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Abstract

One trend of current research activity in speaker veri�cation systems focuses on features that capture complementary 
information to the Mel-frequency cepstral coe�cients (MFCCs). In conventional speaker veri�cation methods, MFCCs 
are usually computed from a single-tapered DFT spectrum. These methods use the power of the Fourier transform of 
the time-domain speech frames and ignore the phase component due to its large amount of uncertainty. The multitaper 
phase information has been also ignored when the multitaper MFCC method applies. We propose a phase information 
extraction method that normalizes the change variation in the multitaper phase. The goal of this work is to incorporate 
phase information using low-variance multitaper spectrum estimation method instead of conventional single-taper 
window and normalizes the change variation in multitaper phase according to the frame position of the input speech to 
reduce the uncertainty of multitaper phase information in both the state-of-the-art Gaussian mixture model-universal 
background model (GMM-UBM) baseline and the i-vector speaker veri�cation system. The experiments are conducted 
on the TIMIT database for both the clean and noisy conditions (SNR = 10 dB). The multitaper inverted-MFCC is also added 
to the overall system to produce diversity with respect to the fused subsystem. The results show relative improvement 
of 34% and 25% in terms of equal error rate (EER) over the MFCC baseline in clean and noisy conditions for GMM-UBM 
system, respectively. The relative improvement in terms of EER with i-vector back-end are about 36% and 16% in clean 
and noisy conditions as well.

Keywords Gaussian Mixture Model (GMM) · Multitaper Phase Information · Probabilistic Linear Discriminant Analysis 
(PLDA) · I-Vector · Speaker Veri�cation (SV) System

1 Introduction

Speaker veri�cation (SV) is the task of authenticating a  
claimed identity based on a speech sample. Speaker veri-
�cation systems fall into two categories: text-dependent 
and text-independent. Text-dependent SV system requires 
the same speech for both enrolment and verification 
phase. In this paper, however, we focus on text-independ-
ent speaker veri�cation where the speaker must be rec-
ognized from any utterance. The feature extraction phase 
in conventional speaker veri�cation system is based on 
Mel-frequency cepstral coe�cients (MFCCs) which uses 

the power spectrum of the time-domain speech frames. 
However, the MFCCs are highly associated with phonetic 
information of the speech signals and are not fundamen-
tally optimized to capture speaker-speci�c information [1]. 
Therefore, not all of MFCCs are equally relevant for speaker 
recognition and some of them are redundant or depend-
ent on other coe�cients [2]. Complementary features have 
been combined with MFCCs to address this shortcoming. 
The fusion of di�erent features shows a trend in achiev-
ing improved performance specially under limited data 
conditions [3]. Fusion of MFCCs and these complementary 
features can be achieved in either score level or feature 
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level [4–6]. In feature level, di�erent types of feature vec-
tors are concatenated to construct a new feature vector, 
whereas in score level fusion, as in this work, a linear func-
tion of di�erent matching likelihoods is used to obtain the 
overall score.

One of these complement features is phase component 
of speech signal that is usually ignored in conventional 
MFCC-based SV systems. The importance of phase infor-
mation is investigated by [7–11]. Paliwal and Alsteris [7] 
explored the usefulness of phase information in human 
speech and reported that phase spectrum can contribute 
to speech intelligibility as much as the magnitude spec-
trum. Murty and Yegnanarayana [8] investigated the role of 
the residual phase as a MFCC complementary feature. They 
extracted the residual phase information from speech sig-
nals by linear prediction analysis and reported improve-
ment in overall speaker recognition performance. There 
are also other studies which concentrated on modeling 
the phase and group delay phase information [9–11], to 
name a few.

However, the e�ect of large uncertainty in phase infor-
mation has been controversial in the literature. Paliwal 
et al. [7] concluded that the phase information for shorter 
windows could be informative if the shape of the window 
function is properly selected. Nakagawa et al. [12] normal-
ized the phase information according to the frame posi-
tion of the input speech signal in order to compensate 
the phase variations. Sahidullah and Saha [13] reported 
that the type of window function, its duration and over-
lap between windowed frames are important parameters 
that a�ect phase information uncertainty in the preproc-
essing step of SV system. This is due to the fact that by 
changing these parameters in phase-based systems not 
only the sound quality but also the phonetic value of a 
stop consonant could be changed  [14]. Moreover, the 
windowing method in the frequency domain is a convo-
lution of the speech spectrum and frequency response of 
the window function that has a large main lobe and sev-
eral side lobes. This general shape of window functions is 
the source of two problems; (1) the frequency resolution 
problem, which is caused by the main lobe of the window 
function. The wider is the main lobe, the larger frequency 
interval of the speech spectrum gets smoothed. (2) the 
spectral leakage problem, which is caused by the small 
side lobes of the window function. The amount of spectral 
leakage increases with the magnitude of the side lobes. As 
a result, selection of window function for Discrete Fourier 
Transform (DFT) depends on the underlying application. 
It is necessary in magnitude spectrum analysis and ceps-
tral feature extraction to choose a window function that 
proposes a better trade-o� between frequency resolution 
and spectral leakage. One of the popular window func-
tion used in state-of-the-art SV systems is the Hamming 

window which has reasonable side lobe characteristics 
with a length of 10ms ≤ T

�
≤ 40 ms. Although the side 

lobes do not cause a major problem in phase information 
extraction, the smoothing e�ect caused by the main lobe 
is more serious problem in phase spectrum estimation 
using Hamming window [12].

