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Abstract—A new approach to support vector machine (SVM) classification is proposed wherein each of two data sets are proximal to

one of two distinct planes that are not parallel to each other. Each plane is generated such that it is closest to one of the two data sets

and as far as possible from the other data set. Each of the two nonparallel proximal planes is obtained by a single MATLAB command

as the eigenvector corresponding to a smallest eigenvalue of a generalized eigenvalue problem. Classification by proximity to two

distinct nonlinear surfaces generated by a nonlinear kernel also leads to two simple generalized eigenvalue problems. The

effectiveness of the proposed method is demonstrated by tests on simple examples as well as on a number of public data sets. These

examples show the advantages of the proposed approach in both computation time and test set correctness.

Index Terms—Support vector machines, proximal classification, generalized eigenvalues.

�

1 INTRODUCTION

SUPPORT vector machines (SVMs) [23], [4], [27] constitute
the method of choice for classification problems while the

generalized eigenvalue problem [22], [5] is a simple problem
of classical linear algebra solvable by a single command of
MATLAB [17] or Scilab [24] or by using standard linear
algebra software such LAPACK [1]. In proximal support
vector classification [7], [25], [6], two parallel planes are
generated such that each plane is closest to one of two data sets
to be classified and the two planes are as far apart as possible.
In the present work, we drop the parallelism condition on the
proximal planes and require that each plane be as close as
possible to one of the data sets and as far as possible from the
other data set. This formulation leads to two generalized
eigenvalue problems:Gz ¼ �Hz andLz ¼ �Mz, whereG,H,
L, andM are symmetric positive semidefinite matrices. Each
of the nonparallel proximal planes is generated by an
eigenvector corresponding to a smallest eigenvalue of each
of the generalized eigenvalue problems. Application of this
method to the classical XOR problem in two dimensions
where the two sets are f½0 0�; ½1 1�g and f½1 0�; ½0 1�g leads to
an exact classification by two nonparallel proximal lines each
going through the two points of each set.

Related work is the k-plane clustering of [3], where clusters
are determined by proximity to various nonparallel planes
based on the smallest eigenvector of a matrix generated by
given data points. We also note that, in [11], the generalized
eigenvalue formulation was used for protein fold recognition
to determine an optimal transformation of a permutation
matrix based on simultaneously minimizing within-class

variation and maximizing between-class variation of various
protein folds.

This work is organized as follows: In Section 2, we briefly

describe the general classification problem and our proximal

multiplane linear kernel formulation as a generalized

eigenvalue problem. In Section 3, we extend our proximal

results to a proximal multisurface nonlinear kernel formula-

tion. In Section 4, we test our new approach and compare

it with standard linear and nonlinear kernel classifiers.

Section 5 concludes the paper.

A word about our notation. All vectors will be column

vectors unless transposed to a row vector by a prime

superscript 0. The scalar (inner) product of two vectors x

and y in the n-dimensional real space Rn will be denoted by

x0y, the 2-norm of x will be denoted by kxk. For a matrix

A 2 Rm�n; Ai is the ith row of A which is a row vector in Rn.

A column vector of ones of arbitrary dimension will be

denoted by e and the identity matrix of arbitrary order will be

denoted by I. The gradient of a differentiable function f on

Rn is defined as the column vector of first partial derivatives:

rfðxÞ :¼½@fðxÞ@x1
; . . . ; @fðxÞ@xn

�0. For A 2 Rm�n and B 2 Rn�k; a

kernel KðA;BÞmaps Rm�n �Rn�k into Rm�k. In particular, if

x and y are column vectors in Rn, then Kðx0; yÞ is a real

number, Kðx0; A0Þ is a row vector in Rm, and KðA;A0Þ is an

m�mmatrix. We shall make no assumptions on our kernels

other than symmetry, that is, Kðx0; yÞ0 ¼ Kðy0; xÞ and, in

particular, we shall not assume or make use of Mercer’s

positive definiteness condition [27], [23]. The base of the

natural logarithm will be denoted by ". A frequently used

kernel in nonlinear classification is the Gaussian kernel [27],

[15] whose ijth element, i ¼ 1 . . . ;m; j ¼ 1 . . . ; k, is given by:

ðKðA;BÞÞij ¼ "��kAi
0�B�jk2

, where A 2 Rm�n, B 2 Rn�k, and �

is a positive constant.

