~b! Fourier transform
of A18 : the linear wave numberKC.2.857 is dominant.



si
l
ra
o

y
m
,

-
e

a
ith
u

n
in

t

ac
-

n

e,
d,
g in

m

cite
lso
, if
an
ble

-

7

v-
, so

e

al

-

at

rete

PRE 62 2769MULTISTREAM MODEL FOR QUANTUM PLASMAS
~notice that the kinetic step does not alter the spatial den
and, therefore, the potential!. The resulting numerica
scheme is unconditionally stable and second order accu
in both space and time variables. Another crucial property
the scheme is that it conservesexactlythe integral* ucu2dx
@17#. A typical resolution used in the simulation isNx
5512 points and time stepDt50.02.

The initial condition for the simulations is obtained b
applying a sudden sinusoidal potential to the equilibriu
wave functions given in Eq.~43!. In dimensionless variables
we have

c6~x,0!5221/2exp~6 inK0x! exp@ i eH21 cos~Kmx!#,
~66!

wheree andKm5mK0 are the amplitude and the wave num
ber of the perturbation, andn,m are integer numbers. W
recall that one must haveHK051/n.

Several simulations have been run in order to comp
with the analytical results obtained in the linear regime, w
excellent agreement between the two. As an example, we
the parametersH50.25 andn55 (K050.8), and perturb
the fundamental mode (m51). Figure 5 shows the evolutio
of two modes of the electrostatic potential. The straight l
corresponds to the linear growth rate forK0, as computed
from Eq. ~36!, and closely matches the measured grow
rate. At saturation, several modes are present.

The total momentum distributionF(p) is given by the
sum of the square modulus of the Fourier transform of e
wave function, withp5\k. As pointed out earlier, momen

FIG. 4. Stationary solution of the two-stream Schro¨dinger-
Poisson plasma~QBGK mode!, with H50.7, ef50, ande15e2

50.02. ~a! Spatial variation of the density fluctuationsA18 ~solid
line!, A28 ~dashed line!, and potential fluctuationsf8 ~dotted line!.
Note that the solid and dashed lines are superposed, sincA18
.A28 . ~b! Fourier transform ofA18 : the linear wave numbersKA

.1.080 andKB.2.645 are dominant.
ty

te
f

re

se

e

h

h

tum space is discrete, withDp5\k0 (50.2 in the above
case!. For our simulations, the total momentum distributio
of the unperturbed wave functions is simply

F~p!5
1

2
d~p2Mu0!1

1

2
d~p1Mu0!, ~67!

whered is the Dirac delta function. During the linear phas
the momentum distribution remains virtually unchange
whereas at saturation we observe a significant spreadin
momentum space, which extends top.62.5Mu0 ~Fig. 6!.
This is similar to the behavior of the classical two-strea
instability.

As was shown in the preceding section, one cannot ex
a mode in the unstable upper region of Fig. 1, without a
exciting an unstable mode in the lower zone. However
only the larger wave number is initially perturbed, one c
hope to see it grow with the correct rate before other unsta
modes can be excited. In order to do so, we takeH50.9 and
n55. The fundamental wave number is thusK052/9, and is
of course unstable sinceKA51.18 in this case. We only per
turb the harmonic 9K052, which falls within the upper un-
stable zone, sinceKB51.883 andKA52.222. Of course,
several other modes are also unstable~namely, those from
K0 to 5K0), but they are not initially perturbed. Figure
shows the evolution of mode 9K0, which closely agrees with
the result of the linear calculation for the growth rate. Se
eral other linearly unstable modes appear at a later time

FIG. 5. Two-stream instability—evolution of the fundament
modeK050.8 ~solid line! and first harmonic 2K0 ~dashed line! of
the electrostatic potential, forH50.25. The straight line corre
sponds to the growth rate ofK0 computed from linear theory,g
50.3116.

FIG. 6. Momentum distribution for the same case of Fig. 5,
timest50 ~dotted line! andt580 ~solid line!. The final distribution
has been magnified by a factor of 2. Momentum space is disc
with Dp5\k050.2.
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that at saturation the spectrum is large. This is reflected
the momentum distribution, plotted in Fig. 8.

The results for the fully quantum regime, and particula
for H.1, are more surprising. As an example, let us ta
H51, K051, and perturb the fundamental mode itself. I
stability occurs as expected with the correct growth rate~see
Fig. 9!. However, instead of saturating at a certain level,
system appears to decay with the same rate, and then to
again. These nonlinear periodic oscillations do not da
even for very long times, as has been checked numeric
Higher harmonics, which are linearly stable, are driven
the fundamental mode, and show a similar pattern, altho
at a lower level. The period of the oscillations is not unive
sal, and depends on the amplitude of the initial perturbat
which confirms that this is indeed a nonlinear effect. A sim
lar, although less pronounced behavior, is also observed
H.1. The momentum distribution is virtually unchange
over the entire duration of the simulation. It must be no
that, for parameters such thatHK051, the minimum non-
zero value of the momentum isupminu5Mu0, and is there-
fore equal to the momentum of the unperturbed streams
other words, the streams occupy the lowest possible leve
momentum space. Although we do not have a detailed
planation for this phenomenon, it appears to be an exam
of a completely reversible quantum system, in which
initial condition is almost perfectly reconstructed after o
period@18#. This is to be compared with the inherently irr
versible classical dynamics, for which returning to the init
state after saturation is virtually impossible.

Finally, we have studied the evolution of perturb
QBGK equilibria. It is particularly instructive to consider th

FIG. 7. Two-stream instability—evolution of mode 9K0 of the
electrostatic potential, forH50.9 andK052/9. The straight line
corresponds to the growth rate computed from linear theoryg
50.1085.