Selecting the optimal window function and improving 
the front-end process is still an open challenge problem 
in speech and speaker recognition applications [15–19]. 
Recently, there has been work that focused on the design 
of new window function [13, 19–22]. For instance, Mot-
taghi-Kashtiban and Shayesteh [19] proposes a method to 
�nd the optimal amplitudes of DC term and cosine func-
tion by adding the third harmonic of the cosine function 
to the Hamming window. Nonetheless, such a single-taper 
window function, that is Hamming and the likes, still pro-
duces high variance for the direct spectral estimation. This 
issue can be recovered by averaging spectral estimates 
using a set of di�erent tapers, leading to a so-called multi-
taper window functions. The multitaper technique reduces 
the variance of the spectral estimation by using multiple 
time domain window functions (tapers) rather than a sin-
gle window function.

The use of multitaper MFCC features for speaker veri�-
cation tasks was motivated in [23]. The idea of using mul-
titaper in speaker veri�cation addresses the problem of 
windowed periodogram that su�ers from high variance 
as well as large bias  [24]. The periodogram is a biased 
estimate due to spectral leakage, which is a tendency 
for power from strong peaks to spread into neighboring 
frequency intervals of lower power. While Hamming win-
dow reduces the large bias of the Fourier transformation 
squared magnitude, it is not able to reduce the high vari-
ance of the periodogram.

In this work, we combine phase spectral information 
extracted by multitaper window functions with magnitude 
spectral information at the score level in order to achieve 
more e�cient veri�cation system. We also propose a phase 
information normalization technique to address the phase 
changes according to the frame position in multitapering 
method. The uncertainty in features is also modeled by the 
variance of weighted mixture of GMM models; smaller fea-
ture variance results in less random variance of the GMM. We 
expect to reduce phase uncertainty by using normalization 
method on top of multitapering phase information extrac-
tion. The conclusion reached is that combining normalized 
multitaper phase information with MFCCs is a step forward 
to the state of the art SV systems such as [25] where single-
taper phase information were employed. Our experiments 
on TIMIT dataset show 34% relative improvement in terms 
of EER when multitaper phase information is used com-
pared to single-taper MFCC-based baseline. Moreover, our 
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experiments show that the contribution is also robust to 
noise with SNR = 10 dB, yielding to 25% EER improvement.

Furthermore, the importance of intra-speaker and inter-
speaker variability have made state-of-the-art SV systems 
gradually migrate from GMM-UBM to i-vector with proba-
bilistic discriminant analysis (PLDA) scoring [26]. Therefore, 
for the best performing system based on GMM-UBM we 
also provide the veri�cation results with the state-of-the-
art PLDA i-vector back-end.

The remainder of this paper is as follows: the next sec-
tion explains the multitapering method. Section 3 investi-
gates the e�ect of phase on speaker veri�cation, and then 
formulate the normalized multitaper phase information. In 
Sect. 4, the results of our proposed method are compared 
with those of related works. Finally, Sect. 5 concludes the 
paper and introduces future directions for research.

2  Multitapering method

The multitapering method is obtained by multiplying the 
data sequence by a set of orthogonal windows to form sev-
eral single taper periodogram that are averaged to estimate 
of the power spectral density. Let us assume that r

c
(n) is a 

discrete-time symmetrical cepstrum, where r
c
(−n) = r

c
(n) , 

and Sx(f ) is the real-valued spectral density function for a 
real-valued stationary process. x = [x(0), x(1),… , x(N − 1)]T 
denotes one frame of speech of N samples. The r

c
(n) can be 

obtained as:

The mean square error (MSE) of the cepstrum is de�ned as:

(1)rc(n) = ∫
+

1

2

−
1

2

logSx(f )e
i2�fndf ; n ∈ [−N + 1,N − 1]

(2)MSE = ∫
+

1

2

−
1

2

E[(Ŝc(f ) − Sc(f ))
2]df

where Ŝc(f ) is the spectral estimation of r
c
(n) . The goal of 

the multitapering method is to �nd the optimal estimator 
in terms of MSE based on multiple window functions. It is 
assumed that the statistical information discarded by one 
window is partially recovered by the other tapers. The mul-
titaper spectrum estimator Ŝc(f ) is obtained as a weighted 
average of subspectra as,

w h e r e  k  i s  t h e  n u m b e r  o f  t a p e r s 
wj = [w(0), x(1),… ,w(N − 1)]T  with corresponding 
weights �(j)  [21]. The weighting function is de�ned to 
generate a smooth estimate with less variance than single 
taper methods. This spectrum estimation for the baseline 
system and for a single window is obtained by

Figure 1 shows multitaper window shapes for Thomson, 
Multipeak, and Sine-Weighted Cepstrum Estimator (SWCE) 
window function where k = 4 . A Hamming window can 
be considered as a single-taper in Eq. 3 where k = 1 and 
� = 1 . For a multitapering method, the tapers are typically 
chosen to be orthonormal. The choice of taper has a sig-
ni�cant e�ect on the accuracy of the spectrum estimation. 
The details of �nding the optimal number of tapers for 
a given process and di�erent applications can be found 
in [27–30].

Once the tapers are selected as the window functions, 
we extract the phase information using multitapering 
method as explained in the next section.