2 THE MULTIPLANE LINEAR KERNEL CLASSIFIER

We consider the problem of classifying m points in the
n-dimensional real space Rn, represented by the m1 � n
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matrix A belonging to class 1 and the m2 � n matrix B
belonging to class 2, with m1 þm2 ¼ m. For this problem, a
standard support vector machine with a linear classifier [15],
[23] is given by a plane midway between two parallel
bounding planes that bound two disjoint halfspaces each
containing points mostly of class 1 or 2. In another somewhat
less standard approach, the proximal support vector classi-
fication [7], [25], [6], two parallel planes are generated such
that each plane is closest to one of two data sets to be classified
and such that the two planes are as far apart as possible. The
classifying plane is again midway between the parallel
proximal planes. Thus, PSVM [7] classifies points on the
basis of proximity to two parallel planes: x0w ¼ � þ 1 and
x0w ¼ � � 1 that are determined by the unconstrained
minimization of a quadratic function in the nþ 1 variables
w 2 Rn, � 2 R, for some � > 0 [7] as follows:

min
ðw;�Þ2Rnþ1

�

2
ke� ðAw� e�Þk2 þ keþ ðBw� e�Þk2
� �

þ 1

2

w

�

� �����
����

2

:

ð1Þ

In the present work, we drop the parallelism condition on
the proximal planes and require that each plane be as close
as possible to one of the data sets and as far as possible from
the other one. Thus, we are seeking two planes in Rn:

x0w1 � �1 ¼ 0; x0w2 � �2 ¼ 0; ð2Þ

where the first plane is closest to the points of class 1 and
furthest from the points in class 2, while the second plane is
closest to the points in class 2 and furthest from the points
in class 1. To obtain the first plane of (2), we minimize the
sum of the squares of two-norm distances between each of
the points of class 1 to the plane divided by the squares of
two-norm distances between each of the points of class 2 to
the plane. This leads to the following optimization problem:

min
ðw;�Þ6¼0

Aw� e�k k2=k½w��k
2

kBw� e�k2=k½w��k
2
; ð3Þ

where k � kdenotes the two-norm and it is implicitly assumed
that ðw; �Þ 6¼ 0¼)Bw� e� 6¼ 0. This assumption will be made
explicit below. We note that the numerator of the minimiza-
tion problem (3) is the sum of squares of two-norm distances
in the ðw; �Þ-space of points in class 1 to the plane x0w� � ¼ 0,
while the denominator of (3) is the sum of squares of two-
norm distances in the ðw; �Þ-space of points in class 2 to the
same plane [14]. Simplifying (3) gives:

min
ðw;�Þ6¼0

kAw� e�k2

kBw� e�k2
: ð4Þ

We now introduce a Tikhonov regularization term [26] that
is often used to regularize least squares and mathematical
programming problems [16], [13], [6], [25] that reduces the
norm of the problem variables ðw; �Þ that determine the
proximal planes (2). Thus, for a nonnegative parameter �,
we regularize our problem (4) as follows:

min
ðw;�Þ6¼0

kAw� e�k2 þ �k½w��k
2

kBw� e�k2
: ð5Þ

A possible geometric interpretation of the formulation (5) is
that the first equation of (2) is obtained as a closest plane to the
data set represented by A with distances to points of A
normalized by the sum of the distances to the points ofB. By
making the definitions:

G : ¼ ½A � e�0½A � e� þ �I;

H : ¼ ½B � e�0½B � e�; z :¼
w

�

� �
;

ð6Þ

the optimization problem (4) becomes:

min
z6¼0

rðzÞ :¼ z0Gz

z0Hz
; ð7Þ

where G and H are symmetric matrices in Rðnþ1Þ�ðnþ1Þ. The
objective function of (7) is known as the Rayleigh quotient
[22, p. 357] and has some very useful properties which we
now cite.