FIG. 8. Momentum distribution for the same case of Fig. 7,
times t50 ~dotted line! and t5160 ~solid line!. The final distribu-
tion has been magnified by a factor of 2. Momentum space is
crete withDp5\k050.2.
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case where only theKC52/H mode is present. This, as de
tailed in the previous section, is a ‘‘quasineutral’’ mode,
the sense that the associated electrostatic potential is ze
first order in the perturbation parameter. We construc
weakly inhomogeneous equilibrium by using the form of E
~3! for the wave functionsc1,2. Both the amplitude and the
phase should be sinusoidal functions. For the amplitudes
have

A1,25
1

A2
@16e cos~KCx!#, ~68!

whereKC5mK0 is the wave number of the QBGK mode;m
therefore represents the number of density oscillations.
phasesS1,2 are obtained from the definition of Eq.~4!, and
remembering that, in dimensionless units,uini561/2. One
obtains, to first order ine,

S1,256x22eKC
21 sin~KCx!. ~69!

By virtue of the relationsnHK051 andKC5mK052/H, we
obtain thatm52n must be an even number.

As an example, we takeH50.5, KC54. With n51, we
obtain K052, and the number of spatial oscillations ism
52n52. Notice that, in this case, the fundamental wa
number is stable. If we had chosenn52, we would have had
K051, which is unstable. With this value ofH, it is there-
fore possible to construct a stable QBGK mode displaying
most two spatial oscillations. In order to have more oscil
tions, a smaller value ofH should be used. For small value
of the perturbation parametere, the simulations confirm the
linear analytical results, and virtually no evolution is o
served; besides, the potential fluctuations stay small c
pared to the density ones. For larger values of the pertu
tion (e50.1), some temporal variations are observed~Fig.
10!, since the wave functions given by Eqs.~68! and~69! no
longer represent an exact stationary state. However, the
riodic structure is not destroyed, and the potential fluct
tions remain an order of magnitude smaller than the den
fluctuations. These results show that a quantum plasma
support almost stationary, quasineutral, periodic solutio
These display significant density fluctuations for ea
stream, but small potential fluctuations. They have no ana
in a classical two-stream plasma.

FIG. 9. Two-stream instability—evolution of the fundament
modeK051 ~solid line! and first harmonic 2K0 ~dashed line! of the
electrostatic potential, forH51. The straight line corresponds t
the growth rate of modeK0 computed from linear theory,g
50.2297.
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V. CONCLUSION

In this work, we have introduced a quantum multistrea
model to describe some physical phenomena arising in q
tum plasmas. The quantum multistream model may be c
sidered as a discrete version of the Wigner-Poisson mode
the same sense as the classical multistream model is a
crete form of the Vlasov-Poisson system. Indeed, it is w
known @19# that the Wigner-Poisson system is forma
equivalent to an infinite set of Schro¨dinger equations,
coupled by a scalar potential obeying Poisson’s equatio
However, it is often more appropriate to work with the h
drodynamic formulation of quantum mechanics, since
makes direct use of the same physical quantities that
employed in classical physics~density, velocity, pressure!.
Moreover, the stability analysis and perturbation calculatio
become straightforward in the hydrodynamic formulatio
On the other hand, we have used the Schro¨dinger represen-

FIG. 10. Evolution of a strongly nonlinear (e50.1) quasineutral
(K5KC54) QBGK equilibrium, for the set of parametersH
50.5, K052. The number of spatial oscillations ism52. The
density fluctuationsn18 ~solid line! andn28 ~dashed line! and poten-
tial fluctuationsf8 ~magnified by a factor of 100, dotted line! are
shown at different times.
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in
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tation for the time-dependent simulations, since accurate
merical techniques for this equation are well known from t
computational literature.

For the case of the two-stream instability, it has be
shown that the dispersion relation possesses three bran
one of a semiclassical character and two of a purely quan
nature. It is interesting to observe that even the class
branch reveals some unexpected features: for smallH, quan-
tum effects tend to enhance the two-stream instability. M
precisely, some classically stable wave numbers are des
lized for sufficiently large values ofH,1. On the other
hand, a strong quantum effect can yield the opposite res
for H.2, some classically unstable wave numbers beco
stable. The purely quantum region of the dispersion relat
~the upper unstable zone of Fig. 1! cannot, however, be ex
cited without also exciting some wave number in the low
~semiclassical! region. This means that a purely quantum i
stability cannot be observed forH,1. Extensive numerica
simulations, run for different values of the relevant para
eters, wholly support the analytical results obtained from l
ear theory. In the fully quantum case, we have observe
surprising, yet unexplained, regime of undamped nonlin
oscillations. This is a purely quantum effect, which is pro
ably linked to quantum recurrences and echoes@18#.

We have also considered the stationary states of
Schrödinger-Poisson system, which can be viewed as
quantum analog of the classical BGK modes. Such QB
modes are described by a nonlinear system of coup
second-order differential equations, parametrized by the
mensionless Planck’s constantH. Such a system provides a
adequate framework for the analysis of QBGK modes, a t
which would be rather difficult in the Wigner-Poisson fo
malism. In particular, numerical simulations have shown t
quasineutral, spatially periodic, stationary states can be
ated in the two-stream plasma, and can survive over l
times.

Some interesting questions remain to be addressed. In
present work, we have considered in detail only the one-
two-stream cases. Further investigations are needed to
plain the properties of the quantum multistream model wh
the number of streams is large. In this case, the Wign
Poisson system could be a more appropriate model, des
its intrinsic mathematical difficulties. However, an interm
diate number of streams might be sufficient to describe
main physical phenomena. Linear and nonlinear Land
damping, for example, should be good candidates to
these ideas, both analytically and numerically.
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