(3)Ŝc(f ) =

k∑

j=1

�(j)

||
|
|
|
|

N−1∑

t=0

wj(t)x(t)e
−

i2�tf

N

||
||||

2

(4)Ŝc(f ) =

|
|
||||

N−1∑

t=0

w(t)x(t)e
−

i2�tf

N

|
|
||||

2

Fig. 1  Di�erent multitaper 
window functions with k = 4



Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:290 | https://doi.org/10.1007/s42452-019-0305-y

3  Multitaper phase information extraction

The dependency of the phase-based features on the start-
ing sample window and di�culties of phase unwrapping 
are two challenges in combining phase information with 
MFCCs. Di�erent phase unwrapping methods have been 
studied and group delay-based phase information has 
been proposed to address these challenges and to make 
the phase information less sensitive to the phase warping 
issue [31–35]. The fast changes of phase spectrum accord-
ing to the position of a window could be more critical for 
applying multiple parallel window functions in multitaper-
ing methods. While the position of a window shifts, the 
phase �(�, t) changes during the windowing process even 
for a same frequency. The di�erence of phase information 
between shifted windows is considerable and depends 
on the clipping position of the input speech. To overcome 
this problem, Nakagawa et al. [12] normalized the phase 
response with respect to the frame position for Hamming 
window. In this work, we adapt the method proposed 
by [12] to normalize the position of shifted windows in 
the phase information extraction step for multitapering 
method as follows.

The spectrum of a speech signal is obtained from input 
speech as,

where S(�, t) is the DFT of input speech, X (�, t) and 
Y(�, t) are the real and imaginary parts of S(�, t) , 
X2(�, t) + Y2(�, t) is the power spectrum of S(�, t) which 
is used to calculate MFCCs. �(�, t) and 2� + �(�, t) are 
the phase information of speech signals extracted from 

(5)

S(�, t) = X (�, t) + jY(�, t) =
√

X2(�, t) + Y2(�, t) × ej�(�,t)

di�erent frames for the same voice data. The �(�, t) and 
2� + �(�, t) are mapped to the same value by constrain-
ing the phase values to [−�,�] before sending the phase 
information to the classi�er.

To normalize the changes of �(�, t) from shifted frames, 
the phase of a certain basis frequency �b is kept constant. 
Then the phase values of other frequencies can be normal-
ized according to the frequency of basis �b . Figure 2 shows 
the e�ect of shifted windows on phase information for a 
short subband before normalization. Although the windows 
shifted for just 10 ms, the phase information from these 
two windows is not the same. If we pass this unnormalized 
wrapped phase information directly to the classi�er to create 
speaker models, the models could not accurately represent 
the corresponding speakers. By setting the phases of the 
basis frequency �b to a constant value, for example �

�b
=

�

4
 , 

the spectrum of speci�c frequency is obtained as,

Without loss of generality, we can set the basis frequency 
to 2� × 1000 , and calculate the real and imaginary parts of 
the spectrum at the desired frequency ��

= 2�f � as,

(6)

S�(��, t) = X̃ (��, t) + jỸ(��, t)

=
√

X2(��, t) + Y2(��, t) × ej�(�
� ,t) × e

j
�
�

�b

�

�

4
−�(�� ,t)

�

(7)

X̃ (��, t) =
√

X2(��, t) + Y2(��, t)

× cos

�

�(��, t) +
�
�

2� × 1000

�

�

4
− �(��, t)

�

�

(8)

Ỹ(��, t) =
√

X2(��, t) + Y2(��, t)

× sin

�

�(��, t) +
�
�

2� × 1000

�

�

4
− �(��, t)

�

�

Fig. 2  Unnormalized wrapped 
phases of two di�erent win-
dows
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Therefore, the �nal normalized phase is obtained as,

Although this normalization method significantly 
reduces the e�ect of frame position for two shifted win-
dows, it is not still a perfect match as illustrated in Fig. 3. 
As the �nal step of phase normalization and to address the 
illustrated di�erences in Fig. 3, let us compare two values 
of di�erent phases � − �̃

1
 and �̃

2
= −� − �̃

1
 . The di�erence 

of these two phases is 2� − 2�̃
1
 , and if we set �̃

1
≈ 0 , then 

the di�erence would be 2� , while we know that the two 
phases are very similar to each other. This problem can be 
solved if we modify the phase into coordinates on a unit 
circle as,

Then the cos�̃ and sin�̃ values are passed through the GMM 
classi�er for two di�erent phases with very similar values. 
Figure 4 shows the e�ect of shifted frames after applying 
the proposed normalizing method to phase information 
for two di�erent windows.

We need to replace the estimation of phase spectrum 
with amplitude estimation in the multitapers weighting 
equation in order to extract the multitaper phase-based 
features. Let us assume k multitapers, where j = 1,… , k , 
are used with corresponding weights �(j) for one frame of 
speech of N samples. The multitaper phase information is 
therefore obtained as,

(9)�̃(��, t) = �
(

�
�, t

)

+
�
�

2� × 1000

(

�

4
− �(��, t)

)

(10)�̃ → {cos�̃, sin�̃}

(11)

�̃ =

k
∑

j=1

�(j)

{

cos

N−1
∑

t=0

�(��, t) +
�
�

2� × 1000

(

�

4
− �(��, t)

)

,

sin

N−1
∑

t=0

�(��, t) +
�
�

2� × 1000

(

�

4
− �(��, t)

)

}

Figure 5 illustrates the proposed multitapering method 
designed and adopted for magnitude and phase infor-
mation. As seen, the �nal amplitude spectrum and phase 
information are formed as a weighted average of the indi-
vidual tapered window. The tapers are designed to provide 
approximately uncorrelated spectrum estimates so that 
the averaging them reduces the variance of the spectrum 
estimation and makes the spectrum less sensitive to noise, 
compared with the conventional single-taper method.