Theorem 2.1 [22, Theorem 15.9.2] (Rayleigh Quotient

Properties). Let G and H be arbitrary symmetric matrices

in Rðnþ1Þ�ðnþ1Þ. When H is positive definite, the Rayleigh

quotient of (7) enjoys the following properties:

1. (Boundedness) The Rayleigh quotient ranges over the
interval ½�1; �nþ1� as z ranges over the unit sphere,
where �1 and �nþ1 are the minimum and maximum
eigenvalues of the generalized eigenvalue problem:

Gz ¼ �Hz; z 6¼ 0: ð8Þ

2. (Stationarity)

rrðzÞ ¼ 2
ðGz� rðzÞHzÞ

z0Hz
¼ 0: ð9Þ

Thus, rðzÞ is stationary at and only at the eigenvectors
of the generalized eigenvalue problem (8).

We note the following consequence of this theorem: Under
the rather unrestrictive assumption that the columns of the
matrix ½B � e� are linearly independent, the global mini-
mum of problem (7) is achieved at an eigenvector of the
generalized eigenvalue problem (8) corresponding to a
smallest eigenvalue �1. If we denote this eigenvector by z1,
then ½w10 �1�0 ¼ z1 determines the plane w10x� �1 ¼ 0 of (2)
which is closest to all the points of data set 1 and furthest away
from the points of data set 2.

By an entirely similar argument, we define an analogous
minimization problem to (5) for determining ðw2; �2Þ for the
plane x0w2 � �2 ¼ 0 of (5) which is closest to the points of
set 2 and furthest from set 1 as follows:

min
ðw;�Þ6¼0

kBw� e�k2 þ �k½w��k
2

kAw� e�k2
: ð10Þ

By defining:

L :¼ ½B � e�0½B � e� þ �I;M :¼ ½A � e�0½A � e�; ð11Þ

and z as in (6), the optimization problem (10) becomes:

min
z6¼0

sðzÞ :¼ z0Lz

z0Mz
; ð12Þ
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where L andM are again symmetric matrices inRðnþ1Þ�ðnþ1Þ.
The minimum of (12) is achieved at an eigenvector corre-
sponding to a smallest eigenvalue of the generalized
eigenvalue problem:

Lz ¼ �Mz; z 6¼ 0: ð13Þ

We can now state the following theorem.

Theorem 2.2 (Proximal Multiplane Classification). Let A 2
Rm1�n represent the data set of class 1 and B 2 Rm2�n

represent the data set of class 2. Define G, H, L, M, and z as
in (6) and (11). Assume that ½A � e� and ½B � e� have
linearly independent columns. Then, the proximal planes (2)
are obtained by the two MATLAB [17] commands: eigðG;HÞ
and eigðL;MÞ, each of which generates nþ 1 eigenvalues and
eigenvectors of the generalized eigenvalue problems (8) and
(13). The proximal planes (2) are obtained by:

w1

�1

� �
¼ z1;

w2

�2

� �
¼ z2; ð14Þ

where z1 is an eigenvector of the generalized eigenvalue
problem (8) corresponding to a smallest eigenvalue and z2 is
an eigenvector of the generalized eigenvalue problem (13)
corresponding to a smallest eigenvalue.

We note that the linear independence condition is not
restrictive for a great many classification problems for
which m1 >> n and m2 >> n. We also note that it is merely
a sufficient but not a necessary condition for the above
theorem to hold. Thus, in the XOR example given below, the
linear independence condition is not satisfied. However, we
are able to obtain a perfect two-plane classifier using
Theorem 2.2 above.