The steps of extracting multitaper MFCC and inverted-
MFCC (IMFCC) in a SV system is explained in [36]. The MFCC 
and IMFCC feature extraction begins with pre-processing 
and followed by short-time Fourier transform (STFT) anal-
ysis using multitaper method. The �nal static features are 
obtained using discrete cosine transform (DCT). The feature 
vectors of MFCC, IMFCC, and normalized phase information 
are separately sent to classi�ers and the likelihoods of each 
GMM are fused to produce the total score STotal as,

where S
MFCC

 , S
IMFCC

 , and SPhase are the likelihoods produced 
by MFCC-based, IMFCC-based, and phase-based speaker 
models, respectively. Parameters � and � denote weighting 
coe�cients to adjust the weight of each speaker model in 
�nal score calculation. For example, if � = 1 and � = 1 , the 
system is the conventional MFCC-GMM SV [25]. The e�ect 
of phase information to the overall system performance 
is evaluated by choosing � ∈ 

[0,1) . The phase-only GMM 
model is when � = 0.

(12)STotal = (1 − �)SPhase + �(�SMFCC + (1 − �)SIMFCC)

Fig. 3  Normalized wrapped 
phases of two di�erent win-
dows
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4  Experiments

We use TIMIT corpus  [37] with 16 KHz sampling rate 
as the dataset in enrollment and verification phases. 

It contains 630 speakers (192 female and 438 male). It 
provides 10 utterances for each speaker from which we 
selected 7 utterances for training and 3 utterances for 
testing. We used 189 speakers (58 female, 131 male) 
for training and testing phases (gender-independent) 

Fig. 4  Example of the e�ect 
of frame position on phase. a 
Cos� parameters of normal-
ized wrapped phases of two 
di�erent windows. b Sin� 
parameters of normalized 
wrapped phases of two di�er-
ent windows

Fig. 5  The block diagram of 
proposed multitapering MFCC 
and phase information system



Vol.:(0123456789)

SN Applied Sciences (2019) 1:290 | https://doi.org/10.1007/s42452-019-0305-y Research Article

and all 10 utterances of other 441 speakers to gener-
ate universal background model. We train two gender-
independent, full covariance UBMs; one with 256 com-
ponent GMMs and the other with 8 number of mixture. 
All the experiments use a mixture size of 256 except the 
one that investigate the length of the analysis window 
for the phased-based system since it is a side experi-
ment to investigate the trend of using short versus long 
duration window for phase information extraction. Veri-
fication trials consist of all possible model-test combina-
tions resulting in a total of 107,163 trials ( 3 ∗ 189 = 567 
targets versus 3 ∗ 188 ∗ 189 = 166, 596 impostor trials). 
Note that all the speaker models are derived from the 
UBM via adaptation in this paper.

Two different validation tests are employed: (1) 
match and clean training where the train and test data 
are same and without additive noise, (2) mismatch and 
noisy training in which white noise is added to test data 
at SNR = 10 dB and a classifier that is trained when clean 
signals is applied. Different experiments are carried out 
in order to investigate the effects of several factors in 
the performance of proposed SV system including:

1. number of tapers using di�erent multitapering meth-
ods,

2. short and long frame length in phase information 
extraction,

3. normalizing multitaper phase information and its 
fusion with multitaper MFCC,

4. fusion of all multitaper MFCC, multitaper IMFCC and 
normalized multitaper phase information.

EER is calculated to evaluate the accuracy of the pro-
posed speaker verification system against the baselines.

4.1  Baseline design

MFCC for the baseline system are computed using 
Hamming window with a frame duration of 30 ms and 
75% overlaps between frames, and 40-channel Mel-
frequency filterbank. The lowest 16 MFCC are retained, 
excluding delta, double-delta, and energy coefficients. 
In this paper, we call this baseline the Hamming-based 
baseline. These configurations are the same for multi-
tapering methods, Thomson [27], Sine-Weighted Cep-
strum Estimator (SWCE) [30], and Multipeak [29], except 
that the spectrum is estimated from Eq. 3 instead of 
Eq. 4. The size of frames and the overlap factor for mul-
titapers are the same as for the Hamming window.

4.2  Choice of tapers

First, the choice of the spectrum estimator is studied to 
investigate the e�ect of using di�erent types of taper and 
the number of windowing functions (tapers) on the over-
all system accuracy. This experiment does not include the 
phase information. The number of tapers for each of the 
multitapering methods is varied from 2 to 12 tapers, and 
the result of each method is compared to the Hamming-
based baseline. The accuracy of the speaker veri�cation 
systems is studied under both the clean-match and noisy-
mismatch conditions.

Figure 6 compares the results of EERs for multitaper-
based system with di�erent multitapering methods. The 
maximum relative improvement (RI) obtained by each 
multitaper is compared to the Hamming-based baseline in 
the last column. As shown, the maximum relative improve-
ment is 18.9% for the Thomson method with 4 tapers. The 
three multitaper methods in most of the settings outper-
form the Hamming-based baseline in terms of EER. We 
attribute this improvement to the fact that employing 
the MFCC �lterbank on top of the multitapering method 
brings additional averaging to the system which result in 
low EER and more accurate veri�cation. Figure 7 illustrates 
the relative improvements obtained by each system. Posi-
tive RI indicates a reduction in EER whereas negative RI 
indicates an increase in EER. The average improvements 
obtained by using Thomson, Multipeak, and SWCE mul-
titaper methods are 11.2%, 4.2%, and 8.9%, respectively. 
Although the optimum number of tapers depends on the 
method and objective of the system, it seems that 2–6 
tapers is the best choice in the clean-match condition 
according to the settings of this experiment.