Example 2.3 (Zero-Error XOR Classifier). Given the
matrices:

A ¼ 0 0
1 1

� �
; B ¼ 1 0

0 1

� �
; ð15Þ

we define G;H of (6) and L;M of (11) as follows:

G ¼M ¼
1 1 �1
1 1 �1
�1 �1 2

2
4

3
5; H ¼ L ¼

1 0 �1
0 1 �1
�1 �1 2

2
4

3
5:
ð16Þ

Then, the generalized eigenvalue problems (8) and (13)
have the following respective minimum eigenvalues and
corresponding eigenvectors:

�1 ¼ 0; z10 ¼ ½1 �1 0�;
�2 ¼ 0; z20 ¼ ½1 1 1�: ð17Þ

These give two lines (planes) in R2, each of which
containing the two data points from one set only:

x1 � x2 ¼ 0; x1 þ x2 ¼ 1: ð18Þ

We note that a standard one-norm linear SVM generates a
single line classifier for the XOR example that misclassifies
one point [2]. Thus, proximal separability does not imply
linear separability nor is the converse true. However, it is
also possible for two sets to be both proximally and linearly
separable.

We give another simple example to visually illustrate the
effectiveness of our generalized eigenvalue proximal SVM
(GEPSVM). We call this example “Cross Planes” because
the data is obtained by perturbing points originally lying on
two intersecting planes (lines).

Example 2.4 (Cross Planes Classifier). The data consists of
points that are close to one of two intersecting “cross
planes” in R2. Fig. 1 illustrates the data set and the planes
found by GEPSVM. We note that training set correctness
for GEPSVM is 100 percent and for PSVM is 80 percent.
We note that this example, which is a perturbed
generalization of the XOR example, can serve as a
difficult test case for typical linear classifiers just as the
XOR example does. The reason PSVM did so poorly in
comparison to GEPSVM on this example is because its
proximal planes have to be parallel, meaning that PSVM
generates a single linear classifier plane midway between
the two proximal planes, by looking at the data points in
Fig. 1, it is obvious that the single plane of PSVM cannot
do as well as the nonparallel planes of GEPSVM.

We turn now to multisurface nonlinear classification.

3 THE MULTISURFACE NONLINEAR KERNEL

CLASSIFIER

To extend our results to nonlinear multisurface classifiers,
we consider the following kernel-generated proximal
surfaces instead of the planes (2):

Kðx0; C0Þu1 � �1 ¼ 0; Kðx0; C0Þu2 � �2 ¼ 0; ð19Þ

where

C :¼ A
B

� �
ð20Þ

and K is an arbitrary kernel as defined in Section 1. We note
that the planes of (2) are a special case of (19) if we use a linear
kernel Kðx0; CÞ ¼ x0C and define w1 ¼ C0u1 and w2 ¼ C0u2.
By using the same arguments as those of Section 2, our
minimization problem for generating a kernel-based non-
linear surface that is closest to one data set and furthest from
the other leads to the minimization problem that generalizes
(5) to the following:

min
ðu;�Þ6¼0

kKðA;C0Þu� e�k2 þ �k½u��k
2

kKðB;C0Þu� e�k2
: ð21Þ
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Fig. 1. The “cross planes” learned by GEPSVM and the decision
boundary learned by a one-norm linear SVM together with their
correctness on the training data set.



By making the definitions:

G :¼ ½KðA;C0Þ � e�0½KðA;C0Þ � e� þ �I;
H :¼ ½KðB;C0Þ � e�0½KðB;C0Þ � e�; ð22Þ

where G and H are now matrices in Rðmþ1Þ�ðmþ1Þ, the
optimization problem (21) becomes:

min
z 6¼0

rðzÞ :¼ z0Gz

z0Hz
; where z :¼ u

�

� �
; ð23Þ

which is exactly the same as problem (7), but with different
definitions for G and H.

By reversing the roles of KðA;C0Þ and KðB;C0Þ in (21),
we obtain the following minimization problem for the
proximal surface Kðx0; C0Þu2 � �2 ¼ 0 of (19):

min
ðu;�Þ6¼0

kKðB;C0Þu� e�k2 þ �k½u��k
2

kKðA;C0Þu� e�k2
: ð24Þ

By defining:

L :¼ ½KðB;C0Þ � e�0½KðB;C0Þ � e� þ �I;
M :¼ ½KðA;C0Þ � e�0½KðA;C0Þ � e�; ð25Þ

where L and M are again matrices in Rðmþ1Þ�ðmþ1Þ, the
optimization problem (24) becomes:

min
z 6¼0

sðzÞ :¼ z0Lz

z0Mz
; where z :¼ u

�

� �
; ð26Þ

which is exactly the same as problem (12), but with different
definitions for L and M.