Next, we study the accuracy of multitapering meth-
ods under additive noise. The number of tapers for each 
method is varied from 2 to 12 tapers while the amount of 

SNR is set to 10 dB. Experiments are carried out with dif-
ferent multitapering methods keeping other parameters 
identical as the previous experiment. The pre-processing, 
feature extraction and classi�cation are the same for all 
three multitaper-based baselines. Figure 8 illustrates the 
results of using multitapering methods in noisy condition. 
Although the accuracy of all multitaper-based baselines 
signi�cantly drops under low SNR in compare with their 
identical setting in clean condition, they have better aver-
age performance compared to the Hamming-based base-
line under additive noise. As shown in Fig. 9, the Thomson 
method performs the best when the number of tapers is 
between 2 and 6. Speci�cally, the average EER of Thom-
son, Multipeak, and SWCE systems are 28.11%, 30.35%, 
and 27.72%, while the maximum EER obtained by each 
of them are 25.57%, 26.73%, and 25.77%, respectively. 
Although the average EER of the Multipeak method is 
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more than the Hamming-based baseline under additive 
noise, all three multitaper variants outperform the Ham-
ming-based baseline for di�erent number of tapers. In 
the presence of high noise with SNR = 10 dB, Thomson 

performs best on average. Figure 9 shows the details of 
relative improvements obtained by each multitaper-based 
system compared to the Hamming-based baseline. Based 
on the results of the above experiments, the intuition of 
improving Hamming-based baseline using multitapering 
methods seems feasible both in clean and noisy condi-
tions. However, we could not reach a unique best setting 
for number of tapers and its type. As a result, our next 
experiments include varied number of tapers for all types 
of multitapering methods.

Figures 10 and 11 provide the SWCE multitaper spec-
trum for a 30 ms duration speech signal, as an example. As 
seen, the tapers are designed so that the estimation errors 
in the subspectra are approximately uncorrelated. The 
outcome of 4 tapers in SWCE method produces smoother 
spectrum compared to the Hamming-based baseline due 
to its variance reduction.

4.3  Short versus long duration window 
for phase‑based systems

The length of analysis window in speech and speaker rec-
ognition applications is important in both the amplitude 

Fig. 6  Performance evaluation 
of multitaper MFCC in terms of 
EER (%) for di�erent number of 
tapers in clean-match condi-
tion

Fig. 7  Relative improvement (RI) of the multitaper systems in com-
parison with Hamming-baseline in clean-match condition
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and phase information extraction. The state-of-the-art SV 
systems use three major ranges for duration of analysis 
window which are sub-segmental (3–5 ms), segmental 
(10–40 ms) and suprasegmental (100–300 ms) [38]. It is tra-
ditionally believed in speech recognition applications that 
the magnitude spectrum contributes more when small 
window duration is employed while phase-based features 
are more informative for large window durations [14, 39]. 

For instance, use of large window with phase informa-
tion, rather than small window, is more e�ective in order 
to recognize phoneme [40]. However, to the best of our 
knowledge, there is no study in speaker veri�cation to 
investigate the e�ect of frame duration for phase informa-
tion extraction. This section studies the e�ect of frame size, 
segmental (20 ms) versus suprasegmental (120 ms), on the 
performance of a MFCC + Phase-based system accord-
ing to Eq. 12. Setting the weight � = 1 shows an MFCC-
only system without any phase information, while � = 0 
indicates phase-only system without MFCCs. The weight 
of IMFCC is set to zero during the experiment by setting 
� = 1 . Therefore, no high frequency information is involved 
in the likelihood score calculation.

The settings of MFCC system are identical to the Ham-
ming-based baseline while the length of window for 
phase information extraction is either 20 ms (small dura-
tion window) or 120 ms (long duration window) with 90% 
overlap between frames. A DFT of 512 points is used in 
this experiment, which results in 256 individual frequency 
components. Since the TIMIT corpus has a 16 kHz sampling 
frequency, the interval between two adjacent frequency 
components is 8000

256
 Hz. The phase information is obtained 

from the lowest 12 components of the subband spectrum, 
from 30 Hz to 350 Hz. This experiment also investigates 
the e�ect of phase information normalization according 
to Eq. 11.

Fig. 8  Comparison of the 
baseline and multitaper 
systems under additive noise 
and mismatched condition 
( SNR = 10 dB)

Fig. 9  Relative improvement (RI) of the multitaper systems in 
compared with Hamming-baseline under additive noise and 
SNR = 10 dB
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First, we compare the performance of short duration 
of 20 ms and large duration of 120 ms window in the 
clean-match condition for MFCC-only, phase-only, and 
fused systems. The comparison is also done based on the 
fact that whether our proposed normalization technique 
for phase-based features (Sect. 3) is in e�ect or not. As 
shown in Fig. 12, when there is no normalization, com-
bining phase information through short window duration 
(20 ms-No Norm) is able to improve the MFCC-only system. 

Speci�cally, when � = 0.7 , the best RI is 1.13% compared to 
MFCC-only system. However, adding phase information for 
long window duration never outperforms the MFCC-only 
system. The fused system using long window duration 
reach to EER = 2.64% at best while the EER of MFCC-only 
system is still better and stays at 2.38%. Indeed, adding 
unnormalized long window duration phase information 
to the baseline system has a destructive e�ect in overall 
performance.

Fig. 10  30 ms framed speech 
signal (512 samples) and its 
SWCE �nal estimation

Fig. 11  SWCE spectral esti-
mates with four tapers and 
uniform weights for a 30 ms 
duration framed speech signal
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In this experiment and with respect to the normali-
zation, we see that the proposed phase normalization 
improves the veri�cation performance for both long and 
short window duration in fused systems (Fig. 12). However, 
the veri�cation relative improvement for the short window 
duration is 3.38% better than the best result obtained for 
long window duration. The minimum EER for short win-
dow duration obtained when � = 0.5 while this happens 
at � = 0.7 for long duration window. Although the overall 
performances of short and long duration windows for pro-
posed normalized phase information are near the same 
for both, the normalized phase information extracted with 
short duration window adds more discriminative infor-
mation to the fused system. As a result, in clean-match 
condition short duration window can be a better choice 
rather than long duration window. It is worth noting that 
adding phase information outperforms the MFCC-only sys-
tems unanimously except for the system with the 120 ms 
framing size and without phase normalization (120 ms-No 
Norm). Now, we repeat experiments under same settings 
as above but under additive noise with SNR = 10 dB and in 
a mismatch condition to identify an appropriate frame size 
for the phase information extraction in noisy environment.

It is evident from Fig. 13 that the overall performance of 
systems follows the trend in previous experiment, that was 

clean environment. The long duration window for unnor-
malized system (120 ms-No Norm) never outperforms the 
MFCC-only baseline. However, the unnormalized phase 
information for short duration window (20 ms-No Norm) 
improves the system performance in term of EER by 5.54% 
compared to MFCC-only. The normalized phase informa-
tion for short duration window (20 ms-Norm) could even 
achieve better accuracy and increases the RI of the veri�ca-
tion system to 9.15%.

Other minor �ndings are as follows. As for the experi-
ment in the clean condition, the MFCC-only systems 
always outperform the phase-only systems. Adding exter-
nal noise to SNR = 10 dB causes the performance loss for 
the Hamming-based baseline from 2.38 to 29.92%, while 
this performance deterioration is smoother for phase-only 
systems. Using unnormalized phase information, the sys-
tem with a 20 ms window size (20 ms-No Norm) obtains an 

EER = 2.35% ( � = 0.7 ), which is worse than both the other 
systems with phase normalization methods. Systems with 
a 20 ms window size and with phase normalization (20 ms-
Norm), 20 ms window size without phase normalization 
(20 ms-No Norm), and 120 ms window size and with phase 
normalization (120  ms-Norm) relatively improve their 
MFCC-only systems in terms of EER by 7.26%, 1.13%, and 
4.6%, respectively. For both the small and large window 

Fig. 12  Speaker veri�cation 
results of the Hamming-
baseline system in terms of 
EER (%) for combination of 
phase information with MFCC 
in the “Clean” condition and 
for the 20 ms and 120 ms 
window length sizes. Systems 
with phase normalization are 
represented with “Norm”
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duration, the best results from MFCC-only systems ( � = 1 ) 
outperform the best results from phase-only ( � = 0 ) 
systems.

In summary, according to the result of this section, 
choice of short duration window for phase information 
improves speaker verification performance more than 
long duration window. MFCC-only systems outperforms 
the phase-only systems in all conditions, which is consist-
ent with the results reported earlier in the literature [12]. 
The results show that using the combination of MFCC and 
phase information outperforms MFCC-only system. The 
reason could be due to the fact that many of the impor-
tant features of a signal are preserved if phase is properly 
retained. The results also support the use of phase infor-
mation to complement MFCC for a better characterization 
of the vocal system since the fused systems improved the 
speaker veri�cation performance. Moreover, normalized 
phase information always provides better results in com-
pare with unnormalized phase information.

4.4  Multitaper phase‑based system performance

The main goal in this paper is to improve the performance 
of SV by combining normalized multitaper phase informa-
tion with multitaper MFCCs. We evaluated the proposed 
method against the state of the art, i.e. Hamming-based 
baseline, and report on our outcomes in the following. 
Here, we use short duration window for all experiments 

as its e�ectiveness for phase-based systems in both clean 
and noisy conditions was reported in previous section. 
For each of the multitaper methods-Thomson, Multipeak 
and SWCE—we vary the number of tapers and extract the 
MFCCs and normalized phase information. We retain the 
lowest 16 MFCCs from 40-channel Mel-frequency �lter-
bank every 7.5 ms using windows of 30 ms (75% overlap). 
The number of mixtures is set to 8 for creating speaker 
models and the GMM-UBM model. The order of phase 
information components set to 12 and is calculated every 
2.7 ms using windows of 30 ms, which leads to 90% over-
lap between frames. The phase-based features are nor-
malized according to Eq. 11. The combination weight of 
MFCCs and phase information is varied from � = 0 to � = 1 
according to Eq. 12, where � = 0 is phase-only system and 

� = 1 is MFCC-only system. The wide range of 2–12 taper 
counts is considered in this experiment.

For consistency with the previous baselines and set-
tings of this experiment, we perform experiments for both 
the match-clean and mismatch-noisy conditions on the 
30 ms Hamming-based system to have a fair comparison. 
The experiment is repeated for di�erent combination of 
MFCC, normalized, and unnormalized phase information. 
As shown in Fig. 14, the combination of MFCC and nor-
malized phase information outperforms the unnormal-
ized phase information for both clean and noisy condi-
tions. Adding the normalized phase information to the 
MFCC in the clean condition relatively improves the EER 

Fig. 13  Speaker veri�cation 
results of the Hamming-
baseline system in terms of EER 
(%) for combination of phase 
information with MFCC under 
additive noise and mismatched 
condition ( SNR = 10 dB) and 
for the 20 ms and 120 ms 
window length sizes
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by 6.94% with � = 0.7 , while the RI under additive noise 
and for SNR = 10 dB is 5.31%. These results are in line with 
previous section for the 20 ms short-term framing. We use 
the results of this experiment as the baseline to study and 
compare the e�ects of extracting normalized phase infor-
mation in multitaper-based systems.