An analogous theorem to Theorem 2.2 can now be given
for solving (23) and (26).

Theorem 3.1 (Proximal Nonlinear Multisurface Classifica-

tion). Let A 2 Rm1�n represent the data set of class 1 and B 2
Rm2�n represent the data set of class 2. DefineG,H,L,M, and z
as in (22), (23), and (25). Assume that ½KðB;C0Þ � e� and
½KðA;C0Þ � e� have linearly independent columns. Then, the
proximal surfaces (19) are obtained by the two MATLAB [17]
commands: eigðG;HÞ and eigðL;MÞ, each of which generates
the mþ 1 eigenvalues and eigenvectors of the respective
generalized eigenvalue problems:

Gz ¼ �Hz; z 6¼ 0; ð27Þ

and

Lz ¼ �Mz; z 6¼ 0: ð28Þ

The proximal surfaces (27) are obtained by:

u1

�1

� �
¼ z1;

u2

�2

� �
¼ z2; ð29Þ

where z1 is an eigenvector of the generalized eigenvalue
problem (27) corresponding to a smallest eigenvalue, and z2 is
an eigenvector of the generalized eigenvalue problem (28)
corresponding to a smallest eigenvalue.

We note immediately that, if either m1 or m2 are large, the
techniques of the reduced support vector machine classifi-
cation [12] can be easily applied to reduce the dimension-
ality mþ 1 ¼ m1 þm2 þ 1 of the generalized eigenvalue
problem (27) to �mmþ 1 by replacing the kernels KðA;C0Þ,

KðB;C0Þ by the reduced kernels KðA; �CC
0Þ, KðB; �CC

0Þ,
respectively, where �CC is matrix formed by taking a small
random sample of the rows of C.

We turn to our numerical tests and comparisons now.

4 NUMERICAL TESTING AND COMPARISONS

To demonstrate the performance of our approach, we report
results on publicly available data sets from the UCI
Repository [19] and from [21], as well as two synthetic data
sets. One synthetic data set is Musicant’s NDC [20] and the
other is a simple extension of our “Cross Planes” example
above to R7. Table 1 shows a linear kernel comparison of
GEPSVM versus PSVM [7] and SVM-Light [9]. For a linear
kernel, all three algorithms have a single parameter: � for
GEPSVM, � for PSVM, and C for SVM-Light. This parameter
was selected from the values f10iji ¼ �7;�6; . . . ; 7g by using
10 percent of each training fold as a tuning set. For GEPSVM
only, this tuning set was not returned to the training fold to
learn the final classifier once the parameter was selected. This
choice was made by observing the performance of all three
classifiers on data sets not shown here. GEPSVM tended to
perform better without retraining on the entire training fold,
while the other two algorithms benefited from the additional
data. In addition to reporting the averageaccuracies across the
10 folds, we performed paired t-tests [18] comparing PSVM to
GEPSVM and SVM-Light to GEPSVM. The p-value for each
test is the probability of the observed or a greater difference
between two test set correctness values occurring, under the
assumption of the null hypothesis that there is no difference
between the test set correctness distributions. Thus, the
smaller the p-value, the less likely that the observed difference
resulted from identical test set correctness distributions. A
typical threshold for p-values is 0.05. For example, the p-value
of the test comparing GEPSVM and PSVM on the Galaxy
Bright data set was 0.031226, which is less than 0.05, leading us
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TABLE 1
Linear Kernel GEPSVM, PSVM [7], and SVM-Light [9]

10-Fold Testing Correctness and p-Values

The p-values are from a t-test comparing each algorithm to GEPSVM.
Best correctness results are in bold. An asterisk (*) denotes a significant
difference from GEPSVM based on p-values less than 0.05.



to conclude that GEPSVM and PSVM have different accura-
cies on this data set. We note that, on the NDC and real world
data sets, the performance difference between GEPSVM and
the other algorithms is statistically insignificant, with the
exception of Galaxy Bright, where GEPSVM is significantly
better than PSVM. This indicates that allowing the proximal
planes to be nonparallel allows the classifier to better
represent this data set when needed.