The EERs for multitaper-based systems are compared 
with the Hamming-based baseline in Fig.  15 for the 
clean condition. The results of this experiment show that 
although the phase-only systems perform worse than 
MFCC-only systems for multitaper-based systems, a rela-
tively high speaker veri�cation performance is obtained 
for the multitaper-based system where normalized mul-
titaper phase information is combined with multitaper 
MFCC. We see similar trend in Hamming-based baseline as 
well. It is already observed that adding normalized phase 
information to the Hamming-based baseline improves 
the EER by RI ≈ 7%. In another word, adding normalized 
phase information generally improves the performance 
both in Hamming-based baseline and multitaper-based 
system. However, in comparison with the Hamming-based 
baseline with normalized phase information, our proposed 
multitaper-based systems achieve superb performance. 
Speci�cally, multitaper-based system obtained a 33.94% 
relative improvement in EER where Thomson is used with 
normalized phase information for 6 tapers ( k = 6 ). The 

maximum relative improvements obtained for Multipeak 
and SWCE multitapering methods with normalized phase 
information are 24.06% and 29.86%, respectively.

We next study the accuracy of combining MFCC and 
normalized phase information extracted from multitaper-
based system under additive noise corruption and with 
SNR = 10  dB. The experimental settings of all systems 
under additive noise are identical to the clean condition. 
As shown in Fig. 16, the accuracy of all methods drops as 
SNR decreases to 10dB, as expected. The combination of 
MFCC and normalized phase information for multitaper-
based systems outperforms the Hamming-based baseline 
in all cases. Some exceptions occur in the multitaper-based 
system with Multipeak and SWCE multitapering methods 
for di�erent numbers of tapers, but the minimum EER 
obtained by each multitaper-based system is consistently 
lower than the Hamming-based baseline.

Moreover, MFCC-only systems outperform phase-only 
systems under additive noise in multitaper-based systems 
which is in line with the experiment in the match-clean 
condition. Speci�cally, the maximum relative improve-
ments obtained for multitaper-based systems with Thom-
son, Multipeak and SWCE are 24.87%, 16.51%, and 20.32%, 
respectively, in comparison with the Hamming-based 
baseline with normalized phase information. Although 
the performance of the three multitapering methods at 

Fig. 14  Speaker veri�cation 
results for the baseline system 
in clean and noisy condi-
tions using a 30 ms Hamming 
window and a combination of 
MFCC and phase information
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Fig. 15  Comparison of EERs (%) for combination of normalized 
phase information with MFCC extracted from multitaper-based sys-
tems in the clean and matched condition

Fig. 16  EERs (%) for combination of normalized phase information 
and MFCC extracted by multitapering methods in multitaper-based 
systems compared to Hamming-based baseline under additive 
noise and mismatched condition ( SNR = 10 dB)
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their optima is near the same, the combination of phase 
information and MFCC for the Thomson performs best on 
average in the noisy condition ( SNR = 10 dB). The mini-
mum EER obtained by the Hamming-based baseline is 
28.34%, while the multitaper-based system with Thomson 
obtains an EER of 21.29% with 4 tapers. Thomson shows 
sharper local minima than Multipeak and SWCE methods 
and yields lower error rates for di�erent number of tapers 
in our experiments. One reason is that Thomson tapers 
are designed for �at spectra (added white noise). We also 
observe that the optimum value for the number of tapers 
depends on the method and there is no speci�c range for 
the entire multitaper-based systems.

It is worth noting that Thomson multitapering method 
achieves better performance both in clean and noisy con-
ditions in comparison with other multitapering methods.

4.5  Combination of multitaper MFCC, IMFCC, 
and normalized phase‑based features

In the previous section, we show that extracting normal-
ized phase information using mutltipering methods could 
able to improve the performance of SV system. In this sec-
tion, however, we are also curious to see the e�ect of add-
ing the inverted-MFCC �lterbank. This section evaluates 
the performance of the SV systems based on MFCC, IMFCC, 
and phase-based feature at score level fusion using multi-
tapering method for (1) MFCC + IMFCC fused system, and 
(2) MFCC+ IMFCC + normalized phase information fused 
system. A 30 ms framing size is used for the experimental 
setup. The overlap between frames is set to 75% for MFCC 
and IMFCC, and is set to 90% for phase information extrac-
tion. The order of MFCC and IMFCC is set to 16 coe�cients, 
while 12 components of phase information are normal-
ized and used during the experiment. The fusion scores 
are obtained according to Eq. 12.

Table 1 shows the speaker veri�cation accuracy in terms 
of EER for di�erent combinations of MFCCs’ complemen-
tary features. The results show that both IMFCC and phase 

information improve veri�cation rates when separately 
combined with the MFCCs. However, when both feature 
sets combined with MFCC (i.e. MFCCs + IMFCCs + normal-
ized phase-based system) the veri�cation accuracy does 
not improve compared to neither MFCC+IMFCC system 
nor MFCC+normalized phase-based system. In fact, the 
worst performance among the four alternative systems for 
clean speech is the fusion of MFCC+IMFCC+normalized 
phase-based system (Fig. 17). The results also show that 
the combination of the normalized phase information, 
IMFCCs, and MFCCs is more robust in noisy condition 
( SNR = 10 dB). The MFCC+IMFCC+phase-based system 
outperforms the Hamming-based baseline, but still does 
not yield better EER in comparison with MFCC+IMFCC 
and MFCC+normalized phase-based systems. One of 
the explanation for this performance loss for the fused 
MFCC+IMFCC+phase-based system could be that GMM, 
like other classi�ers, experiences performance degrada-
tion in the high dimensional feature settings. Therefore, 
the EM algorithm converges to an incorrect set of Gaussian 
parameters since there are many free parameters in the 
GMM covariance matrices of the cluster distributions to 
provide a good �t for many di�erent assignments.

4.6  Experimental results using i‑vector for the best 
performing system

For the sake of investigating the robustness of the pro-
posed method on i-vector based system, it would be 
interesting to see the performance of the combination of 
multitaper MFCC and multitaper normalized phase infor-
mation with the i-vector back-end. Since TIMIT database 
is not challenging for SV systems [41], repeating all the 
presented experiments may not necessary due to the 
fact that i-vectors perform better than the GMM-UBM 
approach in general [26]. However, for the best perform-
ing system with the related taper type, we also provide 
the veri�cation results with the PLDA i-vector method. A 
gender-independent i-vector extractor of dimension 400 is 

Table 1  Speaker veri�cation 
results in term of EER (%) for 
di�erent fused systems. Bolded 
values indicate lowest EER (%)

Hamming SWCE Multipeak Thomson

Clean-match

MFCC 2.4 2.1 2.1 1.9

MFCC + IMFCC 2.3 1.7 1.8 1.6

MFCC + normalized phase 2.2 1.5 1.7 1.5

MFCC + IMFCC + normalized phase 2.4 2.9 2.9 2.8

SNR = 10 dB-mismatch

MFCC 29.9 25.7 26.7 25.5

MFCC + IMFCC 28.9 23.3 24.6 21.4

MFCC + normalized phase 28.3 22.5 23.6 21.2

MFCC + IMFCC + normalized phase 28.9 24.7 24.7 23.6
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trained in this experiment on a set of 4410 speech of TIMIT. 
We reduce the dimension of i-vector using Linear Discri-
minant Analysis (LDA) to 200. The length of the i-vector 
is normalized and followed by Gaussian PLDA as in [42].

Results of using Thomson multitaper with k = 6 in 
clean and match condition and k = 4 in noisy and mis-
match condition is reported in Table 2. It is observed that 
the multitaper i-vector systems (i.e. the last column where 

� = 1 ) in both clean and noisy conditions outperforms the 
Hamming i-vector baseline. The improvement of i-vector 
system is outstanding when the combination of multita-
per normalized phase information and multitaper MFCC is 
applied. The maximum relative improvement obtained for 
Thomson multitapering method with normalized phase 
information in compare with Hamming i-vector baseline 
in clean and noisy conditions are 35.77% and 15.95%, 
respectively.

5  Summary

We proposed normalized multitaper phase-based sys-
tem to improve the verification performance in both 
clean and noisy conditions compared with state-of-
the-art single-taper Hamming-based baseline as well 
as unnormalize phase-based system. Combining the 
multitaper MFCCs with multitaper normalized phase 
information, we obtained the error reduction rate of 
33.94%, 24.06%, and 29.86% in clean-match condition 
and 24.87%, 16.51%, and 20.32% in noisy-mismatch 
condition for Thomson, Multipeak, and SWCE, respec-
tively, over Hamming MFCC-based method. Experimen-
tal results also demonstrate the effectiveness of our 
proposed method in comparison with multitaper MFCC 
system and multitaper phase-based system without 
normalization.

Fig. 17  Comparison perfor-
mances of speaker veri�cation 
fused systems in terms of EER 
(%)

Table 2  Speaker veri�cation 
results in term of EER (%) for 
the best performing GMM-
UBM system using i-vector/
PLDA back-end in noisy and 
clean condition. Bolded values 
indicate lowest EER (%)

� = 0 � = 0.1 � = 0.3 � = 0.5 � = 0.7 � = 0.9 � = 1

Hamming GMM-UBM Clean 10.95 3.34 2.67 2.40 2.21 2.35 2.38

10 dB 56.63 32.75 28.97 28.34 28.92 29.27 29.92

Hamming i-vector Clean 7.89 2.96 2.45 2.18 2.18 2.29 2.35

10 dB 54.94 28.50 21.44 19.56 21.12 25.76 26.63

Multitaper i-vector + phase Clean 2.69 2.49 1.97 1.40 1.41 1.74 1.83

10 dB 38.00 27.19 25.53 22.13 16.44 21.97 24.76
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The MFCC complements, i.e. IMFCCs and phase-based 
features, usually are unable to outperform MFCCs in stand-
alone systems since their ability to describe the acous-
tic space of a speaker is poorer than that of MFCC. The 
experimental results showed that the combination of the 
normalized multitaper phase information and MFCC was 
also very e�ective for noisy speech with SNR = 10 dB. The 
results showed that the type of multitaper was less impor-
tant than the number of tapers. For all normalize multita-
per phase-based systems, there were an optimal number 
of tapers that outperforms the Hamming-based system. 
Moreover, the exact choice of the number of tapers was 
not critical and the best results could be obtained when 
the number of tapers is between 2 and 6. However, 
experimental results on TIMIT dataset indicated that the 
proposed normalized Thomson phase-based system out-
performs other multitaper-based and Hamming-based 
systems.

The proposed method also showed better performance 
improvement compared to the fusion of MFCC and high 
frequency cepstral feature (i.e. inverted-MFCC) with the 
same setup. According to the results, combining the MFCC, 
IMFCC, and proposed normalized phase information 
simultaneously would not add improvement over their 
fusion with MFCC separately. The largest relative improve-
ments over Hamming-based baseline were obtained with 
the fusion of one of these complementary features with 
MFCCs.

Overall, multitapering methods for MFCC and normal-
ized phase information extraction is a viable candidate for 
replacing the single-taper baseline MFCC. In the future, 
the performance of multitaper phase-based fused system 
will be studied with deep feature fusion approaches in fea-
ture level and with more focus on feature dimensionality 
reduction. The two fusion schemes, i.e. score level and fea-
ture level fusion, will be compared on larger database and 
with signals corrupted by di�erent types of noise.
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