Table 2 compares GEPSVM, PSVM, and SVM-Light using
a Gaussian kernel. The kernel parameter � was chosen from
the values f10iji ¼ �4;�3;�2;�1g for all three algorithms.
The parameter � for PSVM andC for SVM-Light was selected
from the set f10iji ¼ �4;�3; . . . ; 2g, while the parameter � for
GEPSVM was selected from the set f10iji ¼ �2;�1; . . . ; 4g.
Parameter selection was done by comparing the accuracy of
each combination of parameters on a tuning set consisting of a
random 10 percent of each training set. As in the linear kernel
comparison above, this tuning set was not returned to the
training fold to retrain the classifier before evaluating on the
test fold for GEPSVM, but was for PSVM and SVM-Light. We
note that GEPSVM has performance that is comparable to
PSVM and SVM-Light on the real world data sets and the
difference between GEPSVM and the other algorithms is not
statistically significant on these data sets. As expected,
nonlinear GEPSVM greatly outperformed nonlinear PSVM
and SVM-Light on the Cross Planes data set.

Table 3 contains a typical sample of the computation times
of the three methods compared in Table 1. We report the
average of times to learn the linear kernel classifier for each
fold with the parameter selected by the tuning procedure
described above on the Cylinder Bands data set [19]. These
times were obtained on a machine running Matlab 7 on Red
Hat Linux 9.0 with a Pentium III 650MHz processor and
256 megabytes of memory. Complexity of the generalized
eigenvalue problem is of order n3 [8, Section 7.7] which is
similar to that of solving the system of linear equations
resulting from PSVM, although the constant multiplying
Oðn3Þ for the generalized eigenvalue problem is larger. For an
interior point method used for solving a two-norm SVM
quadratic program, the complexity is of order n3:5 based on a
linear complementarity problem formulation of the quadratic
program [10]. These facts help explain the computation times
of Table 3, where PSVM is over one order of magnitude faster

than GEPSVM, which is nearly two orders of magnitude
faster than SVM-Light.

As final remarks, we note that, for our multiplane linear
kernel classifiers of Section 2, very large data sets can be
handled by GEPSVM provided the input space dimension n
is moderate in size, say of the order of a few hundred. This is
so because the generalized eigenvalue problem (8) is in
the space Rnþ1. Thus, even for two randomly generated
matricesGandH of the order of 1; 000� 1; 000, MATLAB was
able to solve the generalized eigenvalue problem (8) in less
than 75 seconds on a Pentium 4 1.7Ghz machine. For our
multisurface nonlinear kernel classifiers of Section 3, the
reduced kernel techniques of [12] can be used to handle such
data sets as discussed at the end of Section 3.

5 CONCLUSION AND OUTLOOK

We have proposed a novel approach to classification
problems that relaxes the universal requirement that bound-
ing or proximal planes generated by SVMs be parallel in the
input space for linear kernel classifiers or in the higher
dimensional feature space for nonlinear kernel classifiers.
Each of our proposed nonparallel proximal planes is easily
obtained using a single MATLAB command that solves the
classical generalized eigenvalue problem. Classification
accuracy results are comparable to those of classical support
vector classification algorithms and, in some cases, they are
better. Also, in our experience, the generalized eigenvalue
problem can be solved more quickly than the optimization
algorithm needed for SVM-Light. The simple program
formulation, computational efficiency, and accuracy of
GEPSVM on real world data indicate that it is an effective
algorithm for classification. Analysis of the statistical proper-
ties of GEPSVM and extensions to multicategory classifica-
tion are promising areas of future research.
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